00001 /* 00002 00003 Copyright (C) University of Oxford, 2005-2010 00004 00005 University of Oxford means the Chancellor, Masters and Scholars of the 00006 University of Oxford, having an administrative office at Wellington 00007 Square, Oxford OX1 2JD, UK. 00008 00009 This file is part of Chaste. 00010 00011 Chaste is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU Lesser General Public License as published 00013 by the Free Software Foundation, either version 2.1 of the License, or 00014 (at your option) any later version. 00015 00016 Chaste is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 00019 License for more details. The offer of Chaste under the terms of the 00020 License is subject to the License being interpreted in accordance with 00021 English Law and subject to any action against the University of Oxford 00022 being under the jurisdiction of the English Courts. 00023 00024 You should have received a copy of the GNU Lesser General Public License 00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>. 00026 00027 */ 00028 00029 00030 #ifndef IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00031 #define IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00032 00033 #include "AbstractCardiacMechanicsAssembler.hpp" 00034 #include "QuadraticBasisFunction.hpp" 00035 #include "LinearBasisFunction.hpp" 00036 #include "NashHunterPoleZeroLaw.hpp" 00037 #include "AbstractContractionModel.hpp" 00038 #include "LogFile.hpp" 00039 #include <cfloat> 00040 00041 00050 template<unsigned DIM> 00051 class ImplicitCardiacMechanicsAssembler : public AbstractCardiacMechanicsAssembler<DIM> 00052 { 00053 friend class TestImplicitCardiacMechanicsAssembler; 00054 00055 private: 00061 std::vector<double> mStretchesLastTimeStep; 00062 00069 bool IsImplicitSolver() 00070 { 00071 return true; 00072 } 00087 void GetActiveTensionAndTensionDerivs(double currentFibreStretch, 00088 unsigned currentQuadPointGlobalIndex, 00089 bool assembleJacobian, 00090 double& rActiveTension, 00091 double& rDerivActiveTensionWrtLambda, 00092 double& rDerivActiveTensionWrtDLambdaDt); 00093 00094 public: 00105 ImplicitCardiacMechanicsAssembler(ContractionModel contractionModel, 00106 QuadraticMesh<DIM>* pQuadMesh, 00107 std::string outputDirectory, 00108 std::vector<unsigned>& rFixedNodes, 00109 AbstractIncompressibleMaterialLaw<DIM>* pMaterialLaw = NULL); 00110 00114 virtual ~ImplicitCardiacMechanicsAssembler(); 00115 00116 00124 std::vector<double>& rGetFibreStretches(); 00125 00137 void Solve(double time, double nextTime, double odeTimestep); 00138 }; 00139 00140 00147 //public: 00148 // std::vector<std::vector<unsigned> > mNodesContainedInElement; 00149 // 00150 // void ComputeElementsContainingNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh) 00151 // { 00152 // assert(DIM==2); 00153 // 00154 // mNodesContainedInElement.resize(this->mpMesh->n_active_cells()); 00155 // 00156 // unsigned element_number = 0; 00157 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00158 // 00159 // while (element_iter!=this->mDofHandler.end()) 00160 // { 00161 // double xmin = element_iter->vertex(0)(0); 00162 // double xmax = element_iter->vertex(1)(0); 00163 // double ymin = element_iter->vertex(0)(1); 00164 // double ymax = element_iter->vertex(3)(1); 00165 // 00166 // assert(element_iter->vertex(2)(0)==xmax); 00167 // assert(element_iter->vertex(2)(1)==ymax); 00168 // 00169 // for(unsigned i=0; i<pOtherMesh->GetNumNodes(); i++) 00170 // { 00171 // double x = pOtherMesh->GetNode(i)->rGetLocation()[0]; 00172 // double y = pOtherMesh->GetNode(i)->rGetLocation()[1]; 00173 // if((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)) 00174 // { 00175 // mNodesContainedInElement[element_number].push_back(i); 00176 // } 00177 // } 00178 // 00179 // element_iter++; 00180 // element_number++; 00181 // } 00182 // } 00183 // 00184 // void WriteLambda(std::string directory, std::string fileName) 00185 // { 00186 // OutputFileHandler handler(directory,false); 00187 // out_stream p_file = handler.OpenOutputFile(fileName); 00188 // 00189 // std::vector<std::vector<double> > quad_point_posns 00190 // = FiniteElasticityTools<DIM>::GetQuadPointPositions(*(this->mpMesh), this->GetNumQuadPointsInEachDimension()); 00191 // 00192 // 00193 // for(unsigned i=0; i<quad_point_posns.size(); i++) 00194 // { 00195 // (*p_file) << quad_point_posns[i][0] << " " << quad_point_posns[i][1] << " " 00196 // << mCellMechSystems[i].GetLambda() << "\n"; 00197 // } 00198 // } 00199 // 00200 // 00201 // void CalculateCinverseAtNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh, std::vector<std::vector<double> >& rValuesAtNodes) 00202 // { 00203 // assert(DIM==2); 00204 // rValuesAtNodes.resize(pOtherMesh->GetNumNodes()); 00205 // 00206 // unsigned element_number = 0; 00207 // 00208 // static QTrapez<DIM> trapezoid_quadrature_formula; //trapeziod rule - values at NODES 00209 // const unsigned n_q_points = trapezoid_quadrature_formula.n_quadrature_points; 00210 // 00211 // FEValues<DIM> fe_values(this->mFeSystem, trapezoid_quadrature_formula, 00212 // UpdateFlags(update_values | 00213 // update_gradients | 00214 // update_q_points | // needed for interpolating u and u' on the quad point 00215 // update_JxW_values)); 00216 // 00217 // std::vector< Vector<double> > local_solution_values(n_q_points); 00218 // std::vector< std::vector< Tensor<1,DIM> > > local_solution_gradients(n_q_points); 00219 // 00220 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00221 // { 00222 // local_solution_values[q_point].reinit(DIM+1); 00223 // local_solution_gradients[q_point].resize(DIM+1); 00224 // } 00225 // 00226 // 00227 // Tensor<2,DIM> identity; 00228 // for (unsigned i=0; i<DIM; i++) 00229 // { 00230 // for (unsigned j=0; j<DIM; j++) 00231 // { 00232 // identity[i][j] = i==j ? 1.0 : 0.0; 00233 // } 00234 // } 00235 // 00236 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00237 // 00238 // while (element_iter!=this->mDofHandler.end()) 00239 // { 00240 // double xmin = element_iter->vertex(0)(0); 00241 // double xmax = element_iter->vertex(1)(0); 00242 // double ymin = element_iter->vertex(0)(1); 00243 // double ymax = element_iter->vertex(3)(1); 00244 // assert(element_iter->vertex(2)(0)==xmax); 00245 // assert(element_iter->vertex(2)(1)==ymax); 00246 // 00247 // fe_values.reinit(element_iter); // compute fe values for this element 00248 // fe_values.get_function_values(this->mCurrentSolution, local_solution_values); 00249 // fe_values.get_function_grads(this->mCurrentSolution, local_solution_gradients); 00250 // 00251 // std::vector<Point<DIM> > quad_points =fe_values.get_quadrature_points(); 00252 // 00253 // 00254 // AbstractIncompressibleMaterialLaw<DIM>* p_material_law = this->GetMaterialLawForElement(element_iter); 00255 // 00256 // std::vector<Tensor<2,DIM> > inv_C_at_nodes(4);// 4=2^DIM 00257 // 00258 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00259 // { 00260 // const std::vector< Tensor<1,DIM> >& grad_u_p = local_solution_gradients[q_point]; 00261 // static Tensor<2,DIM> F; 00262 // static Tensor<2,DIM> C; 00263 // 00264 // for (unsigned i=0; i<DIM; i++) 00265 // { 00266 // for (unsigned j=0; j<DIM; j++) 00267 // { 00268 // F[i][j] = identity[i][j] + grad_u_p[i][j]; 00269 // } 00270 // } 00271 // 00272 // C = transpose(F) * F; 00273 // inv_C_at_nodes[q_point] = invert(C); 00274 // } 00275 // 00276 // 00286 // 00287 // 00288 // 00289 // for(unsigned j=0; j<mNodesContainedInElement[element_number].size(); j++) 00290 // { 00291 // unsigned node_num = mNodesContainedInElement[element_number][j]; 00292 // double x = pOtherMesh->GetNode(node_num)->rGetLocation()[0]; 00293 // double y = pOtherMesh->GetNode(node_num)->rGetLocation()[1]; 00294 // 00295 // assert((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)); 00296 // double xi = (x-xmin)/(xmax-xmin); 00297 // double eta = (y-ymin)/(ymax-ymin); 00298 // assert((0<=xi) && (x<=1) && (0<=eta) && (eta<=1)); 00299 // 00300 // rValuesAtNodes[node_num][0] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,0); 00301 // rValuesAtNodes[node_num][1] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,1); 00302 // rValuesAtNodes[node_num][2] = InterpolateCinverse(xi,eta,inv_C_at_nodes,1,1); 00303 // } 00304 // 00305 // 00306 // element_iter++; 00307 // element_number++; 00308 // } 00309 // } 00310 // 00311 // 00312 // double InterpolateCinverse(const double xi, const double eta, 00313 // const std::vector<Tensor<2,DIM> >& inverseCAtNodes, 00314 // unsigned i, unsigned j) 00315 // { 00316 // return inverseCAtNodes[0][i][j] * (1-xi) * (1-eta) 00317 // + inverseCAtNodes[1][i][j] * (1-xi) * eta 00318 // + inverseCAtNodes[2][i][j] * xi * (1-eta) 00319 // + inverseCAtNodes[3][i][j] * xi * eta; 00320 // } 00321 00322 00323 #endif /*IMPLICITCARDIACMECHANICSASSEMBLER_HPP_*/