00001 /* 00002 00003 Copyright (C) University of Oxford, 2005-2009 00004 00005 University of Oxford means the Chancellor, Masters and Scholars of the 00006 University of Oxford, having an administrative office at Wellington 00007 Square, Oxford OX1 2JD, UK. 00008 00009 This file is part of Chaste. 00010 00011 Chaste is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU Lesser General Public License as published 00013 by the Free Software Foundation, either version 2.1 of the License, or 00014 (at your option) any later version. 00015 00016 Chaste is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 00019 License for more details. The offer of Chaste under the terms of the 00020 License is subject to the License being interpreted in accordance with 00021 English Law and subject to any action against the University of Oxford 00022 being under the jurisdiction of the English Courts. 00023 00024 You should have received a copy of the GNU Lesser General Public License 00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>. 00026 00027 */ 00028 00029 00030 #ifndef IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00031 #define IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00032 00033 #include "NonlinearElasticityAssembler.hpp" 00034 #include "QuadraticBasisFunction.hpp" 00035 #include "LinearBasisFunction.hpp" 00036 #include "NhsSystemWithImplicitSolver.hpp" 00037 #include "NashHunterPoleZeroLaw.hpp" 00038 #include "LogFile.hpp" 00039 #include <cfloat> 00040 00041 00050 template<unsigned DIM> 00051 class ImplicitCardiacMechanicsAssembler : public NonlinearElasticityAssembler<DIM> 00052 { 00053 friend class TestImplicitCardiacMechanicsAssembler; 00054 00055 private: 00056 static const unsigned STENCIL_SIZE = NonlinearElasticityAssembler<DIM>::STENCIL_SIZE; 00057 static const unsigned NUM_NODES_PER_ELEMENT = NonlinearElasticityAssembler<DIM>::NUM_NODES_PER_ELEMENT; 00058 static const unsigned NUM_VERTICES_PER_ELEMENT = NonlinearElasticityAssembler<DIM>::NUM_VERTICES_PER_ELEMENT; 00064 std::vector<NhsSystemWithImplicitSolver> mCellMechSystems; 00065 00070 std::vector<double> mLambdaLastTimeStep; 00071 00076 std::vector<double> mLambda; 00077 00079 double mCurrentTime; 00081 double mNextTime; 00083 double mOdeTimestep; 00084 00086 bool mAllocatedMaterialLawMemory; 00087 00089 unsigned mTotalQuadPoints; 00090 00091 public: 00101 ImplicitCardiacMechanicsAssembler(QuadraticMesh<DIM>* pQuadMesh, 00102 std::string outputDirectory, 00103 std::vector<unsigned>& rFixedNodes, 00104 AbstractIncompressibleMaterialLaw<DIM>* pMaterialLaw = NULL); 00105 00109 ~ImplicitCardiacMechanicsAssembler(); 00110 00112 unsigned GetTotalNumQuadPoints(); 00113 00115 GaussianQuadratureRule<DIM>* GetQuadratureRule(); 00116 00125 void SetIntracellularCalciumConcentrations(std::vector<double>& caI); 00126 00134 std::vector<double>& rGetLambda(); 00135 00147 void Solve(double time, double nextTime, double odeTimestep); 00148 00149 00150 private: 00151 00171 void AssembleOnElement(Element<DIM, DIM>& rElement, 00172 c_matrix<double,STENCIL_SIZE,STENCIL_SIZE>& rAElem, 00173 c_matrix<double,STENCIL_SIZE,STENCIL_SIZE>& rAElemPrecond, 00174 c_vector<double,STENCIL_SIZE>& rBElem, 00175 bool assembleResidual, 00176 bool assembleJacobian); 00177 }; 00178 00179 00186 //public: 00187 // std::vector<std::vector<unsigned> > mNodesContainedInElement; 00188 // 00189 // void ComputeElementsContainingNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh) 00190 // { 00191 // assert(DIM==2); 00192 // 00193 // mNodesContainedInElement.resize(this->mpMesh->n_active_cells()); 00194 // 00195 // unsigned element_number = 0; 00196 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00197 // 00198 // while (element_iter!=this->mDofHandler.end()) 00199 // { 00200 // double xmin = element_iter->vertex(0)(0); 00201 // double xmax = element_iter->vertex(1)(0); 00202 // double ymin = element_iter->vertex(0)(1); 00203 // double ymax = element_iter->vertex(3)(1); 00204 // 00205 // assert(element_iter->vertex(2)(0)==xmax); 00206 // assert(element_iter->vertex(2)(1)==ymax); 00207 // 00208 // for(unsigned i=0; i<pOtherMesh->GetNumNodes(); i++) 00209 // { 00210 // double x = pOtherMesh->GetNode(i)->rGetLocation()[0]; 00211 // double y = pOtherMesh->GetNode(i)->rGetLocation()[1]; 00212 // if((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)) 00213 // { 00214 // mNodesContainedInElement[element_number].push_back(i); 00215 // } 00216 // } 00217 // 00218 // element_iter++; 00219 // element_number++; 00220 // } 00221 // } 00222 // 00223 // void WriteLambda(std::string directory, std::string fileName) 00224 // { 00225 // OutputFileHandler handler(directory,false); 00226 // out_stream p_file = handler.OpenOutputFile(fileName); 00227 // 00228 // std::vector<std::vector<double> > quad_point_posns 00229 // = FiniteElasticityTools<DIM>::GetQuadPointPositions(*(this->mpMesh), this->GetNumQuadPointsInEachDimension()); 00230 // 00231 // 00232 // for(unsigned i=0; i<quad_point_posns.size(); i++) 00233 // { 00234 // (*p_file) << quad_point_posns[i][0] << " " << quad_point_posns[i][1] << " " 00235 // << mCellMechSystems[i].GetLambda() << "\n"; 00236 // } 00237 // } 00238 // 00239 // 00240 // void CalculateCinverseAtNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh, std::vector<std::vector<double> >& rValuesAtNodes) 00241 // { 00242 // assert(DIM==2); 00243 // rValuesAtNodes.resize(pOtherMesh->GetNumNodes()); 00244 // 00245 // unsigned element_number = 0; 00246 // 00247 // static QTrapez<DIM> trapezoid_quadrature_formula; //trapeziod rule - values at NODES 00248 // const unsigned n_q_points = trapezoid_quadrature_formula.n_quadrature_points; 00249 // 00250 // FEValues<DIM> fe_values(this->mFeSystem, trapezoid_quadrature_formula, 00251 // UpdateFlags(update_values | 00252 // update_gradients | 00253 // update_q_points | // needed for interpolating u and u' on the quad point 00254 // update_JxW_values)); 00255 // 00256 // std::vector< Vector<double> > local_solution_values(n_q_points); 00257 // std::vector< std::vector< Tensor<1,DIM> > > local_solution_gradients(n_q_points); 00258 // 00259 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00260 // { 00261 // local_solution_values[q_point].reinit(DIM+1); 00262 // local_solution_gradients[q_point].resize(DIM+1); 00263 // } 00264 // 00265 // 00266 // Tensor<2,DIM> identity; 00267 // for (unsigned i=0; i<DIM; i++) 00268 // { 00269 // for (unsigned j=0; j<DIM; j++) 00270 // { 00271 // identity[i][j] = i==j ? 1.0 : 0.0; 00272 // } 00273 // } 00274 // 00275 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00276 // 00277 // while (element_iter!=this->mDofHandler.end()) 00278 // { 00279 // double xmin = element_iter->vertex(0)(0); 00280 // double xmax = element_iter->vertex(1)(0); 00281 // double ymin = element_iter->vertex(0)(1); 00282 // double ymax = element_iter->vertex(3)(1); 00283 // assert(element_iter->vertex(2)(0)==xmax); 00284 // assert(element_iter->vertex(2)(1)==ymax); 00285 // 00286 // fe_values.reinit(element_iter); // compute fe values for this element 00287 // fe_values.get_function_values(this->mCurrentSolution, local_solution_values); 00288 // fe_values.get_function_grads(this->mCurrentSolution, local_solution_gradients); 00289 // 00290 // std::vector<Point<DIM> > quad_points =fe_values.get_quadrature_points(); 00291 // 00292 // 00293 // AbstractIncompressibleMaterialLaw<DIM>* p_material_law = this->GetMaterialLawForElement(element_iter); 00294 // 00295 // std::vector<Tensor<2,DIM> > inv_C_at_nodes(4);// 4=2^DIM 00296 // 00297 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00298 // { 00299 // const std::vector< Tensor<1,DIM> >& grad_u_p = local_solution_gradients[q_point]; 00300 // static Tensor<2,DIM> F; 00301 // static Tensor<2,DIM> C; 00302 // 00303 // for (unsigned i=0; i<DIM; i++) 00304 // { 00305 // for (unsigned j=0; j<DIM; j++) 00306 // { 00307 // F[i][j] = identity[i][j] + grad_u_p[i][j]; 00308 // } 00309 // } 00310 // 00311 // C = transpose(F) * F; 00312 // inv_C_at_nodes[q_point] = invert(C); 00313 // } 00314 // 00315 // 00325 // 00326 // 00327 // 00328 // for(unsigned j=0; j<mNodesContainedInElement[element_number].size(); j++) 00329 // { 00330 // unsigned node_num = mNodesContainedInElement[element_number][j]; 00331 // double x = pOtherMesh->GetNode(node_num)->rGetLocation()[0]; 00332 // double y = pOtherMesh->GetNode(node_num)->rGetLocation()[1]; 00333 // 00334 // assert((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)); 00335 // double xi = (x-xmin)/(xmax-xmin); 00336 // double eta = (y-ymin)/(ymax-ymin); 00337 // assert((0<=xi) && (x<=1) && (0<=eta) && (eta<=1)); 00338 // 00339 // rValuesAtNodes[node_num][0] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,0); 00340 // rValuesAtNodes[node_num][1] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,1); 00341 // rValuesAtNodes[node_num][2] = InterpolateCinverse(xi,eta,inv_C_at_nodes,1,1); 00342 // } 00343 // 00344 // 00345 // element_iter++; 00346 // element_number++; 00347 // } 00348 // } 00349 // 00350 // 00351 // double InterpolateCinverse(const double xi, const double eta, 00352 // const std::vector<Tensor<2,DIM> >& inverseCAtNodes, 00353 // unsigned i, unsigned j) 00354 // { 00355 // return inverseCAtNodes[0][i][j] * (1-xi) * (1-eta) 00356 // + inverseCAtNodes[1][i][j] * (1-xi) * eta 00357 // + inverseCAtNodes[2][i][j] * xi * (1-eta) 00358 // + inverseCAtNodes[3][i][j] * xi * eta; 00359 // } 00360 00361 00362 #endif /*IMPLICITCARDIACMECHANICSASSEMBLER_HPP_*/