AbstractFunctionalCalculator.hpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2010
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 #ifndef ABSTRACTFUNCTIONALCALCULATOR_HPP_
00029 #define ABSTRACTFUNCTIONALCALCULATOR_HPP_
00030 
00031 #include "LinearBasisFunction.hpp"
00032 #include "GaussianQuadratureRule.hpp"
00033 #include "AbstractTetrahedralMesh.hpp"
00034 #include "GaussianQuadratureRule.hpp"
00035 #include "ReplicatableVector.hpp"
00036 
00037 
00050 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00051 class AbstractFunctionalCalculator
00052 {
00053 private:
00054 
00056     ReplicatableVector mSolutionReplicated;
00057 
00065     virtual double GetIntegrand(ChastePoint<SPACE_DIM>& rX,
00066                                 c_vector<double,PROBLEM_DIM>& rU,
00067                                 c_matrix<double,PROBLEM_DIM,SPACE_DIM>& rGradU)=0;
00068 
00074     double CalculateOnElement(Element<ELEMENT_DIM,SPACE_DIM>& rElement);
00075 
00076 public:
00077 
00081     virtual ~AbstractFunctionalCalculator()
00082     {
00083     }
00084 
00095     double Calculate(AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>& rMesh, Vec solution);
00096 
00097 };
00098 
00099 
00101 // Implementation
00103 
00104 
00105 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00106 double AbstractFunctionalCalculator<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM>::CalculateOnElement(Element<ELEMENT_DIM, SPACE_DIM>& rElement)
00107 {
00108     double result_on_element = 0;
00109 
00110     GaussianQuadratureRule<ELEMENT_DIM> quad_rule(2);
00111 
00114     double jacobian_determinant;
00115     c_matrix<double, SPACE_DIM, ELEMENT_DIM> jacobian;
00116     c_matrix<double, ELEMENT_DIM, SPACE_DIM> inverse_jacobian;
00117     rElement.CalculateInverseJacobian(jacobian, jacobian_determinant, inverse_jacobian);
00118 
00119     const unsigned num_nodes = rElement.GetNumNodes();
00120 
00121     // Loop over Gauss points
00122     for (unsigned quad_index=0; quad_index < quad_rule.GetNumQuadPoints(); quad_index++)
00123     {
00124         const ChastePoint<ELEMENT_DIM>& quad_point = quad_rule.rGetQuadPoint(quad_index);
00125 
00126         c_vector<double, ELEMENT_DIM+1> phi;
00127         LinearBasisFunction<ELEMENT_DIM>::ComputeBasisFunctions(quad_point, phi);
00128         c_matrix<double, ELEMENT_DIM, ELEMENT_DIM+1> grad_phi;
00129         LinearBasisFunction<ELEMENT_DIM>::ComputeTransformedBasisFunctionDerivatives(quad_point, inverse_jacobian, grad_phi);
00130 
00131         // Location of the gauss point in the original element will be stored in x
00132         ChastePoint<SPACE_DIM> x(0,0,0);
00133         c_vector<double,PROBLEM_DIM> u = zero_vector<double>(PROBLEM_DIM);
00134         c_matrix<double,PROBLEM_DIM,SPACE_DIM> grad_u = zero_matrix<double>(PROBLEM_DIM,SPACE_DIM);
00135 
00136         for (unsigned i=0; i<num_nodes; i++)
00137         {
00138             const c_vector<double, SPACE_DIM>& r_node_loc = rElement.GetNode(i)->rGetLocation();
00139 
00140             // Interpolate x
00141             x.rGetLocation() += phi(i)*r_node_loc;
00142 
00143             // Interpolate u and grad u
00144             unsigned node_global_index = rElement.GetNodeGlobalIndex(i);
00145             for (unsigned index_of_unknown=0; index_of_unknown<PROBLEM_DIM; index_of_unknown++)
00146             {
00147                 // NOTE - following assumes that, if say there are two unknowns u and v, they
00148                 // are stored in the current solution vector as
00149                 // [U1 V1 U2 V2 ... U_n V_n]
00150                 unsigned index_into_vec = PROBLEM_DIM*node_global_index + index_of_unknown;
00151 
00152                 double u_at_node = mSolutionReplicated[index_into_vec];
00153                 u(index_of_unknown) += phi(i)*u_at_node;
00154                 for (unsigned j=0; j<SPACE_DIM; j++)
00155                 {
00156                     grad_u(index_of_unknown,j) += grad_phi(j,i)*u_at_node;
00157                 }
00158             }
00159         }
00160 
00161         double wJ = jacobian_determinant * quad_rule.GetWeight(quad_index);
00162         result_on_element += GetIntegrand(x, u, grad_u) * wJ;
00163     }
00164 
00165     return result_on_element;
00166 }
00167 
00168 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM>
00169 double AbstractFunctionalCalculator<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM>::Calculate(AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>& rMesh, Vec solution)
00170 {
00171     assert(solution);
00172     mSolutionReplicated.ReplicatePetscVector(solution);
00173     if (mSolutionReplicated.GetSize() != rMesh.GetNumNodes() * PROBLEM_DIM)
00174     {
00175         EXCEPTION("The solution size does not match the mesh");
00176     }
00177 
00178     double local_result = 0;
00179 
00180     for (typename AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>::ElementIterator iter = rMesh.GetElementIteratorBegin();
00181          iter != rMesh.GetElementIteratorEnd();
00182          ++iter)
00183     {
00184         if (rMesh.CalculateDesignatedOwnershipOfElement((*iter).GetIndex()) == true)
00185         {
00186             local_result += CalculateOnElement(*iter);
00187         }
00188     }
00189 
00190     double final_result;
00191     MPI_Allreduce(&local_result, &final_result, 1, MPI_DOUBLE, MPI_SUM, PETSC_COMM_WORLD);
00192     return final_result;
00193 }
00194 
00195 #endif /*ABSTRACTFUNCTIONALCALCULATOR_HPP_*/

Generated by  doxygen 1.6.2