00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029 #include "SimpleNonlinearEllipticSolver.hpp"
00030
00031
00032 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00033 c_matrix<double,1*(ELEMENT_DIM+1),1*(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeMatrixTerm(
00034 c_vector<double, ELEMENT_DIM+1>& rPhi,
00035 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00036 ChastePoint<SPACE_DIM>& rX,
00037 c_vector<double,1>& rU,
00038 c_matrix<double,1,SPACE_DIM>& rGradU,
00039 Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00040 {
00041 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> ret;
00042
00043 c_matrix<double, SPACE_DIM, SPACE_DIM> f_of_u = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00044 c_matrix<double, SPACE_DIM, SPACE_DIM> f_of_u_prime = mpNonlinearEllipticPde->ComputeDiffusionTermPrime(rX, rU(0));
00045
00046
00047 double forcing_term_prime = mpNonlinearEllipticPde->ComputeNonlinearSourceTermPrime(rX, rU(0));
00048
00049
00050
00051 matrix_row< c_matrix<double, 1, SPACE_DIM> > r_gradu_0(rGradU, 0);
00052 c_vector<double, SPACE_DIM> temp1 = prod(f_of_u_prime, r_gradu_0);
00053 c_vector<double, ELEMENT_DIM+1> temp1a = prod(temp1, rGradPhi);
00054
00055 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values1 = outer_prod(temp1a, rPhi);
00056 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp2 = prod(f_of_u, rGradPhi);
00057 c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values2 = prod(trans(rGradPhi), temp2);
00058 c_vector<double, ELEMENT_DIM+1> integrand_values3 = forcing_term_prime * rPhi;
00059
00060 ret = integrand_values1 + integrand_values2 - outer_prod( scalar_vector<double>(ELEMENT_DIM+1), integrand_values3);
00061
00062 return ret;
00063 }
00064
00065 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00066 c_vector<double,1*(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00067 c_vector<double, ELEMENT_DIM+1>& rPhi,
00068 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00069 ChastePoint<SPACE_DIM>& rX,
00070 c_vector<double,1>& rU,
00071 c_matrix<double,1,SPACE_DIM>& rGradU,
00072 Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00073 {
00074 c_vector<double, 1*(ELEMENT_DIM+1)> ret;
00075
00076
00077
00078
00079 double forcing_term = mpNonlinearEllipticPde->ComputeLinearSourceTerm(rX);
00080 forcing_term += mpNonlinearEllipticPde->ComputeNonlinearSourceTerm(rX, rU(0));
00081
00082 c_matrix<double, ELEMENT_DIM, ELEMENT_DIM> FOfU = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00083
00084
00085
00086 matrix_row< c_matrix<double, 1, SPACE_DIM> > rGradU0(rGradU, 0);
00087 c_vector<double, ELEMENT_DIM+1> integrand_values1 =
00088 prod(c_vector<double, ELEMENT_DIM>(prod(rGradU0, FOfU)), rGradPhi);
00089
00090 ret = integrand_values1 - (forcing_term * rPhi);
00091 return ret;
00092 }
00093
00094
00095 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00096 c_vector<double, 1*ELEMENT_DIM> SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorSurfaceTerm(
00097 const BoundaryElement<ELEMENT_DIM-1,SPACE_DIM>& rSurfaceElement,
00098 c_vector<double, ELEMENT_DIM>& rPhi,
00099 ChastePoint<SPACE_DIM>& rX)
00100 {
00101 double Dgradu_dot_n = this->mpBoundaryConditions->GetNeumannBCValue(&rSurfaceElement, rX);
00102 return (-Dgradu_dot_n)* rPhi;
00103 }
00104
00105
00106 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00107 SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleNonlinearEllipticSolver(
00108 AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>* pMesh,
00109 AbstractNonlinearEllipticPde<SPACE_DIM>* pPde,
00110 BoundaryConditionsContainer<ELEMENT_DIM, SPACE_DIM, 1>* pBoundaryConditions,
00111 unsigned numQuadPoints)
00112 : AbstractNonlinearAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1>(pMesh,pBoundaryConditions,numQuadPoints),
00113 mpNonlinearEllipticPde(pPde)
00114 {
00115 assert(pPde!=NULL);
00116 }
00117
00118
00119
00121
00123
00124 template class SimpleNonlinearEllipticSolver<1,1>;
00125 template class SimpleNonlinearEllipticSolver<2,2>;
00126 template class SimpleNonlinearEllipticSolver<3,3>;
00127