AbstractIsotropicCompressibleMaterialLaw.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2011
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 #include "AbstractIsotropicCompressibleMaterialLaw.hpp"
00030 
00031 template<unsigned DIM>
00032 AbstractIsotropicCompressibleMaterialLaw<DIM>::~AbstractIsotropicCompressibleMaterialLaw()
00033 {
00034 }
00035 
00036 template<unsigned DIM>
00037 void AbstractIsotropicCompressibleMaterialLaw<DIM>::ComputeStressAndStressDerivative(
00038         c_matrix<double,DIM,DIM>& rC,
00039         c_matrix<double,DIM,DIM>& rInvC,
00040         double                    pressure,
00041         c_matrix<double,DIM,DIM>& rT,
00042         FourthOrderTensor<DIM,DIM,DIM,DIM>&   rDTdE,
00043         bool                      computeDTdE)
00044 {
00045     // this is covered, but gcov doesn't see this as being covered
00046     // for some reason, maybe because of optimisations
00047     #define COVERAGE_IGNORE
00048     assert((DIM==2) || (DIM==3));
00049     #undef COVERAGE_IGNORE
00050 
00051     assert(pressure==0.0);
00052 
00053     static c_matrix<double,DIM,DIM> identity = identity_matrix<double>(DIM);
00054 
00055     double I1 = Trace(rC);
00056     double I2 = SecondInvariant(rC);
00057     double I3 = Determinant(rC);
00058 
00059     static c_matrix<double,DIM,DIM> dI2dC = I1*identity - rC;
00060 
00061     double w1 = Get_dW_dI1(I1,I2,I3);
00062     double w2 = Get_dW_dI2(I1,I2,I3);
00063     double w3 = Get_dW_dI3(I1,I2,I3);
00064 
00065 
00066     // Compute stress:
00067     //
00068     //  T = dW_dE
00069     //    = 2 dW_dC
00070     //    = 2 (  w1 dI1/dC   +  w2 dI2/dC      +   w3 dI3/dC )
00071     //    = 2 (  w1 I        +  w2 (I1*I - C)  +   w3 inv(C) )
00072     //
00073     //  where w1 = dW/dI1, etc
00074     //
00075     rT = 2*w1*identity + 2*w3*rInvC;
00076     if (DIM==3)
00077     {
00078         rT += 2*w2*dI2dC;
00079     }
00080 
00081     // Compute stress derivative if required:
00082     //
00083     // The stress derivative dT_{MN}/dE_{PQ} is
00084     //
00085     //
00086     //  dT_dE = 2 dT_dC
00087     //        = 4  d/dC ( w1 I  +  w2 (I1*I - C)  +   w3 inv(C) )
00088     //  so (in the following ** represents outer product):
00089     //  (1/4) dT_dE =        w11 I**I          +    w12 I**(I1*I-C)           +     w13 I**inv(C)
00090     //                  +    w21 (I1*I-C)**I   +    w22 (I1*I-C)**(I1*I-C)    +     w23 (I1*I-C)**inv(C)    +   w2 (I**I - dC/dC)
00091     //                  +    w31 inv(C)**I     +    w32 inv(C)**(I1*I-C)      +     w33 inv(C)**inv(C)      +   w2 d(invC)/dC
00092     //
00093     //  Here, I**I represents the tensor A[M][N][P][Q] = (M==N)*(P==Q) // ie delta(M,N)delta(P,Q),   etc
00094     //
00095 
00096     if (computeDTdE)
00097     {
00098         double  w11    = Get_d2W_dI1(I1,I2,I3);
00099         double  w22    = Get_d2W_dI2(I1,I2,I3);
00100         double  w33    = Get_d2W_dI3(I1,I2,I3);
00101 
00102         double  w23  = Get_d2W_dI2I3(I1,I2,I3);
00103         double  w13  = Get_d2W_dI1I3(I1,I2,I3);
00104         double  w12  = Get_d2W_dI1I2(I1,I2,I3);
00105 
00106         for (unsigned M=0; M<DIM; M++)
00107         {
00108             for (unsigned N=0; N<DIM; N++)
00109             {
00110                 for (unsigned P=0; P<DIM; P++)
00111                 {
00112                     for (unsigned Q=0; Q<DIM; Q++)
00113                     {
00114                         rDTdE(M,N,P,Q) =   4 * w11  * (M==N) * (P==Q)
00115                                          + 4 * w13  * ( (M==N) * rInvC(P,Q)  +  rInvC(M,N)*(P==Q) )  // the w13 and w31 terms
00116                                          + 4 * w33  * rInvC(M,N) * rInvC(P,Q)
00117                                          - 4 * w3   * rInvC(M,P) * rInvC(Q,N);
00118 
00119                         if (DIM==3)
00120                         {
00121                             rDTdE(M,N,P,Q) +=   4 * w22  * dI2dC(M,N) * dI2dC(P,Q)
00122                                               + 4 * w12  * ((M==N)*dI2dC(P,Q) + (P==Q)*dI2dC(M,N))          // the w12 and w21 terms
00123                                               + 4 * w23  * ( dI2dC(M,N)*rInvC(P,Q) + rInvC(M,N)*dI2dC(P,Q)) // the w23 and w32 terms
00124                                               + 4 * w2   * ((M==N)*(P==Q) - (M==P)*(N==Q));
00125                         }
00126                     }
00127                 }
00128             }
00129         }
00130     }
00131 }
00132 
00133 
00134 
00136 // Explicit instantiation
00138 
00139 
00140 //template class AbstractIsotropicCompressibleMaterialLaw<1>;
00141 template class AbstractIsotropicCompressibleMaterialLaw<2>;
00142 template class AbstractIsotropicCompressibleMaterialLaw<3>;

Generated on Mon Apr 18 11:35:36 2011 for Chaste by  doxygen 1.5.5