Running Contact Inhibition Simulations

This tutorial is automatically generated from TestRunningContactInhibitionSimulationsTutorial.hpp at revision 409e06cb314b. Note that the code is given in full at the bottom of the page.

An example showing how to use a contact inhibition cell cycle model and volume tracking simulation modifier

Introduction

In this tutorial, we will show how to use a simple implementation of the contact inhibition cell-cycle model, which prevents a cell from undergoing division when its volume is smaller than a critical value.

We first consider two mesh-based populations in 2D with cells trapped in a square box. In the first population, all the cells are contact inhibited and we study the effect of the critical volume upon the global cell density. In the second population, we consider a mix of ’normal’ cells (contact inhibited) and ’tumour’ cells (not inhibited) and study the growth of the tumour cells within the box.

We then go on to consider the behaviour of a vertex-based population in a box that experiences contact inhibition.

Including header files

We begin by including the necessary header files.

#include <cxxtest/TestSuite.h>

This header needs to be included here to ensure archiving of CelwiseData works on all Boost versions.

#include "CheckpointArchiveTypes.hpp"
#include "AbstractCellBasedTestSuite.hpp"

The next header includes the Boost shared_ptr smart pointer, and defines some useful macros to save typing when using it.

#include "SmartPointers.hpp"

The next header include the NEVER_REACHED macro, which is used in one of the methods below.

#include "Exception.hpp"

The next header file defines the contact inhibition cell-cycle model that inherits from AbstractCellCycleModel. The duration of the G1 phase depends on the deviation from a ’target’ volume (or area/length in 2D/1D): if a cell’s volume is lower than a given fraction of its target volume, the G1 phase continues. This model of cell-cycle progression allows for quiescence imposed by transient periods of high stress, followed by relaxation. Note that in this cell cycle model, quiescence is implemented only by extending the G1 phase. Therefore, if a cell is compressed during G2 or S phases then it will still divide, and thus cells whose volumes are smaller than the given threshold may still divide.

The target volume and the critical fraction are specified using the methods SetEquilibriumVolume() and SetQuiescentVolumeFraction() respectively. Within the ContactInhibitionCellCycleModel’s UpdateCellCyclePhase() method these parameters are compared to the actual cell volumes, which are stored using the cell property CellData.

#include "ContactInhibitionCellCycleModel.hpp"

The next header defines the simulation class modifier corresponding to the contact inhibition cell-cycle model. This modifier updates the CellData cell property at each timestep with the volume of each cell.

#include "VolumeTrackingModifier.hpp"

The remaining header files define classes that will be also be used and are presented in other tutorials.

#include "OffLatticeSimulation.hpp"
#include "MeshBasedCellPopulation.hpp"
#include "CellMutationStatesCountWriter.hpp"
#include "UniformCellCycleModel.hpp"
#include "WildTypeCellMutationState.hpp"
#include "StemCellProliferativeType.hpp"
#include "TransitCellProliferativeType.hpp"
#include "HoneycombMeshGenerator.hpp"
#include "HoneycombVertexMeshGenerator.hpp"
#include "OutputFileHandler.hpp"
#include "GeneralisedLinearSpringForce.hpp"
#include "NagaiHondaForce.hpp"
#include "SimpleTargetAreaModifier.hpp"
#include "SimulationTime.hpp"
#include "CellLabel.hpp"
#include "MutableMesh.hpp"
#include "MutableVertexMesh.hpp"
#include "PlaneBoundaryCondition.hpp"
#include "FakePetscSetup.hpp"

We first define the global test class that inherits from AbstractCellBasedTestSuite.

class TestRunningContactInhibitionSimulationsTutorial : public AbstractCellBasedTestSuite
{
public:

Testing healthy cell contact inhibition with mesh-based population

In this first test we show how to simulate the behaviour of cells healthy cells trapped in a box. Each cell will only divide if there is sufficient room.

    void TestContactInhibitionInBox()
    {

We use the honeycomb mesh generator to create a honeycomb mesh and the associated mutable mesh.

        HoneycombMeshGenerator generator(3, 3);
        boost::shared_ptr<MutableMesh<2,2> > p_mesh = generator.GetMesh();

We now create a vector of cell pointers.

        std::vector<CellPtr> cells;

We then define the mutation state of the cells we are working with. We will just consider wild type mutations here.

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);

We now create a cell-cycle (only contact inhibited) model for these cells and loop over the nodes of the mesh to create as many elements in the vector of cell pointers as there are in the initial mesh.

        for (unsigned i=0; i<p_mesh->GetNumNodes(); i++)
        {
            ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
            p_cycle_model->SetDimension(2);
            p_cycle_model->SetBirthTime(-2.0*(double)i);
            p_cycle_model->SetQuiescentVolumeFraction(0.5);
            p_cycle_model->SetEquilibriumVolume(1.0);

            CellPtr p_cell(new Cell(p_state, p_cycle_model));
            p_cell->SetCellProliferativeType(p_transit_type);
            p_cell->InitialiseCellCycleModel();

            cells.push_back(p_cell);
        }

We now create a cell population, that takes several inputs: the mesh (for the position); and the vector of cell pointers (for cycles and states)

        MeshBasedCellPopulation<2> cell_population(*p_mesh, cells);

In order to visualize labelled cells (i.e. those that are inhibited from division) you need to use the following command.

        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

Here we create a simulation as before. We also set up the output directory, the end time and the output multiple.

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestContactInhibitionInBox");
        simulator.SetSamplingTimestepMultiple(12);
        simulator.SetEndTime(20.0);

Then, we define the modifier class, which automatically updates the volumes of the cells in CellData and passes it to the simulation.

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

Next, we create a force law (springs) to be applied between cell centres and set up a cut-off length beyond which cells stop interacting. We then pass this to the VolumeTrackedOffLatticeSimulation.

        MAKE_PTR(GeneralisedLinearSpringForce<2>, p_force);
        p_force->SetCutOffLength(1.5);
        simulator.AddForce(p_force);

To study the behaviour of the cells with varying volume, we trap them in the square domain [0,2.5]x[0,2.5]. This is implemented using four PlaneBoundaryCondition objects. These planes are indicated by a point and a normal and then passed to the VolumeTrackedOffLatticeSimulation. The domain is chosen to be quite small so as to make the test run in a short amount of time.

First we impose a wall at x=0:

        c_vector<double,2> point = zero_vector<double>(2);
        c_vector<double,2> normal = zero_vector<double>(2);
        normal(0) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc1, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc1);

Then we impose a wall at x<=2.5:

        point(0) = 2.5;
        normal(0) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc2, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc2);

Then we impose a wall at y>0:

        point(0) = 0.0;
        point(1) = 0.0;
        normal(0) = 0.0;
        normal(1) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc3, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc3);

Finally we impose a wall at y<2.5:

        point(1) = 2.5;
        normal(1) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc4, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc4);

To run the simulation, we call Solve().

        simulator.Solve();
    }

To visualize the results, open a new terminal, cd to the Chaste directory, then cd to anim. Then do: java Visualize2dCentreCells $CHASTE_TEST_OUTPUT/TestContactInhibitionInBox/results_from_time_0. We may have to do: javac Visualize2dCentreCells.java beforehand to create the java executable.

You will notice that once the cells are below a certain size they no longer proliferate and turn dark blue in the visualisation.

Testing normal and tumour cells with mesh-based population

We now test the behaviour of a mixture of healthy and tumour cells in a Box. In this test healthy cells will only divide if there is sufficient room whereas tumour cells will divide regardless.

    void TestContactInhibitionInBoxWithMutants()
    {

Just as before we create a simple mesh.

        HoneycombMeshGenerator generator(3, 3);
        boost::shared_ptr<MutableMesh<2,2> > p_mesh = generator.GetMesh();

We again create the cells. The difference here is that one of the cells is not contact-inhibited, but rather is defined by a UniformCellCycleModel.

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(StemCellProliferativeType, p_stem_type);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);
        std::vector<CellPtr> cells;
        for (unsigned i=0; i<p_mesh->GetNumNodes(); i++)
        {
            if (i==1)
            {
                UniformCellCycleModel* p_cycle_model = new UniformCellCycleModel();
                p_cycle_model->SetBirthTime(-14.0);

                CellPtr p_cell(new Cell(p_state, p_cycle_model));
                p_cell->SetCellProliferativeType(p_stem_type);
                p_cell->SetBirthTime(0.0);
                cells.push_back(p_cell);
            }
            else
            {
                ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
                p_cycle_model->SetDimension(2);
                p_cycle_model->SetBirthTime(-2.0*(double)i);
                p_cycle_model->SetQuiescentVolumeFraction(0.8);
                p_cycle_model->SetEquilibriumVolume(1.0);

                CellPtr p_cell(new Cell(p_state, p_cycle_model));
                p_cell->SetCellProliferativeType(p_transit_type);
                p_cell->InitialiseCellCycleModel();
                cells.push_back(p_cell);
            }
        }

We now create a cell population, that takes several inputs: the mesh; and the vector of cell pointers

        MeshBasedCellPopulation<2> cell_population(*p_mesh, cells);

In order to visualize labelled cells (i.e those that are inhibited from division) you need to use the following command.

        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

Here we create a simulation as before. We also set up the output directory, the end time and the output multiple.

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestContactInhibitionTumourInBox");
        simulator.SetSamplingTimestepMultiple(12);
        simulator.SetEndTime(20.0);

Then, we define the modifier class, which automatically updates the volumes of the cells in CellData and passes it to the simulation.

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

Next, we create a force law (springs) to be applied between cell centres and set up a cut-off length beyond which cells stop interacting. We then pass this to the VolumeTrackedOffLatticeSimulation

        MAKE_PTR(GeneralisedLinearSpringForce<2>, p_force);
        p_force->SetCutOffLength(1.5);
        simulator.AddForce(p_force);

As in the previous test, we trap the cells in the square domain [0,2.5]x[0,2.5]:

        c_vector<double,2> point = zero_vector<double>(2);
        c_vector<double,2> normal = zero_vector<double>(2);
        normal(0) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc1, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc1);

        point(0) = 2.5;
        normal(0) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc2, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc2);

        point(0) = 0.0;
        point(1) = 0.0;
        normal(0) = 0.0;
        normal(1) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc3, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc3);

        point(1) = 2.5;
        normal(1) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc4, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc4);

Finally, to run the simulation, we call Solve().

        simulator.Solve();
    }

To visualize the results, open a new terminal, cd to the Chaste directory, then cd to anim. Then do: java Visualize2dCentreCells $CHASTE_TEST_OUTPUT/TestContactInhibitionTumourInBox/results_from_time_0. We may have to do: javac Visualize2dCentreCells.java beforehand to create the java executable.

You will notice that once the healthy cells (yellow) are below a certain size they no longer proliferate and turn dark blue in the visualisation. Whereas Tumour cells (light blue) on the other hand will continue to proliferate. You may want to run the simulation for longer to see this more clearly.

Testing contact inhibition in vertex-based monolayer

We now test the behaviour of normal contact inhibited cells for a vertex-based population. The example we use is a growing monolayer.

    void TestContactInhibitionWithVertex()
    {

First we create a simple 2D MutableVertexMesh.

        HoneycombVertexMeshGenerator generator(2, 2);
        boost::shared_ptr<MutableVertexMesh<2,2> > p_mesh = generator.GetMesh();

We then create cells as before, only this time we need one per element. We also create the cell population (a VertexBasedCellPopulation).

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);
        std::vector<CellPtr> cells;
        for (unsigned i=0; i<p_mesh->GetNumElements(); i++)
        {
            ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
            p_cycle_model->SetDimension(2);
            p_cycle_model->SetBirthTime(-(double)i - 2.0); // So all out of M phase
            p_cycle_model->SetQuiescentVolumeFraction(0.9);
            p_cycle_model->SetEquilibriumVolume(1.0);

            CellPtr p_cell(new Cell(p_state, p_cycle_model));
            p_cell->SetCellProliferativeType(p_transit_type);
            p_cell->InitialiseCellCycleModel();
            cells.push_back(p_cell);
        }

        VertexBasedCellPopulation<2> cell_population(*p_mesh, cells);
        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

Here we create a simulation as before. We also set up the output directory, the end time and the output multiple.

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestVertexContactInhibition");
        simulator.SetSamplingTimestepMultiple(50);
        simulator.SetEndTime(10.0);

Then, we define the modifier class, which automatically updates the volumes of the cells in CellData and passes it to the simulation.

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

Next, we create a force law, NagaiHondaForce, to be applied to vertices. We then pass this to the VolumeTrackedOffLatticeSimulation.

        MAKE_PTR(NagaiHondaForce<2>, p_nagai_honda_force);
        simulator.AddForce(p_nagai_honda_force);

In order to model cell growth between divisions, we add a SimpleTargetAreaModifier to the simulator.

        MAKE_PTR(SimpleTargetAreaModifier<2>, p_growth_modifier);
        simulator.AddSimulationModifier(p_growth_modifier);

To run the simulation, we call Solve().

        simulator.Solve();
    }
};

To visualize the results, open a new terminal, cd to the Chaste directory, then cd to anim. Then do: java Visualize2dVertexCells $CHASTE_TEST_OUTPUT/TestVertexContactInhibition/results_from_time_0. We may have to do: javac Visualize2dVertexCells.java beforehand to create the java executable.

You will notice that once the healthy cells (yellow) are below a certain size they no longer proliferate and turn dark blue in the visualisation. If you run the simulation for a long time these cells occur primarily towards the centre of the monolayer.

Full code

#include <cxxtest/TestSuite.h>
#include "CheckpointArchiveTypes.hpp"
#include "AbstractCellBasedTestSuite.hpp"

#include "SmartPointers.hpp"
#include "Exception.hpp"

#include "ContactInhibitionCellCycleModel.hpp"

#include "VolumeTrackingModifier.hpp"

#include "OffLatticeSimulation.hpp"
#include "MeshBasedCellPopulation.hpp"
#include "CellMutationStatesCountWriter.hpp"
#include "UniformCellCycleModel.hpp"
#include "WildTypeCellMutationState.hpp"
#include "StemCellProliferativeType.hpp"
#include "TransitCellProliferativeType.hpp"
#include "HoneycombMeshGenerator.hpp"
#include "HoneycombVertexMeshGenerator.hpp"
#include "OutputFileHandler.hpp"
#include "GeneralisedLinearSpringForce.hpp"
#include "NagaiHondaForce.hpp"
#include "SimpleTargetAreaModifier.hpp"
#include "SimulationTime.hpp"
#include "CellLabel.hpp"
#include "MutableMesh.hpp"
#include "MutableVertexMesh.hpp"
#include "PlaneBoundaryCondition.hpp"
#include "FakePetscSetup.hpp"

class TestRunningContactInhibitionSimulationsTutorial : public AbstractCellBasedTestSuite
{
public:
    void TestContactInhibitionInBox()
    {
        HoneycombMeshGenerator generator(3, 3);
        boost::shared_ptr<MutableMesh<2,2> > p_mesh = generator.GetMesh();

        std::vector<CellPtr> cells;

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);

        for (unsigned i=0; i<p_mesh->GetNumNodes(); i++)
        {
            ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
            p_cycle_model->SetDimension(2);
            p_cycle_model->SetBirthTime(-2.0*(double)i);
            p_cycle_model->SetQuiescentVolumeFraction(0.5);
            p_cycle_model->SetEquilibriumVolume(1.0);

            CellPtr p_cell(new Cell(p_state, p_cycle_model));
            p_cell->SetCellProliferativeType(p_transit_type);
            p_cell->InitialiseCellCycleModel();

            cells.push_back(p_cell);
        }

        MeshBasedCellPopulation<2> cell_population(*p_mesh, cells);

        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestContactInhibitionInBox");
        simulator.SetSamplingTimestepMultiple(12);
        simulator.SetEndTime(20.0);

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

        MAKE_PTR(GeneralisedLinearSpringForce<2>, p_force);
        p_force->SetCutOffLength(1.5);
        simulator.AddForce(p_force);

        c_vector<double,2> point = zero_vector<double>(2);
        c_vector<double,2> normal = zero_vector<double>(2);
        normal(0) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc1, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc1);
        point(0) = 2.5;
        normal(0) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc2, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc2);
        point(0) = 0.0;
        point(1) = 0.0;
        normal(0) = 0.0;
        normal(1) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc3, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc3);
        point(1) = 2.5;
        normal(1) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc4, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc4);

        simulator.Solve();
    }
    void TestContactInhibitionInBoxWithMutants()
    {
        HoneycombMeshGenerator generator(3, 3);
        boost::shared_ptr<MutableMesh<2,2> > p_mesh = generator.GetMesh();

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(StemCellProliferativeType, p_stem_type);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);
        std::vector<CellPtr> cells;
        for (unsigned i=0; i<p_mesh->GetNumNodes(); i++)
        {
            if (i==1)
            {
                UniformCellCycleModel* p_cycle_model = new UniformCellCycleModel();
                p_cycle_model->SetBirthTime(-14.0);

                CellPtr p_cell(new Cell(p_state, p_cycle_model));
                p_cell->SetCellProliferativeType(p_stem_type);
                p_cell->SetBirthTime(0.0);
                cells.push_back(p_cell);
            }
            else
            {
                ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
                p_cycle_model->SetDimension(2);
                p_cycle_model->SetBirthTime(-2.0*(double)i);
                p_cycle_model->SetQuiescentVolumeFraction(0.8);
                p_cycle_model->SetEquilibriumVolume(1.0);

                CellPtr p_cell(new Cell(p_state, p_cycle_model));
                p_cell->SetCellProliferativeType(p_transit_type);
                p_cell->InitialiseCellCycleModel();
                cells.push_back(p_cell);
            }
        }

        MeshBasedCellPopulation<2> cell_population(*p_mesh, cells);

        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestContactInhibitionTumourInBox");
        simulator.SetSamplingTimestepMultiple(12);
        simulator.SetEndTime(20.0);

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

        MAKE_PTR(GeneralisedLinearSpringForce<2>, p_force);
        p_force->SetCutOffLength(1.5);
        simulator.AddForce(p_force);

        c_vector<double,2> point = zero_vector<double>(2);
        c_vector<double,2> normal = zero_vector<double>(2);
        normal(0) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc1, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc1);

        point(0) = 2.5;
        normal(0) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc2, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc2);

        point(0) = 0.0;
        point(1) = 0.0;
        normal(0) = 0.0;
        normal(1) = -1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc3, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc3);

        point(1) = 2.5;
        normal(1) = 1.0;
        MAKE_PTR_ARGS(PlaneBoundaryCondition<2>, p_bc4, (&cell_population, point, normal));
        simulator.AddCellPopulationBoundaryCondition(p_bc4);

        simulator.Solve();
    }
    void TestContactInhibitionWithVertex()
    {
        HoneycombVertexMeshGenerator generator(2, 2);
        boost::shared_ptr<MutableVertexMesh<2,2> > p_mesh = generator.GetMesh();

        MAKE_PTR(WildTypeCellMutationState, p_state);
        MAKE_PTR(TransitCellProliferativeType, p_transit_type);
        std::vector<CellPtr> cells;
        for (unsigned i=0; i<p_mesh->GetNumElements(); i++)
        {
            ContactInhibitionCellCycleModel* p_cycle_model = new ContactInhibitionCellCycleModel();
            p_cycle_model->SetDimension(2);
            p_cycle_model->SetBirthTime(-(double)i - 2.0); // So all out of M phase
            p_cycle_model->SetQuiescentVolumeFraction(0.9);
            p_cycle_model->SetEquilibriumVolume(1.0);

            CellPtr p_cell(new Cell(p_state, p_cycle_model));
            p_cell->SetCellProliferativeType(p_transit_type);
            p_cell->InitialiseCellCycleModel();
            cells.push_back(p_cell);
        }

        VertexBasedCellPopulation<2> cell_population(*p_mesh, cells);
        cell_population.AddCellPopulationCountWriter<CellMutationStatesCountWriter>();

        OffLatticeSimulation<2> simulator(cell_population);
        simulator.SetOutputDirectory("TestVertexContactInhibition");
        simulator.SetSamplingTimestepMultiple(50);
        simulator.SetEndTime(10.0);

        MAKE_PTR(VolumeTrackingModifier<2>, p_modifier);
        simulator.AddSimulationModifier(p_modifier);

        MAKE_PTR(NagaiHondaForce<2>, p_nagai_honda_force);
        simulator.AddForce(p_nagai_honda_force);

        MAKE_PTR(SimpleTargetAreaModifier<2>, p_growth_modifier);
        simulator.AddSimulationModifier(p_growth_modifier);

        simulator.Solve();
    }
};