
Chaste: Finite Element Implementations

Pras Pathmanathan∗

December 7, 2012

This document lists the equations and finite element implementations used in various solvers in the Chaste
codebase. Section 1 can be read as an introduction to the stages required in converting Poisson’s equation and
the heat equation into finite element linear systems, while the remaining sections can be used as references
for the equations and the solvers.

Contents

1 Finite element solution of simple equations 3
1.1 Poisson’s equation . 3

1.1.1 Applying Dirichlet boundary conditions . 4
1.2 The heat equation . 4

2 Chaste PDE solvers 6
2.1 SimpleLinearEllipticSolver . 6
2.2 SimpleLinearParabolicSolver . 6
2.3 SimpleNonlinearEllipticSolver . 7

3 Cardiac electrophysiology 8
3.1 The monodomain equations . 8
3.2 The bidomain equations . 9
3.3 The bidomain equations with a perfusing bath . 10

3.3.1 The bidomain problem with a bath, including stimuli and parameters 13

4 Solid mechanics 15
4.1 Formulation . 15

4.1.1 Kinematics . 15
4.1.2 Stress . 15
4.1.3 Equilibrium equations . 16

4.2 Hyper-elasticity and material laws . 16
4.3 Weak form . 17
4.4 Normal pressure on deformed surface boundary conditions . 18
4.5 Finite element discretisation . 18
4.6 Actual ordering of unknowns . 20
4.7 FE residual/Jacobian for the case of normal pressure on deformed surface BCs 20
4.8 Test problems . 21
4.9 Other implementation calculations . 22

∗Please send comments or corrections to pras@cs.ox.ac.uk

1

5 Cardiac electro-mechanics 24
5.1 Formulation . 24

5.1.1 Test problem . 25
5.2 Implicit or explicit schemes . 26
5.3 Anisotropic passive material laws . 26
5.4 Active stress generated in sheet direction . 27

6 Fluid dynamics 28
6.1 Stokes’ flow . 28

2

1 Finite element solution of simple equations

1.1 Poisson’s equation

Let Ω ⊂ Rn, and let ∂Ωdir and ∂Ωneu be two non-intersecting subsets of the boundary of Ω whose union is
the entire boundary. Consider Poisson’s equation with mixed Dirichlet-Neumann boundary conditions:

∇2u = f(x) (1)

u = u∗(x) on ∂Ωdir

∇u · n = g(x) on ∂Ωneu

where n is the unit outward-facing normal.
The weak form of this equation is found by multiplying by a test function1 satisfying v(∂Ωdir) = 0 (i.e.

v is zero on the Dirichlet part of the boundary), and integrating using the divergence theorem:

0 = −
∫

Ω

(
∇2u

)
v dV +

∫
Ω

fv dV ∀v ∈ V0

=

∫
Ω

∇u ·∇v dV −
∫
∂Ω

v∇u · n dS +

∫
Ω

fv dV ∀v ∈ V0

=

∫
Ω

∇u ·∇v dV −
∫
∂Ωdir

v∇u · n dS −
∫
∂Ωneu

v∇u · n dS +

∫
Ω

fv dV ∀v ∈ V0

Using the facts that v is zero on ∂Ωdir and ∇u · n = g on ∂Ωneu, we have the weak form: find u such that
u = u∗ on ∂Ωdir satisfying:∫

Ω

∇u ·∇v dV −
∫
∂Ωneu

gv dS +

∫
Ω

fv dV = 0 ∀v ∈ V0

For simplicity we now just consider the case u∗ = 0. The finite element discretisation is obtained by
choosing a set of piecewise polynomial basis functions (such as linear basis functions), one for each node in
Ω\∂Ωdir, i.e. one for each node at which u is unknown: {φ1, φ2, . . . , φN}, where N is the number of nodes;
and restricting the test functions v to just these basis functions, to obtain N equations:∫

Ω

∇u ·∇φi dV −
∫
∂Ωneu

gφi dS +

∫
Ω

fφi dV = 0 i = 1, . . . , N,

and then approximating u by u =
∑N
j=1 Ujφj , where Uj is the approximation of u(xj). Since ∇u is then

equal to
∑N
j=1 Uj∇φj , this gives∫

Ω

N∑
j=1

Uj∇φj ·∇φi dV −
∫
∂Ωneu

gφi dS +

∫
Ω

fφi dV = 0 i = 1, . . . , N,

or ∑
KijUj = bi, i = 1, . . . , N,

where K is the stiffness matrix :

Kij =

∫
Ω

∇φi ·∇φj dV, (2)

and

bi =

∫
∂Ωneu

gφi dS −
∫

Ω

fφi dV,

or in other words, the linear system
KU = b.

1From some suitable space V (actually the Sobolev space H1). We write V0 for {v ∈ V : v(∂Ωdir) = 0}.

3

1.1.1 Applying Dirichlet boundary conditions

In practice, we allow the test functions to vary over all the nodes, and then apply the Dirichlet boundary
conditions by altering the rows of the matrix K: zeroing the row and setting the diagonal to be one; and the
vector b: setting its value to be the boundary condition value. If k corresponds to a node with a Dirichlet
boundary condition, the new row of the linear system looks like:

 0 . . . 0 1 0 . . . 0

...
Uk
...

 =

...

u∗(xk)
...

(i.e. the equation Uk = u∗(xk) in matrix form). And actually, in the code, we then alter the matrix and right-
hand-side vector again so that the k-th column of the matrix becomes zeroed with a one on the diagonal, in
order to maintain symmetry.

1.2 The heat equation

Now consider the heat equation with mixed Dirichlet-Neumann boundary conditions and an initial condition:
find u(t, x) satisfying

∂u

∂t
= ∇2u (3)

u = u∗(x) on ∂Ωdir

∇u · n = g(x) on ∂Ωneu

u(0, x) = u0(x)

There are a number of possible time-discretisations. The explicit approach is:

um+1 − um

∆t
= ∇2um,

and the implicit approach is:
um+1 − um

∆t
= ∇2um+1.

We choose the latter as it is unconditionally stable, and as with the finite element method (in contrast to the
finite difference method), a linear system would still have to be solved if the explicit approach were taken.
For the heat equation with a nonlinear source term (such as the monodomain equation—see later):

∂u

∂t
= ∇2u+ f(u),

we choose a semi-implicit discretisation

um+1 − um

∆t
= ∇2um+1 + f(um), (4)

since a fully-implicit discretisation would require the solution of a nonlinear system.
The weak form corresponding to (3) with an implicit time-discretisation is: given um, find um+1 such

that um+1 = u∗ on ∂Ωdir satisfying:

1

∆t

∫
Ω

um+1v dV +

∫
Ω

∇um+1 ·∇v dV =
1

∆t

∫
Ω

umv dV +

∫
∂Ωneu

gv dS ∀v ∈ V0

4

Letting v be φ1, . . . , φN as before, and with u =
∑
Ujφj , we get the finite element approximation

1

∆t
MUm+1 +KUm+1 =

1

∆t
MUm + b,

where M is the mass matrix

Mij =

∫
Ω

φiφj dV,

where K is the stiffness matrix defined in (2), and here (since we have no source term), b is just

bi =

∫
∂Ωneu

gφi dS.

Dirichlet boundary conditions are then applied as described in Section 1.1.1.

5

2 Chaste PDE solvers

2.1 SimpleLinearEllipticSolver

This takes in an AbstractLinearEllipticPde and boundary conditions, which overall are of the form

∇ · (D(x)∇u) + α(x)u+ c(x) = 0

u = u∗(x) on ∂Ωdir

(D(x)∇u) · n = g(x) on ∂Ωneu

where D(x) is a matrix-valued function, and α and c are scalar-valued functions, all provided by the user.
Note that the Neumann boundary condition the user provides corresponds to the value (D(x)∇u) · n on the
bounday, not ∇u · n. When D is the identity matrix and α ≡ 0 this is just (1).

The weak form is: find u such that u = u∗ on ∂Ωdir satisfying:∫
Ω

(D∇u) ·∇v dV −
∫
∂Ωneu

gv dS −
∫

Ω

αuv dV −
∫

Ω

cv dV = 0 ∀v ∈ V0

Letting v be φ1, . . . , φN and with u =
∑
Ujφj as before, the finite element approximation is

KU−MU = b,

where here the stiffness matrix is now dependent on the diffusion tensor D(x)

Kij =

∫
Ω

∇φi · (D∇φj) dV, (5)

and the mass-matrix is dependent on α(x)

Mij =

∫
Ω

αφiφj dV,

and the right-hand-side vector is

bi =

∫
∂Ωneu

gφi dS +

∫
Ω

cφi dV.

Dirichlet boundary conditions are then applied as described in Section 1.1.1. (Note also that in the code
we do not (currently) distinguish between the two matrices: the ‘full’ matrix to be assembled is A = K−M ,
so the linear system is AU = b).

2.2 SimpleLinearParabolicSolver

This solver is for parabolic problems defined by an AbstractLinearParabolicPde and boundary conditions,
which overall are of the form

k(x)
∂u

∂t
= ∇ · (D(x)∇u) + f(x, u) (6)

u = u∗(x) on ∂Ωdir

∇u · n = g(x) on ∂Ωneu

u(0, x) = u0(x)

where D(x) is a matrix-valued function, and k and f are scalar-valued functions, all provided by the user.
Again, the Neumann boundary condition the user provides is (D(x)∇u) · n, not ∇u · n.

6

Using a semi-implicit discretisation as in (4), the weak form is find um+1 such that um+1 = u∗ on ∂Ωdir

satisfying:

1

∆t

∫
Ω

kum+1v dV +

∫
Ω

(
D∇um+1

)
·∇v dV

=
1

∆t

∫
Ω

kumv dV +

∫
Ω

f(x, um)v dV +

∫
∂Ωneu

gv dS ∀v ∈ V0

The finite element approximation is therefore given by

1

∆t
MUm+1 +KUm+1 =

1

∆t
MUm + c,

where K is the diffusion-tensor dependent stiffness matrix given by (5), the mass matrix here depends on
k(x)

Mij =

∫
Ω

kφiφj dV,

and c depends on the solution at the previous time

ci =

∫
Ω

f(x, um)φi dV +

∫
∂Ωneu

gφi dS.

Dirichlet boundary conditions are then applied as described in Section 1.1.1. Again, in the code we do not
(currently) distinguish between the two matrices: the ‘full’ matrix to be assembled is A = K + 1

∆tM , and
the ‘full’ right-hand-side vector is b = 1

∆tMUm + c; and we then solve AUm+1 = b.

2.3 SimpleNonlinearEllipticSolver

This takes in an AbstractNonlinearEllipticPde and boundary conditions, which overall are of the form

∇ · (D(x, u)∇u) + f(x, u) = 0

u = u∗(x) on ∂Ωdir

(D(x, u)∇u) · n = g(x) on ∂Ωneu

The weak form is: find u such that u = u∗ on ∂Ωdir satisfying:∫
Ω

(D(x, u)∇u) ·∇v dV −
∫
∂Ωneu

gv dS −
∫

Ω

f(x, u)v dV = 0 ∀v ∈ V0

The nonlinear finite element problem is then: find the solution U of the nonlinear set of equations:
f(U) = 0, where

fi(U) =

∫
Ω

(
D
(
x,
∑

Ujφj

)
∇u
)
·∇φi dV −

∫
∂Ωneu

gφi dS −
∫

Ω

f
(
x,
∑

Ujφj

)
φi dV = 0

(using u =
∑
Ujφj), together with the Dirichlet boundary conditions. This can be solved using the Newton

(or a Newton-like) method. f is the residual vector, and the matrix that is computed is the Jacobian, ∂fi
∂Uj

.

7

3 Cardiac electrophysiology

3.1 The monodomain equations

The monodomain equations are

χ

(
C ∂V
∂t

+ Iion(u, V)

)
−∇ · (σ∇V) + I(vol) = 0, (7)

∂u

∂t
= f (u, V) , (8)

where σ(x) is an effective conductivity2, χ is the surface-area-to-volume ratio, C is the capacitance across
the membrane, I(vol)(x) the stimulus current (per unit volume) and Iion(u, V) the ionic current (per unit
area) provided by the cell model.

This is exactly the form given by (6), with k = χC (constant), D = σ and f(x, u) = −I(vol)−χIion(u, V).
We usually take the Neumann boundary condition to be zero for monodomain problems, although we can
also use an surface stimulus, in which case g = I(surf)(x). The weak form and finite element discretisation
are therefore those given in Section 2.2, but for easy comparison with the source code we write this out fully.
The weak form is: find V m+1 satisfying

χC
∆t

∫
Ω

V m+1v d3x +

∫
Ω

(
σ∇V m+1

)
·∇v d3x

=
χC
∆t

∫
Ω

V mv d3x−
∫

Ω

(
I(vol) + χIion(u, V m)

)
v d3x

+

∫
∂Ωneu

I(surf)v dS ∀v ∈ V0

(having used d3x rather than dV as V denotes voltage), giving the FE problem(
χC
∆t

M +K

)
Vm+1 =

χC
∆t

MVm + c,

where Mij =
∫
φiφj d3x, Kij =

∫
∇φi · (σ∇φj) d3x and

ci = −
∫

Ω

(
I(vol) + χIion(u, V m)

)
φi d3x +

∫
∂Ωneu

I(surf)φi dS.

The only complication is that the cell model ODEs are given at the nodes (not quadrature points),
so Iion(u, V) is only initially known at the nodes, and would have to be interpolated onto the quadrature
points. This leads to the so-called ‘matrix-based-assembly’ of the RHS vector: interpolating Iion(x) as∑N
j=1 (Iion)jφj , where (Iion)j is the ionic current at node j, we get that

∫
Iionφi d3x is just the product of

the mass matrix with the vector of ionic currents. By assuming the stimulus is also defined node-wise and
also interpolated linearly (this is the default behaviour in the code), we overall end up with(

χC
∆t

M +K

)
Vm+1 =

χC
∆t

MVm −MFm + c(surf)

where Mij =
∫
φiφj d3x, Kij =

∫
∇φi · (σ∇φj) d3x, and Fm is the vector of nodal currents and stimuli:

Fmi = (I(vol))i + χ(Iion)i

and

c
(surf)
i =

∫
∂Ωneu

I(surf)φi dS.

2The monodomain equations apply if the extracellular conductivity σe is a multiple of the intracellular conductivity σi:
σe = λσi say. The effective conductivity for the monodomain equation is then σ = λ

1+λ
σi.

8

3.2 The bidomain equations

The bidomain problem in full generality is: find V (t, x) and φe(t, x) satisfying:

χ

(
C ∂V
∂t

+ Iion(u, V)

)
−∇ · (σi∇ (V + φe)) = −I(vol)

i , (9)

∇ · (σi∇V + (σi + σe)∇φe) = I
(vol)
total , (10)

∂u

∂t
= f (u, V) ,

where I
(vol)
total = I

(vol)
i + I

(vol)
e , with boundary conditions

n · (σi∇ (V + φe)) = I
(surf)
i , (11)

n · (σe∇φe) = I(surf)
e . (12)

There are now two PDEs, so there are two equations in the weak form: find V , φe satisfying

χC
∆t

∫
Ω

V m+1v d3x +

∫
Ω

(
σi∇(V m+1 + φm+1

e

)
·∇v d3x

=
χC
∆t

∫
Ω

V mv d3x−
∫

Ω

(
I

(vol)
i + χIion(u, V m)

)
v d3x

+

∫
∂Ωneu

I
(surf)
i v dS ∀v ∈ V0 (13)

and ∫
Ω

(σi∇V + (σi + σe)∇φe) ·∇v d3x

= −
∫

Ω

I
(vol)
totalv d3x +

∫
∂Ωneu

I
(surf)
total v dS ∀v ∈ V0 (14)

(where I
(surf)
total is obviously I

(surf)
i + I

(surf)
e).

For the finite element discretisation, we choose a set of basis functions ψ1, ψ2, . . . , ψN (now using ψ
instead of φ for basis functions as the latter denotes electrical potential), set V =

∑
Vkψk and φe =

∑
Φkψk

(now avoiding the use of i as a subscript, since it denotes ‘intracellular’), and set v = ψj in turn in (13)
and (14) to obtain 2N equations. For any particular conductivity σ, let us define the stiffness matrix K[σ]
by

(K[σ])jk =

∫
Ω

∇ψj · (σ∇ψk) d3x.

The first N equations are:

χC
∆t

MVm+1 +K[σi]V
m+1 +K[σi]Φ

m+1
e =

χC
∆t

MVm + c(1),

(here Φe = (Φ1, . . . ,ΦN)), where

c
(1)
j =

∫
Ω

−
(
I

(vol)
i + χIion(u, V m)

)
ψj d3x +

∫
∂Ωneu

I
(surf)
i ψj dS.

However, exactly as in the monodomain section, we have that

c(1) = −MFm + c(surf).

9

The second N equations are:

K[σi]V
m+1 +K[σi + σe]Φ

m+1
e = d,

where

dj = −
∫

Ω

I
(vol)
totalψj d3x +

∫
∂Ωneu

I(surf)
e ψj dS.

Note: in the code, we do not allow the direct specification of I
(vol)
e , and in order for compatibility conditions

to be satisfied3, force I
(vol)
total to be zero (i.e. implicitly choose I

(vol)
e = I

(vol)
i), so that actually

dj =

∫
∂Ωneu

I
(surf)
total ψj dS

only4.
Overall, we have the 2N equations(

χC
∆tM +K[σi] K[σi]

K[σi] K[σi + σe]

)(
Vm+1

Φm+1
e

)
=

(
χC
∆tMVm −MFm + c(surf)

d

)

3.3 The bidomain equations with a perfusing bath

For the bidomain problem with a perfusing bath, the implementation quickly becomes more difficult to
write, so for clarity let us temporarily take all the stimuli to be zero, and also take χ = C = 1. We will also
occasionally write φi instead of V + φe, again for clarity.

We suppose there are two disjoint domains, Ω (tissue) and Ωb (the bath), with interface ∂Ω (the boundary
of the tissue). In this problem φi (and therefore V) is only defined in Ω, but φe is defined throughout Ω∪Ωb.

Ωb

Ω

Figure 1: Domains in a model of cardiac tissue contained in a conductive bath.

3See Pathmanathan et al., “A numerical guide to the solution of the bidomain equations of cardiac electrophysiology”, 2010
4
∫
∂Ωneu I

(surf)
total dS also needs to be zero (if no Dirichlet boundary conditions), so the electrodes class, in bidomain with bath

problems, makes sure I
(surf)
e takes equal and opposite values on the opposite faces of the bath.

10

The (simplified) problem to be solved is (see also Section 3.3.1): find V ∈ H1(Ω) and φe ∈ H1(Ω ∪ Ωb)
satisfying

∂V

∂t
−∇ · (σi∇φi) + Iion = 0, in Ω (15)

∇ · (σi∇φi + σe∇φe) = 0, in Ω (16)

∇ · (σb∇φe) = 0, in Ωb (17)

∂u

∂t
= f (u, V) ,

with boundary conditions:

n · (σi∇φi) = 0, on ∂Ω (i.e. tissue boundary) (18)

n · (σb∇φe) = 0, on ∂Ωb\∂Ω (i.e. bath boundary) (19)

and suitable initial conditions. An interface boundary condition is also required: it is

n · (σe∇φe)
∣∣
∂Ωtiss + n · (σb∇φe)

∣∣
∂Ωbath = 0 on ∂Ω (20)

(where
∣∣
∂Ωtiss denotes the evaluation on ∂Ω as a limit of from the tissue side and

∣∣
∂Ωbath the bath side). This

is the condition which will arise naturally in the weak form (see below).
The first equation of weak form is found by multiplying (15) by v ∈ H1(Ω) and integrating using the

divergence theorem:

0 =

∫
Ω

∂V

∂t
v d3x +

∫
Ω

(σi∇φi) ·∇v d3x−
∫
∂Ω

v (σi∇φi) · n dS +

∫
Ω

Iionv d3x ∀v ∈ H1(Ω)

=

∫
Ω

∂V

∂t
v d3x +

∫
Ω

(σi∇φi) ·∇v d3x +

∫
Ω

Iionv d3x ∀v ∈ H1(Ω)

the boundary integral vanishing due to (18).
The second equation in the weak form is found by multiplying (16) and (17) (essentially one equation

over the whole domain Ω ∪ Ωb) by w ∈ H1(Ω ∪ Ωb) (note the larger domain) and integrating using the
divergence theorem:

0 =

∫
Ω

(σi∇φi + σe∇φe) ·∇w d3x−
∫
∂Ω

w (σi∇φi + σe∇φe) · n
∣∣
∂Ωtiss dS

+

∫
Ωb

(σb∇φe) ·∇w d3x−
∫
∂Ω

w (σb∇φe) · n
∣∣
∂Ωbath dS −

∫
∂Ωb

w (σb∇φe) · n dS ∀w ∈ H1(Ω ∪ Ωb)

Here, the last boundary integral vanishes due to the boundary condition (19), as does the first part of the
first boundary integral,

∫
∂Ω
w (σi∇φi) · n

∣∣
∂Ωtiss dS, due to (18). The remaining boundary term is

−
∫
∂Ω

w (σe∇φe) · n
∣∣
∂Ωtiss dS −

∫
∂Ω

w (σb∇φe) · n
∣∣
∂Ωbath dS.

w ∈ H1(Ω ∪ Ωb), so w continuous across the interface, i.e. w
∣∣
∂Ωtiss = w

∣∣
∂Ωbath , so the above is equal to

−
∫
∂Ω

w
(
(σi∇φi) · n

∣∣
∂Ωtiss + (σb∇φe) · n

∣∣
∂Ωbath

)
dS

which is zero due to the interface condition (20). Hence all the surface integrals in the second equation of
the weak form also vanish.

The weak problem is therefore (see also Section 3.3.1): find V ∈ H1(Ω) and φe ∈ H1(Ω ∪ Ωb) satisfying
(initial conditions and):∫

Ω

∂V

∂t
v d3x +

∫
Ω

(σi∇φi) ·∇v d3x +

∫
Ω

Iionv d3x = 0 ∀v ∈ H1(Ω) (21)

11

and ∫
Ω

(σi∇φi + σe∇φe) ·∇w d3x +

∫
Ωb

(σb∇φe) ·∇w d3x = 0 ∀w ∈ H1(Ω ∪ Ωb) (22)

For the finite element discretisation, assume for convenience that Ω and Ωb are open (i.e. ∂Ω is not
contained in either Ω or Ωb. Let K < N < N + M , and suppose there are K nodes in the interior of Ω,
N −K nodes on the boundary ∂Ω, and M nodes in Ωb:

x1, . . . ,xK ∈ Ω and therefore 6∈ ∂Ω

xK+1, . . . ,xN ∈ ∂Ω

xN+1, . . . ,xN+M ∈ Ωb and therefore 6∈ ∂Ω

The basis functions are then

ψ1, . . . , ψK︸ ︷︷ ︸
=0 in Ωb

, ψK+1, . . . , ψN︸ ︷︷ ︸
6=0 in Ω or Ωb

, ψN+1, . . . , ψN+M︸ ︷︷ ︸
=0 in Ω

We can write V =
∑N
j=1 Vjψj . This technically would give V non-zero in a small band outside Ω, where

V isn’t defined, so this has to be understood to apply only for x ∈ Ω ∪ ∂Ω (= Ω). Also, φe =
∑N+M
j=1 Φjψj .

Let V = (V1, . . . , VN), Φ = (Φ1, . . . ,ΦN+M) and define Φ(1) = (Φ1, . . . ,ΦN), i.e. the first N components of
Φ.

The final finite element linear system will of size 2N + M . The first N equations are given by setting
v = ψj , j = 1, . . . , N in (21). Since ψN+1, . . . , ψN+M are zero in Ω∪ ∂Ω, this equation is only dependent on
Φ1, . . . ,ΦN , i.e. on Φ(1) rather than the full Φ. We get, as in Section 3.2,

1

∆t
MVm+1 +K[σi]

(
Vm+1 + Φm+1

(1)

)
=

1

∆t
MVm + c(1) (23)

where M in the N ×N mass stiffness, and K[σi] is the N ×N stiffness matrix using conductivity σi.
The remaining N +M equations are obtained by setting w = ψ1, . . . , ψN+M in (22). This gives

0 =

N∑
k=1

Vk

∫
Ω

(σi∇ψk) ·∇ψj d3x

+

N+M∑
k=1

Φk

(∫
Ω

((σi + σe)∇ψk) ·∇ψj d3x +

∫
Ωb

(σb∇ψk) ·∇ψj d3x

)
j = 1, . . . , N +M (24)

The first term here is: K[σi]V for equations j = 1, . . . , N ; and zero for equations j = N + 1, . . . , N +M (as
then ψj = 0 in Ω), i.e. (

K[σi]V
0

)
} size N

} size M

The second term can be written as the product KΦ, where K is the (N +M)× (N +M) matrix:

Kjk =

∫
Ω

((σi + σe)∇ψk) ·∇ψj d3x +

∫
Ωb

(σb∇ψk) ·∇ψj d3x (25)

which we write in 2 by 2 block matrix form

K =

(
K(1,1) K(1,2)

K(2,1) K(2,2)

)
} size N

} size M

So overall we have that (24) in matrix form is:[
K[σi] K(1,1) K(1,2)

0 K(2,1) K(2,2)

] Vm+1

Φm+1
(1)

Φm+1
(2)

 =

(
0
0

)
} first N equations of (24)

} next M equations of (24)
(26)

12

Finally, we put together (23) and (26) to get the full finite element system (see also Section 3.3.1) 1
∆tM +K[σi] K[σi] 0

K[σi] K(1,1) K(1,2)

0 K(2,1) K(2,2)

 Vm+1

Φm+1
(1)

Φm+1
(2)

 =

 1
∆tMVm + c(1)

0
0

 } size N

} size N

} size M

Note that K(1,2) = K(2,1) and is nearly all zero—it is only non-zero at values corresponding to nodes on or
near ∂Ω.

In practice, for implementation/parallelisation reasons, we introduce a set of dummy voltages values at
the bath nodes, VN+1, . . . , VN+M , and introduce the extra equations

Vj = 0, j = N + 1, . . . , N +M.

Letting V(1) = V, and V(2) = (VN+1, . . . , VN+M) (i.e. the vector of dummy values), and letting IM denote
the M by M identity matrix, we have

1
∆tM +K[σi] 0 K[σi] 0

0 IM 0 0
K[σi] 0 K(1,1) K(1,2)

0 0 K(2,1) K(2,2)

Vm+1
(1)

Vm+1
(2)

Φm+1
(1)

Φm+1
(2)

 =

1

∆tMVm + c(1)

0
0
0

} size N

} size M

} size N

} size M

3.3.1 The bidomain problem with a bath, including stimuli and parameters

We know re-state the above without the simplications. The problem to be solved is: find V ∈ H1(Ω) and
φe ∈ H1(Ω ∪ Ωb) satisfying

χC ∂V
∂t
−∇ · (σi∇φi) + χIion + I

(vol)
i = 0, in Ω

∇ · (σi∇φi + σe∇φe) = 0, in Ω

∇ · (σb∇φe) = 0, in Ωb
∂u

∂t
= f (u, V) ,

with boundary conditions:

n · (σi∇φi) = I
(surf)
i , on ∂Ω (i.e. tissue boundary)

n · (σb∇φe) = I(surf)
e , on ∂Ωb\∂Ω (i.e. bath boundary)

and interface boundary condition

n · (σe∇φe)
∣∣
∂Ωtiss + n · (σb∇φe)

∣∣
∂Ωbath = 0 on ∂Ω

Note: we are assuming I
(vol)
total = 0 in the 2nd PDE, as described in the end of Section 3.2, i.e. implicitly

choosing I
(vol)
e = −I(vol)

i ; we have not allowed a volume bath stimulus; and I
(surf)
e , acting on the bath

boundary only, corresponds to electrodes.
The finite element problem is

χC
∆tM +K[σi] 0 K[σi] 0

0 IM 0 0
K[σi] 0 K(1,1) K(1,2)

0 0 K(2,1) K(2,2)

Vm+1
(1)

Vm+1
(2)

Φm+1
(1)

Φm+1
(2)

 =

χC
∆tMVm + c(1)

0
0

c(2)

} size N

} size M

} size N

} size M

13

where Mjk =
∫
ψjψk d3x is the standard mass matrix, K[σ] is defined by (3.2), K is defined by (25), and

c
(1)
j =

∫
Ω

−
(
I

(vol)
i + χIion(u, V m)

)
ψj d3x +

∫
∂Ω

I
(surf)
i ψj dS,

c
(2)
j =

∫
∂Ωb

I(surf)
e ψj+N dS.

14

4 Solid mechanics

We now describe how to solve solid mechanics problems using the finite element method. We assume the
material in question undergoes large deformations, which means that nonlinear elasticity (also known as
finite elasticity) has to be used, and is hyperelastic, which means there exists a strain-energy function (to
be defined shortly). We will consider both the incompressible and compressible cases.

4.1 Formulation

Let Ω0 ⊂ R3 denote a body in its undeformed, stress-free configuration, and let X be a point in Ω0. Let
the deformed configuration, under some given loads, be given by Ω, and let x(X) ∈ Ω be the corresponding
point in a deformed configuration.

In compressible elasticity, the unknowns to be computed are the deformed positions x (or equivalently
the displacements u = x−X).

In incompressible elasticity, there are two unknowns, the deformation x and the pressure p. The pressure
is essentially a Lagrangian multiplier arising from the constraint of incompressibility (see below).

4.1.1 Kinematics

The important deformation-based quantities are the deformation gradient and deformation tensor. The
deformation gradient is defined to be

F =
∂x

∂X
, i.e. FiM =

∂xi
∂XM

,

from which the Green deformation tensor is defined to be

C = FTF i.e. CMN = FiMFiN ,

The Lagrangian strain tensor is E = 1
2 (C − I) but it is easier to work with C rather than E.

Now, det(F) must be positive everywhere; this is the constraint of non-interpenetrability. In incompress-
ible problems, the constraint of incompressibility can be stated as det(F) = 1 everywhere in the body, or,
equivalently, det(C) = 1.

The following variables and notation are often used: J = det(F), I1 = tr(C), I2 = 1
2 ((tr(C))2 − tr(C2)),

and I3 = detC (so J2 = I3). The latter three variables are the principal invariants of C.

4.1.2 Stress

There are three important stress tensors: the Cauchy stress, σ or σij , which is a measure of the true stress in
the body, the force acting on a surface in the deformed body, per unit deformed area; the first Piola-Kirchhoff
tensor, S or SMi, which measures the force acting on a surface in the deformed body per unit undeformed
area; and the second Piola-Kirchhoff stress, T , or TMN , which is a transformed (non-physical) stress, the
force ‘acting’ on a surface in the undeformed body, per unit undeformed area. σ and T are symmetric. The
relationship between the stresses are

σ =
1

detF
FS, T = SF−T, σ =

1

detF
FTFT

To link stress and strain (or stress and deformation), a material law is required, which is a nonlinear
functional relationship linking stress and deformation. The material law is material-dependent and can only
be determined by experiment. For hyper-elastic materials, the law is defined via a strain-energy function
(see Section 4.2).

For compressible materials, the material law is a relationship between stress and deformation gradient:
T ≡ T (C) (or alternatively, T ≡ T (E), S ≡ S(F), σ = σ(F), etc). For incompressible materials, the stress
is also dependent on the pressure: T ≡ T (C, p).

Example material relationships are given in Section 4.2.

15

4.1.3 Equilibrium equations

Let b be the body force per unit mass (generally equal to (0, 0,−g) if the effect of gravity is not neglected,
or zero otherwise), and ρ0 the density. The equation of static equilibrium, which determines the new
configuration x(X), given a material law, is ∇ · ST + ρ0b = 0—“divergence of stress plus body force equals
zero.” The natural boundary condition is STN = s. Written in terms of the 2nd Piola-Kirchoff stress, this
becomes

Compressible case: find x ≡ x(X), given a material law T ≡ T (C(x)), satisfying

∂

∂XM
(TMN (x)FiN (x)) + ρ0bi = 0 in Ω0, (27)

Suitable boundary conditions are the specification of the deformation on part of the boundary of Ω0 and
surface traction on the remainder of ∂Ω0:

x = x∗ on ∂Ωdisp
0

(TFT)TN = s on ∂Ωtrac
0

where x∗ is the specified deformation, N is the undeformed unit normal, s is a specified surface traction
(force per unit area), and ∂Ωdisp

0 and ∂Ωtrac
0 are disjoint subsets of ∂Ω0 whose union makes up ∂Ω0.

In incompressible elasticity, we have in addition the constraint of incompressibility, which is detF = 1,
and the fact that the stress T is dependent on the pressure.

Incompressible case: find x ≡ x(X) and p ≡ p(X), given a material law T ≡ T (C(x), p), satisfying

∂

∂XM
(TMN (x, p)FiN (x)) + ρ0bi = 0, (28)

detF = 1, (29)

where b is the body force per unit mass, ρ0 is the density, and with boundary conditions as above:

x = x∗ on ∂Ωdisp
0

(TFT)TN = s on ∂Ωtrac
0

4.2 Hyper-elasticity and material laws

To close the above formulation we need to specify the relationship between T and C.
Consider the compressible case first. The definition of hyper-elasticity is that there exists a strain energy

function W ≡ W (E), from which the 2nd Piola-Kirchhoff stress is determined by T = ∂W
∂E . Equivalently,

W ≡W (C) and T = 2∂W∂C .
In the isotropic compressible case, the strain energy becomes dependent on just the three principal

invariants of C, i.e. W ≡W (I1, I2, I3). Defining the notation wk = ∂W
∂Ik

(I1, I2, I3), the stress is then given by

T = 2w1
∂I1
∂C

+ 2w2
∂I2
∂C

+ 2w3
∂I3
∂C

,

which, using some useful formulae5, becomes

T = 2
∂W

∂C
= 2w1I + 2w2(I1I − C) + 2w3I3C

−1. (30)

5For a (general, not-necessarily symmetric) matrix A: for I1(A), ∂I1
∂AMN

= δMN and d2I1
dAMN∂APQ

= 0; for I2(A), ∂I2
∂AMN

=

I1δMN − AMN and ∂2I2
∂AMN∂APQ

= δMN δPQ − δMP δNQ; and for I3 = det(A),
∂(det(A))
∂Apq

= det(A)(A−1)qp and
∂A−1

MN
∂APQ

=

−A−1
MPA

−1
QN (differentiate A−1A = I).

16

Any compressible material law should satisfy T (I) = 0, i.e. zero stress when no deformation, which
provides a constraint on material parameters.

To implement isotropic compressible material laws, w1, w2 and w3, as well as each second derivative wij ,
needs to be calculated and coded—see AbstractIsotropicCompressibleMaterialLaw and child classes.

Compressible material laws are often written in terms of the deviatoric invariants, Ī1 = I1I
− 1

3
3 , and Ī2 =

I2I
− 2

3
3 (these are the strain invariants of C after being scaled to have unit determinant—see for example

[Horgan and Saccomandi, Journal of Elasticity, 2004] for more details). For example, the Neo-Hookean
material law is

W (I1, I2, I3) = c1(Ī1 − 3) + c3(J − 1)2,

= c1(I1I
− 1

3
3 − 3) + c3(I

1
2
3 − 1)2,

(note the −1/3 here is 3D-specific).
Incompressible laws are similar except they depend on the pressure and I3 in a specific way:

W (C) = Wmat(C)− p

2
(I3 − 1),

where Wmat(C) is material-dependent and to be measured experimentally. This gives the stress

T = 2
∂Wmat

∂C
− pC−1.

Incompresible laws have a particular pressure p0, generally non-zero, which is present in the undeformed
body, i.e. satisfying T (I, p0) = 0.

In the isotropic incompressible case, we have W = Wmat(I1, I2)− p
2 (I3−1), and T = 2wmat

1 I+2wmat
2 (I1I−

C)− pC−1.

4.3 Weak form

For the weak form, we use the notation δx for the test functions (one vector-valued function rather than, say,
three function v1, v2, v3). Write V for the space of deformations6. Let V0 be the subspace of deformations

which are zero on ∂Ωdisp
0 , i.e. V0 = {y ∈ V : y(X) = 0 if X ∈ ∂Ωdisp

0 }.
The weak form for the compressible equilibrium equation (27) is obtained by taking the inner product

of (27) with δx and integrating using the divergence theorem, from which we obtain:

Compressible case: find x ∈ V such x = x∗ on ∂Ωdisp
0 and∫

Ω0

TMN
∂xi
∂XN

∂(δxi)

∂XM
dV0 =

∫
Ω0

ρ0biδxi dV0 +

∫
∂Ωtrac

0

siδxi dS0 ∀ δx ∈ V0 (31)

For the incompressible case, we also have the constraint equation, which we have to multiply with a test
function δp, from a suitable space7 W, and integrate.

Incompressible case: find x ∈ V and p ∈ W such x = x∗ on ∂Ωdisp
0 and∫

Ω0

TMN
∂xi
∂XN

∂(δxi)

∂XM
dV0 −

∫
Ω0

ρ0biδxi dV0 −
∫
∂Ωtrac

0

siδxi dS0 = 0 ∀ δx ∈ V0 (32)∫
Ω0

δp (detF − 1) dV0 = 0 ∀ δp ∈ W (33)

(This can also be written by summing these two equations and saying ∀ δx ∈ V0, δp ∈ W).

6This is the space H1(Ω)3.
7L2(Ω).

17

4.4 Normal pressure on deformed surface boundary conditions

The traction boundary conditions stated in Section 4.1.3 are the natural boundary conditions for this problem,
i.e. those that arise naturally when writing down the weak form. They represent however a traction specified
on surfaces on the undeformed body. More physically realistic boundary conditions are that there is an
external pressure applied to surfaces on the deformed body, and in particular acting in the normal direction.
Specifically, the boundary condition is

σijnj = Pni on ∂Ωtrac

where n is the normal on the deformed body. This corresponds to a deformation-dependent boundary
condition (i.e. s ≡ s(x)) on the undeformed state of

s = JPF−TN (34)

Hence in this situation, the boundary integral term in the weak form is also nonlinear, like the volume
integrals.

4.5 Finite element discretisation

For the FEM implementation we just consider the incompressible case—the compressible case just involves
ignoring the pressure equations or blocks.

Suppose we have a mesh in which x will be solved for at N nodes and p will be solved for atM nodes. For
example, when using a quadratic mesh, with quadratic interpolation for displacement (i.e. for x), and linear
interpolation for pressure8, then N is the total number of nodes, and M is the number of vertices. Now,
the total number of unknowns is 3N +M (assuming a 3D problem). Let φ1, φ2, . . . , φN by the bases used
for displacement (in this example, quadratic bases), and ψ1, ψ2, . . . , ψM those for pressure (in this example,
linear bases).

Let the unknown x-values at the nodes be denoted X I = ((XI)1, (XI)2, (XI)3) = (XI ,YI ,ZI), so that

x =
∑N
I=1 X IφI . Similarly, let the unknown pressures be P1, . . . ,PM, so p =

∑M
I=1 PIψI . Let us write the

vector of all the unknowns as

A = (X1, . . . ,XN ,Y1, . . . ,YN ,Z1, . . . ,ZN ,P1, . . . ,PM) .

This is not the ordering used in the code–as with bidomain-with-bath we write the equations down using
one ordering which gives a block format of vectors/matrices, but in the code we use a ‘striped’ ordering for
parallelisation reasons—see Section 4.6.

Now, suppose I is an index into A, in others words, that 1 ≤ I ≤ 3N +M. Clearly AI is either a spatial
variable, (XI)d for some d = 1, 2 or 3 and some I ≤ N ; or a pressure variable, PI for some I ≤ M. Let us
introduce the notation

I = disp(I, d)

if I corresponds to a spatial unknown and AI = (XI)d, and

I = pressure(I)

if I corresponds to a pressure unknown and AI = PI . For example, for small I, if I = I then I = disp(I, 1);
if I = 2N + I then I = disp(I, 3), if I = 3N + I then I = pressure(I).

A =

X1, . . . ,XN ,︸ ︷︷ ︸
I=disp(I,1)

Y1, . . . ,YN ,︸ ︷︷ ︸
I=disp(I,2)

Z1, . . . ,ZN ,︸ ︷︷ ︸
I=disp(I,3)

P1, . . . ,PM︸ ︷︷ ︸
I=pressure(I)

 .

8The order of polynomial interpolation for pressure must be lower than that for displacement.

18

There will be 3N +M nonlinear equations in the finite element problem. The first 3N equations are
obtained by setting δx = (φI , 0, 0) in (32) for I = 1, . . . ,N , then δx = (0, φI , 0), then δx = (0, 0, φI); and the
next M equations obtained by setting δp = ψI in (33), I = 1, . . . ,M. Overall, we have: solve F(A) = 0,
where

FI(A) =

{ ∫
Ω0
TMNFdN

∂φI

∂XM
dV0 −

∫
Ω0
ρ0bdφI dV0 −

∫
∂Ωtrac

0
sdφI dS0 if I = disp(I, d)∫

Ω0
ψI (detF − 1) dV0 if I = pressure(I)

In this equation T and F should be considered as functions of A, through T ≡ T (C(x), p) with x =∑N
I=1 X IφI and p =

∑M
I=1 PIψI . In the case of pressure-on-deformed-surface boundary conditions, as

described in Section 4.4, s will also depend on A—for this case see also Section 4.7.
This equation has to be solved using a nonlinear solver such as Newton’s method. We use Newton’s

method with damping, for which we need to compute the Jacobian, ∂FI
∂AJ . Let us ignore the pressure-on-

deformed-surface case for the time being. After some calculation, the Jacobian can be shown to be

∂FI
∂AJ

=

∫

Ω0

∂TMN

∂CPQ

(
FeQ

∂φJ

∂XP
+ FeP

∂φJ

∂XQ

)
FdN

∂φI

∂XM
+ TMNδde

∂φJ

∂XN

∂φI

∂XM
dV0 if I = disp(I, d), J = disp(J, e)∫

Ω0
−ψJC−1

MNFdN
∂φI

∂XM
dV0 if I = disp(I, d), J = pressure(J)∫

Ω0
ψI(detF)F−1

Me
∂φJ

∂XM
dV0 if I = pressure(I), J = disp(J, e)

0 if I = pressure(I), J = pressure(J)

which can be simplified further to (here, we write the first term using the symmetrisation of ∂T
∂C so that a

smaller number of contractions (i.e. tensor-matrix multiplications) is required, which significantly reduces
the computational cost)

JacIJ =

∫

Ω0

(
∂TMN

∂CPQ
+ ∂TMN

∂CQP

)
FdNFeQ

∂φJ

∂XP

∂φI

∂XM
+ TMNδde

∂φJ

∂XN

∂φI

∂XM
dV0 if I = disp(I, d), J = disp(J, e)∫

Ω0
−ψJF−1

Md
∂φI

∂XM
dV0 if I = disp(I, d), J = pressure(J)∫

Ω0
ψI(detF)F−1

Me
∂φJ

∂XM
dV0 if I = pressure(I), J = disp(J, e)

0 if I = pressure(I), J = pressure(J)
(35)

∂T
∂C has to be provided by the user (through the material law).

Rewriting slightly, we have

JacIJ =

∫

Ω0

((
∂TMP

∂CNQ
+ ∂TMP

∂CQN

)
FdPFeQ + TMNδde

)
∂φJ

∂XN

∂φI

∂XM
dV0 if I = disp(I, d), J = disp(J, e)∫

Ω0
−ψJF−1

Md
∂φI

∂XM
dV0 if I = disp(I, d), J = pressure(J)∫

Ω0
ψI(detF)F−1

Me
∂φJ

∂XM
dV0 if I = pressure(I), J = disp(J, e)

0 if I = pressure(I), J = pressure(J)
(36)

Note that the term multiplying the basis gradients is just ∂S
∂F written in terms of ∂T

∂E and T

∂SMi

∂FjN
=

(
∂TMP

∂CNQ
+
∂TMP

∂CQN

)
FiPFjQ + TMNδij

If we had used S in the weak form rather than TFT than this ∂S
∂F term would have dropped out immediately.

Overall, we have

JacIJ =

∫

Ω0

∂SMd

∂FeN

∂φJ

∂XN

∂φI

∂XM
dV0 if I = disp(I, d), J = disp(J, e)∫

Ω0
−ψJF−1

Md
∂φI

∂XM
dV0 if I = disp(I, d), J = pressure(J)∫

Ω0
ψI(detF)F−1

Me
∂φJ

∂XM
dV0 if I = pressure(I), J = disp(J, e)

0 if I = pressure(I), J = pressure(J)

(37)

19

This only applies when s is not a function of deformation, i.e. not the case described in Section 4.4. When
there are pressure-on-deformed-surface boundary conditions, there is an extra term which needs to be added
to the Jacobian, which is described in Section 4.7.

Note that the Jacobian has a natural 2× 2 block structure

Jac =

(
J11 J12

J21 0

)
} displacement

} pressure

J11 is not in general symmetric, and J12 is not in general equal to −J21. (It would be if we set detF = 1
in the third equation in (37), but although detF must be 1 for the solution, it may not be of the current
Newton guess).

4.6 Actual ordering of unknowns

The following ordering was used in the above

A = (X1, . . . ,XN ,Y1, . . . ,YN ,Z1, . . . ,ZN ,P1, . . . ,PM)

as it allows the residual vector and Jacobian matrix to be written nicely in block form (and also because the
code used to have this ordering). This assumes that there are N nodes in total, and the first M of those are
vertices.

The implementation in the source code however does not assume the first M nodes are vertices. Instead,
we introduce dummy pressure variables at nodes which are not vertices (i.e. internal nodes), in the same
way that dummy variables were introduced in the bidomain-with-bath solver. We use the ordering:

A = (X1,Y1,Z1,P1, . . . ,XN ,YN ,ZN ,PN) .

This striped ordering is used, as always, for parallelisation reasons: keeping all unknowns at a node together
in the ordering means they can be kept on the same processor.

As we have introduced extra unknowns, we have to add extra constraints; these are:

Pi = 0 if node i is an internal node.

This constraint is used during the nonlinear solve. After the solve is complete, the pressure at each internal
nodes is linearly interpolated from the solution pressure at the neighbouring vertex nodes, which is the
natural definition of the pressure at internal nodes.

Overall, the Jacobian is of the form

Jac = PT

 J11 J12 0
J21 0 0
0 0 I

P
} displacement

} pressure

} dummy pressure

where P is some permutation matrix, and I is the identity matrix with equal to the number of non-vertices9.

4.7 FE residual/Jacobian for the case of normal pressure on deformed surface
BCs

With this type of boundary condition, s is a function of the deformation, as given in (34). The finite element
residual is unchanged from that stated in Section 4.5. However, it should be noted that when looping over
surface elements in order to compute the surface integral term, knowing the deformation at the surface
element nodes is not enough to be able to compute F in the surface element, hence not enough to compute

9A final note: to complicate matters further, the element-level residual and jacobian in contrast to the the full resid-
ual/jacobian currently do not use dummy pressure variables or striped ordering, largely for historical reasons (but also because
they do not need to).

20

s. In this part of the code, the volume element containing this surface element is first found, and then F
can be be computed, using the deformation at the nodes of the volume element.

For the Jacobian, the derivative of s with respect to the spatial unknowns is not zero, so this introduces
additions terms into the matrix. After a calculation, the term that has to be added to (37) can be shown to
be

Jacextra
IJ =

−
∫
∂Ωtrac

0
JPNM

(
F−1
NeF

−1
Md − F

−1
MeF

−1
Nd

)
∂φJ

∂XN
φI dS0 if I = disp(I, d), J = disp(J, e)

0 if I = disp(I, d), J = pressure(J)
0 if I = pressure(I), J = disp(J, e)
0 if I = pressure(I), J = pressure(J)

4.8 Test problems

We can use test problems with exact solutions to test the solvers. It is almost impossible to prescribe normal
body forces and/or boundary conditions on a regular domain and solve the equations analytically; however
we can instead choose a deformation which we want to be the solution, and then choose the appropriate
body force and surface tractions which will give that solution.

The incompressible test problems are based on the simple deformation x = (αX, βY) (see tests doc-
umented in the code), or a nonlinear deformation x = (X + α/2X2, Y/(1 + αX)), and an analagous 3D
deformation, as described in [Pathmanathan et al., Journal of Strain Analysis for Engineering Design, 2009].
An extension of the 2D test in this paper is described in Section 5.1.1—see this section and set k = 0 to
obtain the 2D incompressible mechanics test problem. See tests in
continuum mechanics/test/TestIncompressibleNonlinearElasticitySolver.hpp.

One of the compressible test problems also uses x = (αX, βY) and is relatively simple. The other
test problem uses a nonlinear deformation and is described fully here, as it requires a large calculation to
determine the appropriate body force and tractions. The compressible tests are defined in the test pack
continuum mechanics/test/TestCompressibleNonlinearElasticitySolver.hpp.

Nonlinear compressible test problem

The compressible test problem is 2D and uses the Neo-Hookean material law

W (I1, I3) = c(Ī1 − 3) + d(J − 1)2,

where (defining m = −1/DIM), Ī1 = I1I
m
3 . Then

w1 = cIm3 w3 = mcI1I
m−1
3 + d

(
1− I−

1
2

3

)
.

The stress is T = 2w1I + 2w3I3C
−1, which, written in terms of the 1st Piola-Kirchoff tensor, is

S = 2w1F
T + 2w3I3F

−1.

Suppose the body is the unit square, and the X = 0 side is given displacement boundary conditions, and
the remaining surfaces given traction boundary conditions. We choose the following deformation

x =

(
q
(
X + a

2X
2
)

Y
1+aX

)
,

where q and a are parameters. Note that the deformation is compressible if q 6= 1. Writing λ = 1 + aX, this
gives a deformation gradient

F =

(
qλ 0

−Y aλ−2 λ−1

)
⇒ F−1 =

1

q

(
λ−1 0

Y aλ−2 qλ

)

21

and therefore

I1 = q2λ2 + a2Y 2λ−4 + λ−2,

I3 = q2.

Then

w1 = cq2m,

w3 = mcI1q
2m−2 + d

(
1− q−1

)
,

and

S = 2

(
w1qλ+ qw3λ

−1 −w1Y aλ
−2

qw3Y aλ
−2 w1λ

−1 + w3q
2λ

)
We can now read off the tractions: the traction on the top surface is (S21, S22), the traction of the right-hand
surface is (S11, S12), and the traction on the bottom surface is (−S21,−S22).

Finally, we can compute

∂w3

∂X
= mcq2m−2a

(
2q2λ− 4a2Y 2λ−5 − 2λ−3

)
∂w3

∂Y
= 2mcq2m−2aY λ−4 (38)

and using these

∂S11

∂X
= 2

(
w1qa− w3aqλ

−2 + qλ−1 ∂w3

∂X

)
∂S12

∂X
= 4w1a

2Y λ−3

∂S21

∂Y
= 2

(
qw3aλ

−2 + qY aλ−2 ∂w3

∂Y

)
∂S22

∂Y
= 2λq2 ∂w3

∂Y
(39)

These are used in prescribing the appropriate body force: b = − 1
ρ0

(
∂S11

∂X + ∂S21

∂Y , ∂S12

∂X + ∂S22

∂Y

)
.

4.9 Other implementation calculations

The material law classes need to provide a function which returns T (a matrix, i.e. a 2nd-order tensor) and
∂T
∂E (a fourth order tensor, ∂TMN

∂EPQ
) given C.

In the isotropic cases, they make use of the following.

Compressible case

The stress is given by
T = 2w1I + 2w2(I1I − C) + 2w3I3C

−1

which means that

1

4

∂T

∂E
= w11I ⊗ I + w12I ⊗ (I1I − C) + w13I3I ⊗ C−1

+ w21(I1I − C)⊗ I + w22(I1I − C)⊗ (I1I − C)

+ w23I3(I1I − C)⊗ C−1 + w2

(
I ⊗ I − ∂C

∂C

)
+ w31I3C

−1 ⊗ I + w32I3C
−1 ⊗ (I1I − C)

+ (w3 + I3w33)I3C
−1 ⊗ C−1 + w3I3

∂C−1

∂C

22

Here A⊗B represents the fourth-order tensor Z satisfying ZMNPQ = AMNBPQ. Two fourth-order tensors in

the above, ∂C∂C and ∂C−1

∂C , cannot be written in this way: they are ∂CMN

∂CPQ
= δMP δNQ and

∂C−1
MN

∂CPQ
= −C−1

MPC
−1
QN .

This is implemented in AbstractIsotropicCompressibleMaterialLaw.

Incompressible case

This case is less complicated given the form of the strain energy function. The stress is given by

T = 2w1I + 2w2(I1I − C)− pC−1

which means that

1

4

∂T

∂E
= w11I ⊗ I + w12I ⊗ (I1I − C)

+ w21(I1I − C)⊗ I + w22(I1I − C)⊗ (I1I − C)

+ w2

(
I ⊗ I − ∂C

∂C

)
− p

2

∂C−1

∂C

This is implemented in AbstractIsotropicIncompressibleMaterialLaw.

23

5 Cardiac electro-mechanics

5.1 Formulation

In cardiac electro-mechanical problems, the monodomain/bidomain equations are amended slightly to take
into account the deformation, an extra set of ODE systems—the contraction model, which model active
force generation on the cell-level—are introduced, and this active force is added to the nonlinear elasticity
equations.

Physiologically, the mechanical response in the cell is dependent on the electrical activity largely through
the intracellular calcium concentration, [Ca2+], and therefore most contraction models take this as input10.
Now, let f denote the undeformed unit fibre direction. The fibre-stretch (stretch in the fibre-direction) is then

given by λ =
√

fTCf (C is the standard deformation tensor defined in Section 4). The contraction model
can also be dependent on the fibre-stretch, as well as possibly on the fibre-stretch-rate, λ̇. Let w be a vector
of internal state variables for the contraction model. The contraction model is a set of ODEs determining
how the state variables evolve and an equation which provides the active tension, σa. Despite the name, this
is actually a stress not a force; a scalar stress generated at the cellular level in the fibre direction in response
to excitation.

dw

dt
= g(w; [Ca2+], λ, λ̇), (40)

σa ≡ σa(w; [Ca2+], λ, λ̇). (41)

Note that we have denoted active tension as σa rather than the more common Ta. This is to emphasise the
fact that the active tension is likely to be a Cauchy (true) stress, rather than a Piola-Kirchhoff stress. This
will be the case if the deformed cross-sectional area (rather than undeformed cross-sectional area) was used
in the experiments used to fit contraction model parameters.

The equations of nonlinear elasticity are amended to take into account the active response of the tissue
by introducing a third term to the stress which depends on the active tension 11

T = 2
∂W

∂C
− pC−1 +

Jσa
fTCf

ffT, (42)

(where J = det(F)), or
T = T passive + T active, (43)

where

T passive = 2
∂Wmat

∂C
− pC−1,

T active =
Jσa
λ2

ffT. (44)

T active is the active (tensor) stress corresponding to the cellular active tension that is induced in the fibre
direction.

We assume the tissue is always instantaneously in equilibrium and that that inertial effects can be
neglected (i.e. quasi-steady), which means the static equilibrium equations, (28) and (29), are used. We also
take zero body force (i.e. neglect gravity), so the equations of equilibrium are:

∂

∂XM
(TMNFiN) = 0, (45)

det(F) = 1. (46)

10Some simpler models are instead dependent on the voltage and some also possibly explicitly on time.
11The derivation of the active stress term is as follows: we suppose the σa returned by the contraction model is a Cauchy

stress, so that it has to be transformed to a 2nd Piola-Kirchoff stress. The active stress is assumed to act only in the fibre
direction, so the tensor active Cauchy stress is σactive = σa f̃ f̃T, where f̃ is the deformed normalised fibre direction. Now,

f̃ = F f/‖F f‖, so σactive = σa
FffTFT

fTCf
. Now use the relationship between σ and T , T = detFF−1σF -T

24

where T is now the total stress.
The deformation affects the electrical activity in two ways. First, the deformation of the tissue alters

the geometry over which the voltage propagates, altering the spatial derivatives in (7); and secondly, the
cell-model can be dependent on fibre-stretch through the so-called ‘stretch-activated channels’. Equations
(7) and (8) become (using D for the monodomain conductivity tensor as σ now represents stress):

χCm
∂V

∂t
= ∇ · (F−1DF−T∇V)− χIion(u, V, λ), (47)

du

dt
= f(u, V, λ). (48)

(Note: F−1DF−T = C−1D if D is isotropic, i.e. if fibre directions are not being used in the electrical
simulation). The code by default uses D instead of F−1DF−T by default as in the case of simple propagation
it has been shown that this approximation gives very little error (essentially because, when there is diffusion
of the voltage occurring, there is little deformation) whereas including the deformation-dependence massively
increases computational cost. The user can switch on the deformation-dependence if they require it.

5.1.1 Test problem

We can use the incompressible test problem mentioned in Section 4.8 and described in [Pathmanathan et
al., Journal of Strain Analysis for Engineering Design, 2009] to form the basis of a cardiac mechanics test
problem.

Take Ω0 to be the unit square. Assume a Neo-Hookean incompressible law W (I1, I2, I3) = c(I1 − 3) −
p
2 (I3 − 1), and choose as the solution

x =

(
X + α

2X
2

Y
1+αX

)
, p = 2c, (49)

where α > 0. The deformation gradient is therefore

F =

(
λ 0

−αY λ−2 λ−1

)
which satisfies detF = 1. Assuming the active tension is constant, σa(X, t) = k, say, and the fibres are in
the X-direction, f = (1, 0)T, the 1st Piola-Kirchoff stress can be computed to be

S = 2c

(
λ− λ−1 −Y αλ−2

−Y αλ−2 λ−1 − λ

)
+

k

λ2 + α2Y 2λ−4

(
λ −Y αλ−2

0 0

)
Using bi = − 1

ρ0
∂SMi

∂XM
and STN = s, we obtain

b =
−2c

ρ0

(
α

2Y α2λ−3

)
− 1

ρ0

k

(λ2 + α2Y 2λ−4)
2

(
α(5α2Y 2λ−4 − λ−2)

α2Y (4λ−1 − 2α2Y 2λ−7)

)
,

s =

2c

(
0

λ− λ−1

)
if Y = 0,

2c

(
−αλ−2

λ−1 − λ

)
if Y = 1,

2c

(
λ− λ−1

−Y αλ−2

)
+ k

λ2+α2Y 2λ−4

(
λ

−αY λ−2

)
if X = 1.

If we solve a problem on the unit square, fixing the left-hand edge, applying the above boundary conditions
and body force, we should obtain the solution (49). This is tested in the code.

25

5.2 Implicit or explicit schemes

Consider evaluating a stress T ≡ T (C). T is dependent on σa, which is dependent on C through possibly being
dependent on λ and λ̇. One possibility is to use the previous value of λ and λ̇ for computing σa (so using both
the current and previous value of C in evaluating T). This is the commonly-used explicit method, and has the
advantage that the contraction models ODEs need only be solved once per timestep (per node/quadrature
point). However, this can have serious stability/accuracy issues (see cardiac electromechanics paper). The
alternative is to evaluate σa using the current value of C, which is the implicit method. This has no stability
issues, but requires the contraction models ODEs to be re-integrated every time a stress is evaluated (which
is several times during the nonlinear solve). Letting Cn be the value of C at the previous timestep, etc, the
two schemes evaluate T using:

T = 2
∂W

∂C
(Cn+1)− p(Cn+1)−1 +

Jn+1σa(λn, λ̇n)

(λn+1)2
ffT, (50)

in the explicit method, and

T = 2
∂W

∂C
(Cn+1)− p(Cn+1)−1 +

Jn+1σa(λn+1, λ̇n+1)

(λn+1)2
ffT, (51)

in the implicit method.
The weak form, finite element residual F and finite element Jacobian are all unchanged, they just need

to be computed using the total stress, using both passive and active parts. This introduces an extra term in
the ∂T

∂C term used in (36), which can be computed to be:

∂T active
MN

∂CPQ
= J

(
−σa
λ4

+
∂σa/∂λ+ 1

∆t∂σa/∂λ̇

2λ3

)
mMmNmPmQ +

Jσa
2λ2

mMmN (C−1)PQ. (52)

The derivatives of σa need to be approximated numerically and are zero if the explicit method is used
(because then σa is a function of λ at the previous timestep).

5.3 Anisotropic passive material laws

Finally, a note on the implementation of anisotropic passive material laws, in particular cardiac material
laws which depend on the fibre, sheet and normal directions12. An example is the pole-zero material law,
which has terms of the form kffEff , where kff is a parameter and Eff = fTEf . Let us write f , s and n for
the fibre, sheet and normal directions. The material law implementations take in C and the change of basis
matrix P , defined by

P = [f s n].

The stress is computed by assuming the fibres are parallel to the X-axis, and the sheet in the XY plane, by
transforming C to the fibre-sheet basis prior to the calculating the stress (C → C∗) and transforming the
resultant T ∗ after it has been computed. Also, the material law will return dT∗

dC∗ , which has to be transformed
as well. The appropriate computations are

C∗ = PTCP T ∗ ≡ T ∗(C∗) T = PT ∗PT

and
dTMN

dCPQ
= PMmPNnPPpPQq

dT ∗mn
dC∗pq

.

12More precisely, these are three orthonormal directions at each point, the first being the fibre direction, the second being a
vector in the sheet orthogonal to the fibre, the third being normal to the sheet.

26

5.4 Active stress generated in sheet direction

The software also now allows the prescription of active stress generated in the sheet direction, as well as the
fibre direction, with magnitude equal to the fibre active stress multipled by a constract scale factor.

Using the same notation as above: let f and s represent the fibre and sheet directions. Let λf =
√

fTCf

(=λ) and λs =
√

sTCs represent the stretches in the fibre and sheet directions.
The revised model is that (42) becomes:

T = 2
∂W

∂C
− pC−1 +

Jσa(λf)

λ2
f

ffT +
Jkσa(λf)

λ2
s

ssT, (53)

where k is some constant.
All stresses now need to be computed using this. The new sheet stress also introduces extra contributions

to ∂TMN

∂CPQ
. The new terms to be added to (52) are (recalling that λ in (52) is now λf):

J

(
−kσa
λ4
s

)
sMsNsP sQ + J

(
k∂σa/∂λf + k

∆t∂σa/∂λ̇f

2λ2
sλf

)
sMsNfP fQ +

Jkσa
2λ2

s

sMsN (C−1)PQ.

Again, the second term is only needed for the implicit method.

27

6 Fluid dynamics

6.1 Stokes’ flow

Let Ω ⊂ R3, and let x denote position (the independent variable). The Stokes’ flow equations can be used to
determine the fluid flow when inertial forces are small compared to viscous forces (the low Reynolds number
regime). The Stokes’ flow equations are:

∇ · σ + f = 0 (54)

∇ · u = 0 (55)

where σ is the (total) fluid stress defined by σij = µ
(
∂ui

∂xj
+

∂uj

∂xi

)
−pδij , where u is the unknown flow velocity

field, p is the unknown pressure field, and µ is the viscosity. f is an applied body force. The first equation
represents conservation of momentum, the second conservation of mass. Note that ∇ ·σ has i-th component
given by

∂σij

∂xj
. Substituting σ in (54) and making use of (55), we obtain the alternative statement of Stokes’

flow:

µ∇2u−∇p+ f = 0 (56)

∇ · u = 0 (57)

Appropriate boundary conditions are

u = u∗ on Γ1 (58)

σn = s on Γ2 (59)

where Γ1 and Γ2 partition ∂Ω, u∗ is a presribed boundary flow and s the prescribed boundary stress (usually
0). Often Γ2 is empty, and u∗ takes one value on an inflow boundary, another value on an outflow boundary,
and is zero on the remainder of the boundary (no slip boundary conditions). Note that if Γ2 is empty p will
only be defined up to a constant.

The weak form is obtained by multiplying by test functions and integrating using the divergence theorem,
as normal. We use the first formulation (54) rather than the second formulation to make sure the boundary
integral involves the Neumann boundary condition (59). The weak problem is13: find u ∈ V and p ∈ W
such that u = u∗ on Γ1 and∫

Ω

µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂vi
∂xj
− p ∂vi

∂xi
dV =

∫
Ω

fivi dV +

∫
Γ2

sivi dS ∀v ∈ V∫
Ω

∂ui
∂xi

q dV = 0 ∀q ∈W

Now, let εij(u) = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
and note that εij(u) ∂vi∂xj

= εij(u)εij(v). We obtain the weak problem: find

u ∈ V and p ∈W such that u = u∗ on Γ1 and∫
Ω

2µεij(u)εij(v)− p ∂vi
∂xi

dV =

∫
Ω

fivi dV +

∫
Γ2

sivi dS ∀v ∈ V∫
Ω

∂ui
∂xi

q dV = 0 ∀q ∈W

For the finite element problem, we use quadratic basis functions to interpolate the flow, and linear basis
functions for the pressure, as in the solid mechanics solvers. Assuming for the time being the vector of nodal
unknowns is ordered

X = (U1, . . . ,UN ,V1, . . . ,VN ,W1, . . . ,WN ,P1, . . . ,PM) (60)

13Here V = H1(Ω)3 and W = L2(Ω).

28

where (Uk,Vk,Wk) is the unknown flow at node k, Pk the unknown pressure at node k, and there are
assumed N nodes and M vertices. Let φk represent the (quadratic) basis function for node k, and ψk
represent the (linear) basis function for vertex k. By defining u =

∑
k=1,...,N Ukφk, v =

∑
k=1,...,N Vkφk,

etc, and p =
∑
k=1,...,M Pkψk, and letting v and q range over the basis functions as usual, the finite element

problem can be shown to be
AX = B

where A is a (3M +N)× (3M +N) matrix with entries (using the same notation as in Section 4.5)

AIJ =

µ
∫

Ω
∂φI

∂xk

∂φI

∂xk
δde + ∂φI

∂xe

∂φJ

∂xd
dV if I = disp(I, d), J = disp(J, e)∫

Ω
∂φI

∂xd
ψJ dV if I = disp(I, d), J = pressure(J)∫

Ω
∂φJ

∂xe
ψI dV if I = pressure(I), J = disp(J, e)

0 if I = pressure(I), J = pressure(J)

(61)

and B a vector of size 3M +N with entries

BI =

{ ∫
Ω
fdφI dV +

∫
Γ2
sdφI dS if I = disp(I, d)

0 if I = pressure(I)

Note that for the case Γ2 = {}, an alternative (and somewhat simpler) weak form and finite element problem
can be obtained by integrating (56) by parts. The problem is equivalent to the above when there are no
Neumann boundary; however it would not enforce the Neumann boundary condition (58).

In block form the linear system has the following structure(
A B
BT 0

)
X =

(
b
0

)
} size 3M (flow)

} size N (pressure)

Ordering: finally, note that the implementation in the code does not actually use the ordering (60).
See Section 4.6 for the true ordering. Everything in Section 4.6 applies to the Stokes’ flow implementation,
including dummy pressure variables, the identity block in the matrix, and linear interpolation of pressure
values after the solve.

29

