CellBasedPdeSolver.cpp

00001 /*
00002 
00003 Copyright (c) 2005-2015, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "CellBasedPdeSolver.hpp"
00037 #include "TetrahedralMesh.hpp"
00038 #include "SimpleLinearEllipticSolver.hpp"
00039 
00040 template<unsigned DIM>
00041 CellBasedPdeSolver<DIM>::CellBasedPdeSolver(TetrahedralMesh<DIM,DIM>* pMesh,
00042                               AbstractLinearEllipticPde<DIM,DIM>* pPde,
00043                               BoundaryConditionsContainer<DIM,DIM,1>* pBoundaryConditions)
00044      : SimpleLinearEllipticSolver<DIM, DIM>(pMesh, pPde, pBoundaryConditions)
00045 {
00046 }
00047 
00048 template<unsigned DIM>
00049 CellBasedPdeSolver<DIM>::~CellBasedPdeSolver()
00050 {
00051 }
00052 
00053 template<unsigned DIM>
00054 c_vector<double, 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeVectorTerm(
00055         c_vector<double, DIM+1>& rPhi,
00056         c_matrix<double, DIM, DIM+1>& rGradPhi,
00057         ChastePoint<DIM>& rX,
00058         c_vector<double, 1>& rU,
00059         c_matrix<double, 1, DIM>& rGradU /* not used */,
00060         Element<DIM, DIM>* pElement)
00061 {
00062     return mConstantInUSourceTerm * rPhi;
00063 }
00064 
00065 template<unsigned DIM>
00066 c_matrix<double, 1*(DIM+1), 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeMatrixTerm(
00067         c_vector<double, DIM+1>& rPhi,
00068         c_matrix<double, DIM, DIM+1>& rGradPhi,
00069         ChastePoint<DIM>& rX,
00070         c_vector<double, 1>& rU,
00071         c_matrix<double, 1, DIM>& rGradU,
00072         Element<DIM, DIM>* pElement)
00073 {
00074     c_matrix<double, DIM, DIM> pde_diffusion_term = this->mpEllipticPde->ComputeDiffusionTerm(rX);
00075 
00076     // This if statement just saves computing phi*phi^T if it is to be multiplied by zero
00077     if (mLinearInUCoeffInSourceTerm != 0)
00078     {
00079         return   prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00080                - mLinearInUCoeffInSourceTerm * outer_prod(rPhi,rPhi);
00081     }
00082     else
00083     {
00084         return   prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
00085     }
00086 }
00087 
00088 template<unsigned DIM>
00089 void CellBasedPdeSolver<DIM>::ResetInterpolatedQuantities()
00090 {
00091     mConstantInUSourceTerm = 0;
00092     mLinearInUCoeffInSourceTerm = 0;
00093 }
00094 
00095 template<unsigned DIM>
00096 void CellBasedPdeSolver<DIM>::IncrementInterpolatedQuantities(double phiI, const Node<DIM>* pNode)
00097 {
00098     mConstantInUSourceTerm += phiI * this->mpEllipticPde->ComputeConstantInUSourceTermAtNode(*pNode);
00099     mLinearInUCoeffInSourceTerm += phiI * this->mpEllipticPde->ComputeLinearInUCoeffInSourceTermAtNode(*pNode);
00100 }
00101 
00102 template<unsigned DIM>
00103 void CellBasedPdeSolver<DIM>::InitialiseForSolve(Vec initialSolution)
00104 {
00105     // Linear system created here
00106     SimpleLinearEllipticSolver<DIM,DIM>::InitialiseForSolve(initialSolution);
00107 
00108     this->mpLinearSystem->SetMatrixIsSymmetric(true);
00109 }
00110 
00112 // Explicit instantiation
00114 
00115 template class CellBasedPdeSolver<1>;
00116 template class CellBasedPdeSolver<2>;
00117 template class CellBasedPdeSolver<3>;

Generated by  doxygen 1.6.2