AbstractRushLarsenCardiacCell.cpp
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #include "AbstractRushLarsenCardiacCell.hpp"
00037
00038 #include <cassert>
00039 #include <cmath>
00040
00041 #include "Exception.hpp"
00042 #include "OdeSolution.hpp"
00043 #include "TimeStepper.hpp"
00044
00045 AbstractRushLarsenCardiacCell::AbstractRushLarsenCardiacCell(unsigned numberOfStateVariables,
00046 unsigned voltageIndex,
00047 boost::shared_ptr<AbstractStimulusFunction> pIntracellularStimulus)
00048 : AbstractCardiacCell(boost::shared_ptr<AbstractIvpOdeSolver>(),
00049 numberOfStateVariables,
00050 voltageIndex,
00051 pIntracellularStimulus)
00052 {}
00053
00054 AbstractRushLarsenCardiacCell::~AbstractRushLarsenCardiacCell()
00055 {}
00056
00057 OdeSolution AbstractRushLarsenCardiacCell::Compute(double tStart, double tEnd, double tSamp)
00058 {
00059
00060
00061
00062
00063
00064
00065 if (tSamp < mDt)
00066 {
00067 tSamp = mDt;
00068 }
00069 const unsigned n_steps = (unsigned) floor((tEnd - tStart)/tSamp + 0.5);
00070 assert(fabs(tStart+n_steps*tSamp - tEnd) < 1e-12);
00071 const unsigned n_small_steps = (unsigned) floor(tSamp/mDt+0.5);
00072 assert(fabs(mDt*n_small_steps - tSamp) < 1e-12);
00073
00074
00075 OdeSolution solutions;
00076 solutions.SetNumberOfTimeSteps(n_steps);
00077 solutions.rGetSolutions().push_back(rGetStateVariables());
00078 solutions.rGetTimes().push_back(tStart);
00079 solutions.SetOdeSystemInformation(this->mpSystemInfo);
00080
00081 std::vector<double> dy(mNumberOfStateVariables, 0);
00082 std::vector<double> alpha(mNumberOfStateVariables, 0);
00083 std::vector<double> beta(mNumberOfStateVariables, 0);
00084
00085
00086 for (unsigned i=0; i<n_steps; i++)
00087 {
00088 double curr_time = tStart;
00089 for (unsigned j=0; j<n_small_steps; j++)
00090 {
00091 curr_time = tStart + i*tSamp + j*mDt;
00092 EvaluateEquations(curr_time, dy, alpha, beta);
00093 UpdateTransmembranePotential(dy);
00094 ComputeOneStepExceptVoltage(dy, alpha, beta);
00095 VerifyStateVariables();
00096 }
00097
00098
00099 solutions.rGetSolutions().push_back(rGetStateVariables());
00100 solutions.rGetTimes().push_back(curr_time+mDt);
00101 }
00102
00103 return solutions;
00104 }
00105
00106 void AbstractRushLarsenCardiacCell::ComputeExceptVoltage(double tStart, double tEnd)
00107 {
00108 mSetVoltageDerivativeToZero = true;
00109 TimeStepper stepper(tStart, tEnd, mDt);
00110
00111 std::vector<double> dy(mNumberOfStateVariables, 0);
00112 std::vector<double> alpha(mNumberOfStateVariables, 0);
00113 std::vector<double> beta(mNumberOfStateVariables, 0);
00114
00115 while (!stepper.IsTimeAtEnd())
00116 {
00117 EvaluateEquations(stepper.GetTime(), dy, alpha, beta);
00118 ComputeOneStepExceptVoltage(dy, alpha, beta);
00119
00120 #ifndef NDEBUG
00121
00122 VerifyStateVariables();
00123 #endif // NDEBUG
00124
00125 stepper.AdvanceOneTimeStep();
00126 }
00127 mSetVoltageDerivativeToZero = false;
00128 }
00129
00130 void AbstractRushLarsenCardiacCell::SolveAndUpdateState(double tStart, double tEnd)
00131 {
00132 TimeStepper stepper(tStart, tEnd, mDt);
00133
00134 std::vector<double> dy(mNumberOfStateVariables, 0);
00135 std::vector<double> alpha(mNumberOfStateVariables, 0);
00136 std::vector<double> beta(mNumberOfStateVariables, 0);
00137
00138 while (!stepper.IsTimeAtEnd())
00139 {
00140 EvaluateEquations(stepper.GetTime(), dy, alpha, beta);
00141 UpdateTransmembranePotential(dy);
00142 ComputeOneStepExceptVoltage(dy, alpha, beta);
00143 VerifyStateVariables();
00144
00145 stepper.AdvanceOneTimeStep();
00146 }
00147 }
00148
00149 void AbstractRushLarsenCardiacCell::UpdateTransmembranePotential(const std::vector<double> &rDY)
00150 {
00151 unsigned v_index = GetVoltageIndex();
00152 rGetStateVariables()[v_index] += mDt*rDY[v_index];
00153 }