00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029 #include "AbstractIsotropicIncompressibleMaterialLaw.hpp"
00030
00031 template<unsigned DIM>
00032 AbstractIsotropicIncompressibleMaterialLaw<DIM>::~AbstractIsotropicIncompressibleMaterialLaw()
00033 {
00034 }
00035
00036 template<unsigned DIM>
00037 void AbstractIsotropicIncompressibleMaterialLaw<DIM>::ComputeStressAndStressDerivative(
00038 c_matrix<double,DIM,DIM>& rC,
00039 c_matrix<double,DIM,DIM>& rInvC,
00040 double pressure,
00041 c_matrix<double,DIM,DIM>& rT,
00042 FourthOrderTensor<DIM,DIM,DIM,DIM>& rDTdE,
00043 bool computeDTdE)
00044 {
00045
00046
00047 #define COVERAGE_IGNORE
00048 assert((DIM==2) || (DIM==3));
00049 #undef COVERAGE_IGNORE
00050
00051 static c_matrix<double,DIM,DIM> identity = identity_matrix<double>(DIM);
00052
00053 double I1 = Trace(rC);
00054 double I2 = SecondInvariant(rC);
00055
00056 double w1 = Get_dW_dI1(I1, I2);
00057 double w2;
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068 rT = 2*w1*identity - pressure*rInvC;
00069 if (DIM==3)
00070 {
00071 w2 = Get_dW_dI2(I1, I2);
00072 rT += 2*w2*(I1*identity - rC);
00073 }
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097 if (computeDTdE)
00098 {
00099 double w11 = Get_d2W_dI1(I1,I2);
00100
00101 double w12;
00102 double w22;
00103
00104 if (DIM==3)
00105 {
00106 w22 = Get_d2W_dI2(I1, I2);
00107 w12 = Get_d2W_dI1I2(I1, I2);
00108 }
00109
00110 for (unsigned M=0; M<DIM; M++)
00111 {
00112 for (unsigned N=0; N<DIM; N++)
00113 {
00114 for (unsigned P=0; P<DIM; P++)
00115 {
00116 for (unsigned Q=0; Q<DIM; Q++)
00117 {
00118 rDTdE(M,N,P,Q) = 4 * w11 * (M==N) * (P==Q)
00119 + 2 * pressure * rInvC(M,P) * rInvC(Q,N);
00120
00121 if (DIM==3)
00122 {
00123 rDTdE(M,N,P,Q) += 4 * w22 * (I1*(M==N) - rC(M,N)) * (I1*(P==Q) - rC(P,Q))
00124 + 4 * w2 * ((M==N)*(P==Q) - (M==P)*(N==Q))
00125 + 4 * w12 * ((M==N)*(I1*(P==Q) - rC(P,Q)) + (P==Q)*(I1*(M==N) - rC(M,N)));
00126 }
00127 }
00128 }
00129 }
00130 }
00131 }
00132 }
00133
00134 template<>
00135 double AbstractIsotropicIncompressibleMaterialLaw<2>::GetZeroStrainPressure()
00136 {
00137 return 2*Get_dW_dI1(2,0);
00138 }
00139
00140 template<>
00141 double AbstractIsotropicIncompressibleMaterialLaw<3>::GetZeroStrainPressure()
00142 {
00143 return 2*Get_dW_dI1(3,3) + 4*Get_dW_dI2(3,3);
00144 }
00145
00147
00149
00150 template class AbstractIsotropicIncompressibleMaterialLaw<2>;
00151 template class AbstractIsotropicIncompressibleMaterialLaw<3>;