00001 /* 00002 00003 Copyright (c) 2005-2015, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "AbstractIsotropicCompressibleMaterialLaw.hpp" 00037 00038 template<unsigned DIM> 00039 AbstractIsotropicCompressibleMaterialLaw<DIM>::~AbstractIsotropicCompressibleMaterialLaw() 00040 { 00041 } 00042 00043 template<unsigned DIM> 00044 void AbstractIsotropicCompressibleMaterialLaw<DIM>::ComputeStressAndStressDerivative(c_matrix<double,DIM,DIM>& rC, 00045 c_matrix<double,DIM,DIM>& rInvC, 00046 double pressure, 00047 c_matrix<double,DIM,DIM>& rT, 00048 FourthOrderTensor<DIM,DIM,DIM,DIM>& rDTdE, 00049 bool computeDTdE) 00050 { 00051 /* 00052 * This is covered, but gcov doesn't see this as being covered 00053 * for some reason, maybe because of optimisations. 00054 */ 00055 #define COVERAGE_IGNORE 00056 assert((DIM==2) || (DIM==3)); 00057 #undef COVERAGE_IGNORE 00058 00059 assert(pressure==0.0); 00060 00061 static c_matrix<double,DIM,DIM> identity = identity_matrix<double>(DIM); 00062 00063 double I1 = Trace(rC); 00064 double I2 = SecondInvariant(rC); 00065 double I3 = Determinant(rC); 00066 00067 static c_matrix<double,DIM,DIM> dI2dC; 00068 dI2dC = I1*identity - rC; // MUST be on separate line to above! 00069 00070 double w1 = Get_dW_dI1(I1,I2,I3); 00071 double w2 = Get_dW_dI2(I1,I2,I3); 00072 double w3 = Get_dW_dI3(I1,I2,I3); 00073 00074 00075 // Compute stress: **** See FiniteElementImplementations document. **** 00076 // 00077 // T = dW_dE 00078 // = 2 dW_dC 00079 // = 2 ( w1 dI1/dC + w2 dI2/dC + w3 dI3/dC ) 00080 // = 2 ( w1 I + w2 (I1*I - C) + w3 I3 inv(C) ) 00081 // 00082 // where w1 = dW/dI1, etc 00083 // 00084 rT = 2*w1*identity + 2*w3*I3*rInvC; 00085 if (DIM==3) 00086 { 00087 rT += 2*w2*dI2dC; 00088 } 00089 00090 // Compute stress derivative if required: **** See FiniteElementImplementations document. **** 00091 // 00092 // The stress derivative dT_{MN}/dE_{PQ} is 00093 // 00094 // 00095 // dT_dE = 2 dT_dC 00096 // = 4 d/dC ( w1 I + w2 (I1*I - C) + w3 I3 inv(C) ) 00097 // so (in the following ** represents outer product): 00098 // (1/4) dT_dE = w11 I**I + w12 I**(I1*I-C) + w13 I**inv(C) 00099 // + w21 (I1*I-C)**I + w22 (I1*I-C)**(I1*I-C) + w23 (I1*I-C)**inv(C) + w2 (I**I - dC/dC) 00100 // + w31 I3 inv(C)**I + w32 I3 inv(C)**(I1*I-C) + (w33 I3 + w3) inv(C)**inv(C) + w3 d(invC)/dC 00101 // 00102 // Here, I**I represents the tensor A[M][N][P][Q] = (M==N)*(P==Q) // ie delta(M,N)delta(P,Q), etc 00103 // 00104 00105 if (computeDTdE) 00106 { 00107 double w11 = Get_d2W_dI1(I1,I2,I3); 00108 double w22 = Get_d2W_dI2(I1,I2,I3); 00109 double w33 = Get_d2W_dI3(I1,I2,I3); 00110 00111 double w23 = Get_d2W_dI2I3(I1,I2,I3); 00112 double w13 = Get_d2W_dI1I3(I1,I2,I3); 00113 double w12 = Get_d2W_dI1I2(I1,I2,I3); 00114 00115 for (unsigned M=0; M<DIM; M++) 00116 { 00117 for (unsigned N=0; N<DIM; N++) 00118 { 00119 for (unsigned P=0; P<DIM; P++) 00120 { 00121 for (unsigned Q=0; Q<DIM; Q++) 00122 { 00123 rDTdE(M,N,P,Q) = 4 * w11 * (M==N) * (P==Q) 00124 + 4 * w13 * I3 * ( (M==N) * rInvC(P,Q) + rInvC(M,N)*(P==Q) ) // the w13 and w31 terms 00125 + 4 * (w33*I3 + w3) * I3 * rInvC(M,N) * rInvC(P,Q) 00126 - 4 * w3 * I3 * rInvC(M,P) * rInvC(Q,N); 00127 00128 if (DIM==3) 00129 { 00130 rDTdE(M,N,P,Q) += 4 * w22 * dI2dC(M,N) * dI2dC(P,Q) 00131 + 4 * w12 * ((M==N)*dI2dC(P,Q) + (P==Q)*dI2dC(M,N)) // the w12 and w21 terms 00132 + 4 * w23 * I3 * ( dI2dC(M,N)*rInvC(P,Q) + rInvC(M,N)*dI2dC(P,Q)) // the w23 and w32 terms 00133 + 4 * w2 * ((M==N)*(P==Q) - (M==P)*(N==Q)); 00134 } 00135 } 00136 } 00137 } 00138 } 00139 } 00140 } 00141 00143 // Explicit instantiation 00145 00146 //template class AbstractIsotropicCompressibleMaterialLaw<1>; 00147 template class AbstractIsotropicCompressibleMaterialLaw<2>; 00148 template class AbstractIsotropicCompressibleMaterialLaw<3>;