AbstractFunctionalCalculator.hpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2009
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 #ifndef ABSTRACTFUNCTIONALCALCULATOR_HPP_
00029 #define ABSTRACTFUNCTIONALCALCULATOR_HPP_
00030 
00031 #include "LinearBasisFunction.hpp"
00032 #include "GaussianQuadratureRule.hpp"
00033 #include "TetrahedralMesh.hpp"
00034 #include "GaussianQuadratureRule.hpp"
00035 #include "ReplicatableVector.hpp"
00036 
00037 
00050 template <unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00051 class AbstractFunctionalCalculator
00052 {
00053 private:
00055     ReplicatableVector mSolutionReplicated;
00056 
00058     virtual double GetIntegrand(ChastePoint<SPACE_DIM> &rX,
00059                                 c_vector<double,PROBLEM_DIM> &rU,
00060                                 c_matrix<double,PROBLEM_DIM,SPACE_DIM> &rGradU)=0;
00061 
00063     double CalculateOnElement(Element<ELEMENT_DIM,SPACE_DIM>& rElement)
00064     {
00065         double result_on_element = 0;
00066 
00067         GaussianQuadratureRule<ELEMENT_DIM> quad_rule(2);
00068 
00072         double jacobian_determinant;
00073         c_matrix<double, SPACE_DIM, SPACE_DIM> jacobian, inverse_jacobian;
00074         rElement.CalculateInverseJacobian(jacobian, jacobian_determinant, inverse_jacobian);
00075 
00076         const unsigned num_nodes = rElement.GetNumNodes();
00077 
00078         // loop over Gauss points
00079         for (unsigned quad_index=0; quad_index < quad_rule.GetNumQuadPoints(); quad_index++)
00080         {
00081             const ChastePoint<ELEMENT_DIM>& quad_point = quad_rule.rGetQuadPoint(quad_index);
00082 
00083             c_vector<double, ELEMENT_DIM+1> phi;
00084             LinearBasisFunction<ELEMENT_DIM>::ComputeBasisFunctions(quad_point, phi);
00085             c_matrix<double, ELEMENT_DIM, ELEMENT_DIM+1> grad_phi;
00086             LinearBasisFunction<ELEMENT_DIM>::ComputeTransformedBasisFunctionDerivatives(quad_point, inverse_jacobian, grad_phi);
00087 
00088             // Location of the gauss point in the original element will be stored in x
00089             ChastePoint<SPACE_DIM> x(0,0,0);
00090             c_vector<double,PROBLEM_DIM> u = zero_vector<double>(PROBLEM_DIM);
00091             c_matrix<double,PROBLEM_DIM,SPACE_DIM> grad_u = zero_matrix<double>(PROBLEM_DIM,SPACE_DIM);
00092 
00093             for (unsigned i=0; i<num_nodes; i++)
00094             {
00095                 const c_vector<double, SPACE_DIM>& r_node_loc = rElement.GetNode(i)->rGetLocation();
00096 
00097                 // interpolate x
00098                 x.rGetLocation() += phi(i)*r_node_loc;
00099 
00100                 // interpolate u and grad u
00101                 unsigned node_global_index = rElement.GetNodeGlobalIndex(i);
00102                 for (unsigned index_of_unknown=0; index_of_unknown<PROBLEM_DIM; index_of_unknown++)
00103                 {
00104                     // NOTE - following assumes that, if say there are two unknowns u and v, they
00105                     // are stored in the current solution vector as
00106                     // [U1 V1 U2 V2 ... U_n V_n]
00107                     unsigned index_into_vec = PROBLEM_DIM*node_global_index + index_of_unknown;
00108 
00109                     double u_at_node = mSolutionReplicated[index_into_vec];
00110                     u(index_of_unknown) += phi(i)*u_at_node;
00111                     for (unsigned j=0; j<SPACE_DIM; j++)
00112                     {
00113                         grad_u(index_of_unknown,j) += grad_phi(j,i)*u_at_node;
00114                     }
00115                 }
00116             }
00117 
00118             double wJ = jacobian_determinant * quad_rule.GetWeight(quad_index);
00119             result_on_element += GetIntegrand(x, u, grad_u) * wJ;
00120         }
00121 
00122         return result_on_element;
00123     }
00124 
00125 
00126 public:
00127     virtual ~AbstractFunctionalCalculator()
00128     {
00129     }
00130 
00134     double Calculate(TetrahedralMesh<ELEMENT_DIM,SPACE_DIM>& rMesh,
00135                      Vec solution)
00136     {
00137         assert(solution);
00138         mSolutionReplicated.ReplicatePetscVector(solution);
00139         if (mSolutionReplicated.size() != rMesh.GetNumNodes() * PROBLEM_DIM)
00140         {
00141             EXCEPTION("The solution size does not match the mesh");
00142         }
00143 
00144         double result = 0;
00145 
00146         for (typename TetrahedralMesh<ELEMENT_DIM, SPACE_DIM>::ElementIterator
00147                iter = rMesh.GetElementIteratorBegin();
00148                iter != rMesh.GetElementIteratorEnd();
00149                ++iter)
00150         {
00154             //if ((*iter)->GetOwnership() == true)
00155             {
00156                 result += CalculateOnElement(**iter);
00157             }
00158         }
00159 
00161         //double final_result;
00162         //MPI_Allreduce(&result, &final_result, 1, MPI_DOUBLE, MPI_SUM, PETSC_COMM_WORLD);
00163         //return final_result;
00164 
00165         return result;
00166     }
00167 };
00168 
00169 #endif /*ABSTRACTFUNCTIONALCALCULATOR_HPP_*/

Generated on Wed Mar 18 12:51:56 2009 for Chaste by  doxygen 1.5.5