triangle.cpp

Go to the documentation of this file.
00001 
00008 /*****************************************************************************/
00009 /*                                                                           */
00010 /*      888888888        ,o,                          / 888                  */
00011 /*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
00012 /*         888    888    888       88b 888  888 888 888 888 d888  88b        */
00013 /*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
00014 /*         888    888    888 C888  888 888  888  /      888 q888             */
00015 /*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
00016 /*                                              "8oo8D                       */
00017 /*                                                                           */
00018 /*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
00019 /*  (triangle.c)                                                             */
00020 /*                                                                           */
00021 /*  Version 1.6                                                              */
00022 /*  July 28, 2005                                                            */
00023 /*                                                                           */
00024 /*  Copyright 1993, 1995, 1997, 1998, 2002, 2005                             */
00025 /*  Jonathan Richard Shewchuk                                                */
00026 /*  2360 Woolsey #H                                                          */
00027 /*  Berkeley, California  94705-1927                                         */
00028 /*  jrs@cs.berkeley.edu                                                      */
00029 /*                                                                           */
00030 /*  This program may be freely redistributed under the condition that the    */
00031 /*    copyright notices (including this entire header and the copyright      */
00032 /*    notice printed when the `-h' switch is selected) are not removed, and  */
00033 /*    no compensation is received.  Private, research, and institutional     */
00034 /*    use is free.  You may distribute modified versions of this code UNDER  */
00035 /*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
00036 /*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
00037 /*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
00038 /*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
00039 /*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
00040 /*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
00041 /*    customer, and you are instead telling them how they can obtain it for  */
00042 /*    free, then you are not required to make any arrangement with me.)      */
00043 /*                                                                           */
00044 /*  Hypertext instructions for Triangle are available on the Web at          */
00045 /*                                                                           */
00046 /*      http://www.cs.cmu.edu/~quake/triangle.html                           */
00047 /*                                                                           */
00048 /*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
00049 /*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
00050 /*                                                                           */
00051 /*  Some of the references listed below are marked with an asterisk.  [*]    */
00052 /*    These references are available for downloading from the Web page       */
00053 /*                                                                           */
00054 /*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
00055 /*                                                                           */
00056 /*  Three papers discussing aspects of Triangle are available.  A short      */
00057 /*    overview appears in "Triangle:  Engineering a 2D Quality Mesh          */
00058 /*    Generator and Delaunay Triangulator," in Applied Computational         */
00059 /*    Geometry:  Towards Geometric Engineering, Ming C. Lin and Dinesh       */
00060 /*    Manocha, editors, Lecture Notes in Computer Science volume 1148,       */
00061 /*    pages 203-222, Springer-Verlag, Berlin, May 1996 (from the First ACM   */
00062 /*    Workshop on Applied Computational Geometry).  [*]                      */
00063 /*                                                                           */
00064 /*    The algorithms are discussed in the greatest detail in "Delaunay       */
00065 /*    Refinement Algorithms for Triangular Mesh Generation," Computational   */
00066 /*    Geometry:  Theory and Applications 22(1-3):21-74, May 2002.  [*]       */
00067 /*                                                                           */
00068 /*    More detail about the data structures may be found in my dissertation: */
00069 /*    "Delaunay Refinement Mesh Generation," Ph.D. thesis, Technical Report  */
00070 /*    CMU-CS-97-137, School of Computer Science, Carnegie Mellon University, */
00071 /*    Pittsburgh, Pennsylvania, 18 May 1997.  [*]                            */
00072 /*                                                                           */
00073 /*  Triangle was created as part of the Quake Project in the School of       */
00074 /*    Computer Science at Carnegie Mellon University.  For further           */
00075 /*    information, see Hesheng Bao, Jacobo Bielak, Omar Ghattas, Loukas F.   */
00076 /*    Kallivokas, David R. O'Hallaron, Jonathan R. Shewchuk, and Jifeng Xu,  */
00077 /*    "Large-scale Simulation of Elastic Wave Propagation in Heterogeneous   */
00078 /*    Media on Parallel Computers," Computer Methods in Applied Mechanics    */
00079 /*    and Engineering 152(1-2):85-102, 22 January 1998.                      */
00080 /*                                                                           */
00081 /*  Triangle's Delaunay refinement algorithm for quality mesh generation is  */
00082 /*    a hybrid of one due to Jim Ruppert, "A Delaunay Refinement Algorithm   */
00083 /*    for Quality 2-Dimensional Mesh Generation," Journal of Algorithms      */
00084 /*    18(3):548-585, May 1995 [*], and one due to L. Paul Chew, "Guaranteed- */
00085 /*    Quality Mesh Generation for Curved Surfaces," Proceedings of the Ninth */
00086 /*    Annual Symposium on Computational Geometry (San Diego, California),    */
00087 /*    pages 274-280, Association for Computing Machinery, May 1993,          */
00088 /*    http://portal.acm.org/citation.cfm?id=161150 .                         */
00089 /*                                                                           */
00090 /*  The Delaunay refinement algorithm has been modified so that it meshes    */
00091 /*    domains with small input angles well, as described in Gary L. Miller,  */
00092 /*    Steven E. Pav, and Noel J. Walkington, "When and Why Ruppert's         */
00093 /*    Algorithm Works," Twelfth International Meshing Roundtable, pages      */
00094 /*    91-102, Sandia National Laboratories, September 2003.  [*]             */
00095 /*                                                                           */
00096 /*  My implementation of the divide-and-conquer and incremental Delaunay     */
00097 /*    triangulation algorithms follows closely the presentation of Guibas    */
00098 /*    and Stolfi, even though I use a triangle-based data structure instead  */
00099 /*    of their quad-edge data structure.  (In fact, I originally implemented */
00100 /*    Triangle using the quad-edge data structure, but the switch to a       */
00101 /*    triangle-based data structure sped Triangle by a factor of two.)  The  */
00102 /*    mesh manipulation primitives and the two aforementioned Delaunay       */
00103 /*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
00104 /*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
00105 /*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
00106 /*    4(2):74-123, April 1985, http://portal.acm.org/citation.cfm?id=282923 .*/
00107 /*                                                                           */
00108 /*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
00109 /*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
00110 /*    Delaunay Triangulation," International Journal of Computer and         */
00111 /*    Information Science 9(3):219-242, 1980.  Triangle's improvement of the */
00112 /*    divide-and-conquer algorithm by alternating between vertical and       */
00113 /*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
00114 /*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
00115 /*    Algorithmica 2(2):137-151, 1987.                                       */
00116 /*                                                                           */
00117 /*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
00118 /*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
00119 /*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
00120 /*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
00121 /*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
00122 /*    Preprocessing in Two- and Three-Dimensional Delaunay Triangulations,"  */
00123 /*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
00124 /*    ACM, May 1996.  [*]  If I were to randomize the order of vertex        */
00125 /*    insertion (I currently don't bother), their result combined with the   */
00126 /*    result of Kenneth L. Clarkson and Peter W. Shor, "Applications of      */
00127 /*    Random Sampling in Computational Geometry II," Discrete &              */
00128 /*    Computational Geometry 4(1):387-421, 1989, would yield an expected     */
00129 /*    O(n^{4/3}) bound on running time.                                      */
00130 /*                                                                           */
00131 /*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
00132 /*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
00133 /*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
00134 /*    boundary of the triangulation are maintained in a splay tree for the   */
00135 /*    purpose of point location.  Splay trees are described by Daniel        */
00136 /*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
00137 /*    Trees," Journal of the ACM 32(3):652-686, July 1985,                   */
00138 /*    http://portal.acm.org/citation.cfm?id=3835 .                           */
00139 /*                                                                           */
00140 /*  The algorithms for exact computation of the signs of determinants are    */
00141 /*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
00142 /*    Point Arithmetic and Fast Robust Geometric Predicates," Discrete &     */
00143 /*    Computational Geometry 18(3):305-363, October 1997.  (Also available   */
00144 /*    as Technical Report CMU-CS-96-140, School of Computer Science,         */
00145 /*    Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996.)  [*]  */
00146 /*    An abbreviated version appears as Jonathan Richard Shewchuk, "Robust   */
00147 /*    Adaptive Floating-Point Geometric Predicates," Proceedings of the      */
00148 /*    Twelfth Annual Symposium on Computational Geometry, ACM, May 1996. [*] */
00149 /*    Many of the ideas for my exact arithmetic routines originate with      */
00150 /*    Douglas M. Priest, "Algorithms for Arbitrary Precision Floating Point  */
00151 /*    Arithmetic," Tenth Symposium on Computer Arithmetic, pp. 132-143, IEEE */
00152 /*    Computer Society Press, 1991.  [*]  Many of the ideas for the correct  */
00153 /*    evaluation of the signs of determinants are taken from Steven Fortune  */
00154 /*    and Christopher J. Van Wyk, "Efficient Exact Arithmetic for Computa-   */
00155 /*    tional Geometry," Proceedings of the Ninth Annual Symposium on         */
00156 /*    Computational Geometry, ACM, pp. 163-172, May 1993, and from Steven    */
00157 /*    Fortune, "Numerical Stability of Algorithms for 2D Delaunay Triangu-   */
00158 /*    lations," International Journal of Computational Geometry & Applica-   */
00159 /*    tions 5(1-2):193-213, March-June 1995.                                 */
00160 /*                                                                           */
00161 /*  The method of inserting new vertices off-center (not precisely at the    */
00162 /*    circumcenter of every poor-quality triangle) is from Alper Ungor,      */
00163 /*    "Off-centers:  A New Type of Steiner Points for Computing Size-Optimal */
00164 /*    Quality-Guaranteed Delaunay Triangulations," Proceedings of LATIN      */
00165 /*    2004 (Buenos Aires, Argentina), April 2004.                            */
00166 /*                                                                           */
00167 /*  For definitions of and results involving Delaunay triangulations,        */
00168 /*    constrained and conforming versions thereof, and other aspects of      */
00169 /*    triangular mesh generation, see the excellent survey by Marshall Bern  */
00170 /*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
00171 /*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
00172 /*    editors, World Scientific, Singapore, pp. 23-90, 1992.  [*]            */
00173 /*                                                                           */
00174 /*  The time for incrementally adding PSLG (planar straight line graph)      */
00175 /*    segments to create a constrained Delaunay triangulation is probably    */
00176 /*    O(t^2) per segment in the worst case and O(t) per segment in the       */
00177 /*    common case, where t is the number of triangles that intersect the     */
00178 /*    segment before it is inserted.  This doesn't count point location,     */
00179 /*    which can be much more expensive.  I could improve this to O(d log d)  */
00180 /*    time, but d is usually quite small, so it's not worth the bother.      */
00181 /*    (This note does not apply when the -s switch is used, invoking a       */
00182 /*    different method is used to insert segments.)                          */
00183 /*                                                                           */
00184 /*  The time for deleting a vertex from a Delaunay triangulation is O(d^2)   */
00185 /*    in the worst case and O(d) in the common case, where d is the degree   */
00186 /*    of the vertex being deleted.  I could improve this to O(d log d) time, */
00187 /*    but d is usually quite small, so it's not worth the bother.            */
00188 /*                                                                           */
00189 /*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
00190 /*    at a linear rate (constant time per triangle) after the initial        */
00191 /*    triangulation is formed.  There may be pathological cases where        */
00192 /*    quadratic time is required, but these never arise in practice.         */
00193 /*                                                                           */
00194 /*  The geometric predicates (circumcenter calculations, segment             */
00195 /*    intersection formulae, etc.) appear in my "Lecture Notes on Geometric  */
00196 /*    Robustness" at http://www.cs.berkeley.edu/~jrs/mesh .                  */
00197 /*                                                                           */
00198 /*  If you make any improvements to this code, please please please let me   */
00199 /*    know, so that I may obtain the improvements.  Even if you don't change */
00200 /*    the code, I'd still love to hear what it's being used for.             */
00201 /*                                                                           */
00202 /*****************************************************************************/
00203 
00204 /* For single precision (which will save some memory and reduce paging),     */
00205 /*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
00206 /*   writing "#define SINGLE" below.                                         */
00207 /*                                                                           */
00208 /* For double precision (which will allow you to refine meshes to a smaller  */
00209 /*   edge length), leave SINGLE undefined.                                   */
00210 /*                                                                           */
00211 /* Double precision uses more memory, but improves the resolution of the     */
00212 /*   meshes you can generate with Triangle.  It also reduces the likelihood  */
00213 /*   of a floating exception due to overflow.  Finally, it is much faster    */
00214 /*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
00215 /*   recommend double precision unless you want to generate a mesh for which */
00216 /*   you do not have enough memory.                                          */
00217 
00218 /* #define SINGLE */
00219 
00220 #ifdef SINGLE
00221 #define REAL float
00222 #else /* not SINGLE */
00223 #define REAL double
00224 #endif /* not SINGLE */
00225 
00226 /* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
00227 /*   remove the Unix-specific timing code.                                   */
00228 
00229 /* #define NO_TIMER */
00230 
00231 /* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
00232 /*   symbol.  This will slow down the program significantly.  It is best to  */
00233 /*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
00234 /*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
00235 /*   recommend you turn self-checks on until your work is debugged.          */
00236 
00237 /* #define SELF_CHECK */
00238 
00239 /* To compile Triangle as a callable object library (triangle.o), define the */
00240 /*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
00241 /*   the procedure triangulate() that results.                               */
00242 
00243 /* #define TRILIBRARY */
00244 
00245 /* It is possible to generate a smaller version of Triangle using one or     */
00246 /*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
00247 /*   all features that are primarily of research interest; specifically, the */
00248 /*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
00249 /*   all meshing algorithms above and beyond constrained Delaunay            */
00250 /*   triangulation; specifically, the -r, -q, -a, -u, -D, -S, and -s         */
00251 /*   switches.  These reductions are most likely to be useful when           */
00252 /*   generating an object library (triangle.o) by defining the TRILIBRARY    */
00253 /*   symbol.                                                                 */
00254 
00255 /* #define REDUCED */
00256 /* #define CDT_ONLY */
00257 
00258 /* On some machines, my exact arithmetic routines might be defeated by the   */
00259 /*   use of internal extended precision floating-point registers.  The best  */
00260 /*   way to solve this problem is to set the floating-point registers to use */
00261 /*   single or double precision internally.  On 80x86 processors, this may   */
00262 /*   be accomplished by setting the CPU86 symbol for the Microsoft C         */
00263 /*   compiler, or the LINUX symbol for the gcc compiler running on Linux.    */
00264 /*                                                                           */
00265 /* An inferior solution is to declare certain values as `volatile', thus     */
00266 /*   forcing them to be stored to memory and rounded off.  Unfortunately,    */
00267 /*   this solution might slow Triangle down quite a bit.  To use volatile    */
00268 /*   values, write "#define INEXACT volatile" below.  Normally, however,     */
00269 /*   INEXACT should be defined to be nothing.  ("#define INEXACT".)          */
00270 /*                                                                           */
00271 /* For more discussion, see http://www.cs.cmu.edu/~quake/robust.pc.html .    */
00272 /*   For yet more discussion, see Section 5 of my paper, "Adaptive Precision */
00273 /*   Floating-Point Arithmetic and Fast Robust Geometric Predicates" (also   */
00274 /*   available as Section 6.6 of my dissertation).                           */
00275 
00276 /* #define CPU86 */
00277 /* #define LINUX */
00278 
00279 #define INEXACT /* Nothing */
00280 /* #define INEXACT volatile */
00281 
00282 /* Maximum number of characters in a file name (including the null).         */
00283 
00284 #define FILENAMESIZE 2048
00285 
00286 /* Maximum number of characters in a line read from a file (including the    */
00287 /*   null).                                                                  */
00288 
00289 #define INPUTLINESIZE 1024
00290 
00291 /* For efficiency, a variety of data structures are allocated in bulk.  The  */
00292 /*   following constants determine how many of each structure is allocated   */
00293 /*   at once.                                                                */
00294 
00295 #define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
00296 #define SUBSEGPERBLOCK 508       /* Number of subsegments allocated at once. */
00297 #define VERTEXPERBLOCK 4092         /* Number of vertices allocated at once. */
00298 #define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
00299 /* Number of encroached subsegments allocated at once. */
00300 #define BADSUBSEGPERBLOCK 252
00301 /* Number of skinny triangles allocated at once. */
00302 #define BADTRIPERBLOCK 4092
00303 /* Number of flipped triangles allocated at once. */
00304 #define FLIPSTACKERPERBLOCK 252
00305 /* Number of splay tree nodes allocated at once. */
00306 #define SPLAYNODEPERBLOCK 508
00307 
00308 /* The vertex types.   A DEADVERTEX has been deleted entirely.  An           */
00309 /*   UNDEADVERTEX is not part of the mesh, but is written to the output      */
00310 /*   .node file and affects the node indexing in the other output files.     */
00311 
00312 #define INPUTVERTEX 0
00313 #define SEGMENTVERTEX 1
00314 #define FREEVERTEX 2
00315 #define DEADVERTEX -32768
00316 #define UNDEADVERTEX -32767
00317 
00318 /* The next line is used to outsmart some very stupid compilers.  If your    */
00319 /*   compiler is smarter, feel free to replace the "int" with "void".        */
00320 /*   Not that it matters.                                                    */
00321 
00322 /*Windows_Port_Begins*/
00323 #ifdef _MSC_VER
00324 #else
00325  /*This gave me a whole lot of grief with Windows SDK*/
00326  #define VOID int
00327 #endif
00328 /*Windows_Port_Begins*/
00329 
00330 /* Two constants for algorithms based on random sampling.  Both constants    */
00331 /*   have been chosen empirically to optimize their respective algorithms.   */
00332 
00333 /* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
00334 /*   how large a random sample of triangles to inspect.                      */
00335 
00336 #define SAMPLEFACTOR 11
00337 
00338 /* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
00339 /*   of boundary edges should be maintained in the splay tree for point      */
00340 /*   location on the front.                                                  */
00341 
00342 #define SAMPLERATE 10
00343 
00344 /* A number that speaks for itself, every kissable digit.                    */
00345 
00346 #define PI 3.141592653589793238462643383279502884197169399375105820974944592308
00347 
00348 /* Another fave.                                                             */
00349 
00350 #define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
00351 
00352 /* And here's one for those of you who are intimidated by math.              */
00353 
00354 #define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
00355 
00356 #include <stdio.h>
00357 #include <stdlib.h>
00358 #include <string.h>
00359 #include <math.h>
00360 #ifndef NO_TIMER
00361 #ifdef _MSC_VER
00362 #include <time.h>
00363 #include <WinSock2.h>
00364 #include <windows.h>
00365 //The portion below is adapted from http://www.suacommunity.com/dictionary/gettimeofday-entry.php
00366 #if defined(_MSC_EXTENSIONS)
00367   #define DELTA_EPOCH_IN_MICROSECS  11644473600000000Ui64
00368 #else
00369   #define DELTA_EPOCH_IN_MICROSECS  11644473600000000ULL
00370 #endif
00371 
00372 struct timezone
00373 {
00374   int  tz_minuteswest; /* minutes W of Greenwich */
00375   int  tz_dsttime;     /* type of dst correction */
00376 };
00377 
00378 // Definition of a gettimeofday function
00379 
00380 int gettimeofday(struct timeval *tv, struct timezone *tz)
00381 {
00382   // Define a structure to receive the current Windows filetime
00383   FILETIME ft;
00384 
00385   // Initialize the present time to 0 and the timezone to UTC
00386   unsigned __int64 tmpres = 0;
00387   static int tzflag = 0;
00388 
00389   if (NULL != tv)
00390   {
00391     GetSystemTimeAsFileTime(&ft);
00392 
00393     // The GetSystemTimeAsFileTime returns the number of 100 nanosecond
00394     // intervals since Jan 1, 1601 in a structure. Copy the high bits to
00395     // the 64 bit tmpres, shift it left by 32 then or in the low 32 bits.
00396     tmpres |= ft.dwHighDateTime;
00397     tmpres <<= 32;
00398     tmpres |= ft.dwLowDateTime;
00399 
00400     // Convert to microseconds by dividing by 10
00401     tmpres /= 10;
00402 
00403     // The Unix epoch starts on Jan 1 1970.  Need to subtract the difference
00404     // in seconds from Jan 1 1601.
00405     tmpres -= DELTA_EPOCH_IN_MICROSECS;
00406 
00407     // Finally change microseconds to seconds and place in the seconds value.
00408     // The modulus picks up the microseconds.
00409     tv->tv_sec = (long)(tmpres / 1000000UL);
00410     tv->tv_usec = (long)(tmpres % 1000000UL);
00411   }
00412 
00413   if (NULL != tz)
00414   {
00415     if (!tzflag)
00416     {
00417       _tzset();
00418       tzflag++;
00419     }
00420 
00421     // Adjust for the timezone west of Greenwich
00422     tz->tz_minuteswest = _timezone / 60;
00423     tz->tz_dsttime = _daylight;
00424   }
00425   return 0;
00426 }
00427 #else
00428 #include <sys/time.h>
00429 #endif
00430 #endif /* not NO_TIMER */
00431 #ifdef CPU86
00432 #include <float.h>
00433 #endif /* CPU86 */
00434 #ifdef LINUX
00435 #include <fpu_control.h>
00436 #endif /* LINUX */
00437 #ifdef TRILIBRARY
00438 #include "triangle.h"
00439 #endif /* TRILIBRARY */
00440 
00441 /* A few forward declarations.                                               */
00442 
00443 #ifndef TRILIBRARY
00444 char *readline();
00445 char *findfield();
00446 #endif /* not TRILIBRARY */
00447 
00448 /* Labels that signify the result of point location.  The result of a        */
00449 /*   search indicates that the point falls in the interior of a triangle, on */
00450 /*   an edge, on a vertex, or outside the mesh.                              */
00451 
00452 enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
00453 
00454 /* Labels that signify the result of vertex insertion.  The result indicates */
00455 /*   that the vertex was inserted with complete success, was inserted but    */
00456 /*   encroaches upon a subsegment, was not inserted because it lies on a     */
00457 /*   segment, or was not inserted because another vertex occupies the same   */
00458 /*   location.                                                               */
00459 
00460 enum insertvertexresult {SUCCESSFULVERTEX, ENCROACHINGVERTEX, VIOLATINGVERTEX,
00461                          DUPLICATEVERTEX};
00462 
00463 /* Labels that signify the result of direction finding.  The result          */
00464 /*   indicates that a segment connecting the two query points falls within   */
00465 /*   the direction triangle, along the left edge of the direction triangle,  */
00466 /*   or along the right edge of the direction triangle.                      */
00467 
00468 enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
00469 
00470 /*****************************************************************************/
00471 /*                                                                           */
00472 /*  The basic mesh data structures                                           */
00473 /*                                                                           */
00474 /*  There are three:  vertices, triangles, and subsegments (abbreviated      */
00475 /*  `subseg').  These three data structures, linked by pointers, comprise    */
00476 /*  the mesh.  A vertex simply represents a mesh vertex and its properties.  */
00477 /*  A triangle is a triangle.  A subsegment is a special data structure used */
00478 /*  to represent an impenetrable edge of the mesh (perhaps on the outer      */
00479 /*  boundary, on the boundary of a hole, or part of an internal boundary     */
00480 /*  separating two triangulated regions).  Subsegments represent boundaries, */
00481 /*  defined by the user, that triangles may not lie across.                  */
00482 /*                                                                           */
00483 /*  A triangle consists of a list of three vertices, a list of three         */
00484 /*  adjoining triangles, a list of three adjoining subsegments (when         */
00485 /*  segments exist), an arbitrary number of optional user-defined            */
00486 /*  floating-point attributes, and an optional area constraint.  The latter  */
00487 /*  is an upper bound on the permissible area of each triangle in a region,  */
00488 /*  used for mesh refinement.                                                */
00489 /*                                                                           */
00490 /*  For a triangle on a boundary of the mesh, some or all of the neighboring */
00491 /*  triangles may not be present.  For a triangle in the interior of the     */
00492 /*  mesh, often no neighboring subsegments are present.  Such absent         */
00493 /*  triangles and subsegments are never represented by NULL pointers; they   */
00494 /*  are represented by two special records:  `dummytri', the triangle that   */
00495 /*  fills "outer space", and `dummysub', the omnipresent subsegment.         */
00496 /*  `dummytri' and `dummysub' are used for several reasons; for instance,    */
00497 /*  they can be dereferenced and their contents examined without violating   */
00498 /*  protected memory.                                                        */
00499 /*                                                                           */
00500 /*  However, it is important to understand that a triangle includes other    */
00501 /*  information as well.  The pointers to adjoining vertices, triangles, and */
00502 /*  subsegments are ordered in a way that indicates their geometric relation */
00503 /*  to each other.  Furthermore, each of these pointers contains orientation */
00504 /*  information.  Each pointer to an adjoining triangle indicates which face */
00505 /*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
00506 /*  subsegment indicates which side of that subsegment is contacted, and how */
00507 /*  the subsegment is oriented relative to the triangle.                     */
00508 /*                                                                           */
00509 /*  The data structure representing a subsegment may be thought to be        */
00510 /*  abutting the edge of one or two triangle data structures:  either        */
00511 /*  sandwiched between two triangles, or resting against one triangle on an  */
00512 /*  exterior boundary or hole boundary.                                      */
00513 /*                                                                           */
00514 /*  A subsegment consists of a list of four vertices--the vertices of the    */
00515 /*  subsegment, and the vertices of the segment it is a part of--a list of   */
00516 /*  two adjoining subsegments, and a list of two adjoining triangles.  One   */
00517 /*  of the two adjoining triangles may not be present (though there should   */
00518 /*  always be one), and neighboring subsegments might not be present.        */
00519 /*  Subsegments also store a user-defined integer "boundary marker".         */
00520 /*  Typically, this integer is used to indicate what boundary conditions are */
00521 /*  to be applied at that location in a finite element simulation.           */
00522 /*                                                                           */
00523 /*  Like triangles, subsegments maintain information about the relative      */
00524 /*  orientation of neighboring objects.                                      */
00525 /*                                                                           */
00526 /*  Vertices are relatively simple.  A vertex is a list of floating-point    */
00527 /*  numbers, starting with the x, and y coordinates, followed by an          */
00528 /*  arbitrary number of optional user-defined floating-point attributes,     */
00529 /*  followed by an integer boundary marker.  During the segment insertion    */
00530 /*  phase, there is also a pointer from each vertex to a triangle that may   */
00531 /*  contain it.  Each pointer is not always correct, but when one is, it     */
00532 /*  speeds up segment insertion.  These pointers are assigned values once    */
00533 /*  at the beginning of the segment insertion phase, and are not used or     */
00534 /*  updated except during this phase.  Edge flipping during segment          */
00535 /*  insertion will render some of them incorrect.  Hence, don't rely upon    */
00536 /*  them for anything.                                                       */
00537 /*                                                                           */
00538 /*  Other than the exception mentioned above, vertices have no information   */
00539 /*  about what triangles, subfacets, or subsegments they are linked to.      */
00540 /*                                                                           */
00541 /*****************************************************************************/
00542 
00543 /*****************************************************************************/
00544 /*                                                                           */
00545 /*  Handles                                                                  */
00546 /*                                                                           */
00547 /*  The oriented triangle (`otri') and oriented subsegment (`osub') data     */
00548 /*  structures defined below do not themselves store any part of the mesh.   */
00549 /*  The mesh itself is made of `triangle's, `subseg's, and `vertex's.        */
00550 /*                                                                           */
00551 /*  Oriented triangles and oriented subsegments will usually be referred to  */
00552 /*  as "handles."  A handle is essentially a pointer into the mesh; it       */
00553 /*  allows you to "hold" one particular part of the mesh.  Handles are used  */
00554 /*  to specify the regions in which one is traversing and modifying the mesh.*/
00555 /*  A single `triangle' may be held by many handles, or none at all.  (The   */
00556 /*  latter case is not a memory leak, because the triangle is still          */
00557 /*  connected to other triangles in the mesh.)                               */
00558 /*                                                                           */
00559 /*  An `otri' is a handle that holds a triangle.  It holds a specific edge   */
00560 /*  of the triangle.  An `osub' is a handle that holds a subsegment.  It     */
00561 /*  holds either the left or right side of the subsegment.                   */
00562 /*                                                                           */
00563 /*  Navigation about the mesh is accomplished through a set of mesh          */
00564 /*  manipulation primitives, further below.  Many of these primitives take   */
00565 /*  a handle and produce a new handle that holds the mesh near the first     */
00566 /*  handle.  Other primitives take two handles and glue the corresponding    */
00567 /*  parts of the mesh together.  The orientation of the handles is           */
00568 /*  important.  For instance, when two triangles are glued together by the   */
00569 /*  bond() primitive, they are glued at the edges on which the handles lie.  */
00570 /*                                                                           */
00571 /*  Because vertices have no information about which triangles they are      */
00572 /*  attached to, I commonly represent a vertex by use of a handle whose      */
00573 /*  origin is the vertex.  A single handle can simultaneously represent a    */
00574 /*  triangle, an edge, and a vertex.                                         */
00575 /*                                                                           */
00576 /*****************************************************************************/
00577 
00578 /* The triangle data structure.  Each triangle contains three pointers to    */
00579 /*   adjoining triangles, plus three pointers to vertices, plus three        */
00580 /*   pointers to subsegments (declared below; these pointers are usually     */
00581 /*   `dummysub').  It may or may not also contain user-defined attributes    */
00582 /*   and/or a floating-point "area constraint."  It may also contain extra   */
00583 /*   pointers for nodes, when the user asks for high-order elements.         */
00584 /*   Because the size and structure of a `triangle' is not decided until     */
00585 /*   runtime, I haven't simply declared the type `triangle' as a struct.     */
00586 
00587 typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */
00588 
00589 /* An oriented triangle:  includes a pointer to a triangle and orientation.  */
00590 /*   The orientation denotes an edge of the triangle.  Hence, there are      */
00591 /*   three possible orientations.  By convention, each edge always points    */
00592 /*   counterclockwise about the corresponding triangle.                      */
00593 
00594 struct otri {
00595   triangle *tri;
00596   int orient;                                         /* Ranges from 0 to 2. */
00597 };
00598 
00599 /* The subsegment data structure.  Each subsegment contains two pointers to  */
00600 /*   adjoining subsegments, plus four pointers to vertices, plus two         */
00601 /*   pointers to adjoining triangles, plus one boundary marker, plus one     */
00602 /*   segment number.                                                         */
00603 
00604 typedef REAL **subseg;                  /* Really:  typedef subseg *subseg   */
00605 
00606 /* An oriented subsegment:  includes a pointer to a subsegment and an        */
00607 /*   orientation.  The orientation denotes a side of the edge.  Hence, there */
00608 /*   are two possible orientations.  By convention, the edge is always       */
00609 /*   directed so that the "side" denoted is the right side of the edge.      */
00610 
00611 struct osub {
00612   subseg *ss;
00613   int ssorient;                                       /* Ranges from 0 to 1. */
00614 };
00615 
00616 /* The vertex data structure.  Each vertex is actually an array of REALs.    */
00617 /*   The number of REALs is unknown until runtime.  An integer boundary      */
00618 /*   marker, and sometimes a pointer to a triangle, is appended after the    */
00619 /*   REALs.                                                                  */
00620 
00621 typedef REAL *vertex;
00622 
00623 /* A queue used to store encroached subsegments.  Each subsegment's vertices */
00624 /*   are stored so that we can check whether a subsegment is still the same. */
00625 
00626 struct badsubseg {
00627   subseg encsubseg;                             /* An encroached subsegment. */
00628   vertex subsegorg, subsegdest;                         /* Its two vertices. */
00629 };
00630 
00631 /* A queue used to store bad triangles.  The key is the square of the cosine */
00632 /*   of the smallest angle of the triangle.  Each triangle's vertices are    */
00633 /*   stored so that one can check whether a triangle is still the same.      */
00634 
00635 struct badtriang {
00636   triangle poortri;                       /* A skinny or too-large triangle. */
00637   REAL key;                             /* cos^2 of smallest (apical) angle. */
00638   vertex triangorg, triangdest, triangapex;           /* Its three vertices. */
00639   struct badtriang *nexttriang;             /* Pointer to next bad triangle. */
00640 };
00641 
00642 /* A stack of triangles flipped during the most recent vertex insertion.     */
00643 /*   The stack is used to undo the vertex insertion if the vertex encroaches */
00644 /*   upon a subsegment.                                                      */
00645 
00646 struct flipstacker {
00647   triangle flippedtri;                       /* A recently flipped triangle. */
00648   struct flipstacker* prevflip;               /* Previous flip in the stack. */
00649 };
00650 
00651 /* A node in a heap used to store events for the sweepline Delaunay          */
00652 /*   algorithm.  Nodes do not point directly to their parents or children in */
00653 /*   the heap.  Instead, each node knows its position in the heap, and can   */
00654 /*   look up its parent and children in a separate array.  The `eventptr'    */
00655 /*   points either to a `vertex' or to a triangle (in encoded format, so     */
00656 /*   that an orientation is included).  In the latter case, the origin of    */
00657 /*   the oriented triangle is the apex of a "circle event" of the sweepline  */
00658 /*   algorithm.  To distinguish site events from circle events, all circle   */
00659 /*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
00660 
00661 struct event {
00662   REAL xkey, ykey;                              /* Coordinates of the event. */
00663   VOID *eventptr;      /* Can be a vertex or the location of a circle event. */
00664   int heapposition;              /* Marks this event's position in the heap. */
00665 };
00666 
00667 /* A node in the splay tree.  Each node holds an oriented ghost triangle     */
00668 /*   that represents a boundary edge of the growing triangulation.  When a   */
00669 /*   circle event covers two boundary edges with a triangle, so that they    */
00670 /*   are no longer boundary edges, those edges are not immediately deleted   */
00671 /*   from the tree; rather, they are lazily deleted when they are next       */
00672 /*   encountered.  (Since only a random sample of boundary edges are kept    */
00673 /*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
00674 /*   that a triangle is still the same as when it entered the splay tree; if */
00675 /*   it has been rotated (due to a circle event), it no longer represents a  */
00676 /*   boundary edge and should be deleted.                                    */
00677 
00678 struct splaynode {
00679   struct otri keyedge;                     /* Lprev of an edge on the front. */
00680   vertex keydest;           /* Used to verify that splay node is still live. */
00681   struct splaynode *lchild, *rchild;              /* Children in splay tree. */
00682 };
00683 
00684 /* A type used to allocate memory.  firstblock is the first block of items.  */
00685 /*   nowblock is the block from which items are currently being allocated.   */
00686 /*   nextitem points to the next slab of free memory for an item.            */
00687 /*   deaditemstack is the head of a linked list (stack) of deallocated items */
00688 /*   that can be recycled.  unallocateditems is the number of items that     */
00689 /*   remain to be allocated from nowblock.                                   */
00690 /*                                                                           */
00691 /* Traversal is the process of walking through the entire list of items, and */
00692 /*   is separate from allocation.  Note that a traversal will visit items on */
00693 /*   the "deaditemstack" stack as well as live items.  pathblock points to   */
00694 /*   the block currently being traversed.  pathitem points to the next item  */
00695 /*   to be traversed.  pathitemsleft is the number of items that remain to   */
00696 /*   be traversed in pathblock.                                              */
00697 /*                                                                           */
00698 /* alignbytes determines how new records should be aligned in memory.        */
00699 /*   itembytes is the length of a record in bytes (after rounding up).       */
00700 /*   itemsperblock is the number of items allocated at once in a single      */
00701 /*   block.  itemsfirstblock is the number of items in the first block,      */
00702 /*   which can vary from the others.  items is the number of currently       */
00703 /*   allocated items.  maxitems is the maximum number of items that have     */
00704 /*   been allocated at once; it is the current number of items plus the      */
00705 /*   number of records kept on deaditemstack.                                */
00706 
00707 struct memorypool {
00708   VOID **firstblock, **nowblock;
00709   VOID *nextitem;
00710   VOID *deaditemstack;
00711   VOID **pathblock;
00712   VOID* pathitem;
00713   int alignbytes;
00714   int itembytes;
00715   int itemsperblock;
00716   int itemsfirstblock;
00717   long items, maxitems;
00718   int unallocateditems;
00719   int pathitemsleft;
00720 };
00721 
00722 
00723 /* Global constants.                                                         */
00724 
00725 REAL splitter;       /* Used to split REAL factors for exact multiplication. */
00726 REAL epsilon;                             /* Floating-point machine epsilon. */
00727 REAL resulterrbound;
00728 REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
00729 REAL iccerrboundA, iccerrboundB, iccerrboundC;
00730 REAL o3derrboundA, o3derrboundB, o3derrboundC;
00731 
00732 /* Random number seed is not constant, but I've made it global anyway.       */
00733 
00734 unsigned long randomseed;                     /* Current random number seed. */
00735 
00736 
00737 /* Mesh data structure.  Triangle operates on only one mesh, but the mesh    */
00738 /*   structure is used (instead of global variables) to allow reentrancy.    */
00739 
00740 struct mesh {
00741 
00742 /* Variables used to allocate memory for triangles, subsegments, vertices,   */
00743 /*   viri (triangles being eaten), encroached segments, bad (skinny or too   */
00744 /*   large) triangles, and splay tree nodes.                                 */
00745 
00746   struct memorypool triangles;
00747   struct memorypool subsegs;
00748   struct memorypool vertices;
00749   struct memorypool viri;
00750   struct memorypool badsubsegs;
00751   struct memorypool badtriangles;
00752   struct memorypool flipstackers;
00753   struct memorypool splaynodes;
00754 
00755 /* Variables that maintain the bad triangle queues.  The queues are          */
00756 /*   ordered from 4095 (highest priority) to 0 (lowest priority).            */
00757 
00758   struct badtriang *queuefront[4096];
00759   struct badtriang *queuetail[4096];
00760   int nextnonemptyq[4096];
00761   int firstnonemptyq;
00762 
00763 /* Variable that maintains the stack of recently flipped triangles.          */
00764 
00765   struct flipstacker *lastflip;
00766 
00767 /* Other variables. */
00768 
00769   REAL xmin, xmax, ymin, ymax;                            /* x and y bounds. */
00770   REAL xminextreme;      /* Nonexistent x value used as a flag in sweepline. */
00771   int invertices;                               /* Number of input vertices. */
00772   int inelements;                              /* Number of input triangles. */
00773   int insegments;                               /* Number of input segments. */
00774   int holes;                                       /* Number of input holes. */
00775   int regions;                                   /* Number of input regions. */
00776   int undeads;    /* Number of input vertices that don't appear in the mesh. */
00777   long edges;                                     /* Number of output edges. */
00778   int mesh_dim;                                /* Dimension (ought to be 2). */
00779   int nextras;                           /* Number of attributes per vertex. */
00780   int eextras;                         /* Number of attributes per triangle. */
00781   long hullsize;                          /* Number of edges in convex hull. */
00782   int steinerleft;                 /* Number of Steiner points not yet used. */
00783   int vertexmarkindex;         /* Index to find boundary marker of a vertex. */
00784   int vertex2triindex;     /* Index to find a triangle adjacent to a vertex. */
00785   int highorderindex;  /* Index to find extra nodes for high-order elements. */
00786   int elemattribindex;            /* Index to find attributes of a triangle. */
00787   int areaboundindex;             /* Index to find area bound of a triangle. */
00788   int checksegments;         /* Are there segments in the triangulation yet? */
00789   int checkquality;                  /* Has quality triangulation begun yet? */
00790   int readnodefile;                           /* Has a .node file been read? */
00791   long samples;              /* Number of random samples for point location. */
00792 
00793   long incirclecount;                 /* Number of incircle tests performed. */
00794   long counterclockcount;     /* Number of counterclockwise tests performed. */
00795   long orient3dcount;           /* Number of 3D orientation tests performed. */
00796   long hyperbolacount;      /* Number of right-of-hyperbola tests performed. */
00797   long circumcentercount;  /* Number of circumcenter calculations performed. */
00798   long circletopcount;       /* Number of circle top calculations performed. */
00799 
00800 /* Triangular bounding box vertices.                                         */
00801 
00802   vertex infvertex1, infvertex2, infvertex3;
00803 
00804 /* Pointer to the `triangle' that occupies all of "outer space."             */
00805 
00806   triangle *dummytri;
00807   triangle *dummytribase;    /* Keep base address so we can free() it later. */
00808 
00809 /* Pointer to the omnipresent subsegment.  Referenced by any triangle or     */
00810 /*   subsegment that isn't really connected to a subsegment at that          */
00811 /*   location.                                                               */
00812 
00813   subseg *dummysub;
00814   subseg *dummysubbase;      /* Keep base address so we can free() it later. */
00815 
00816 /* Pointer to a recently visited triangle.  Improves point location if       */
00817 /*   proximate vertices are inserted sequentially.                           */
00818 
00819   struct otri recenttri;
00820 
00821 };                                                  /* End of `struct mesh'. */
00822 
00823 
00824 /* Data structure for command line switches and file names.  This structure  */
00825 /*   is used (instead of global variables) to allow reentrancy.              */
00826 
00827 struct behavior {
00828 
00829 /* Switches for the triangulator.                                            */
00830 /*   poly: -p switch.  refine: -r switch.                                    */
00831 /*   quality: -q switch.                                                     */
00832 /*     minangle: minimum angle bound, specified after -q switch.             */
00833 /*     goodangle: cosine squared of minangle.                                */
00834 /*     offconstant: constant used to place off-center Steiner points.        */
00835 /*   vararea: -a switch without number.                                      */
00836 /*   fixedarea: -a switch with number.                                       */
00837 /*     maxarea: maximum area bound, specified after -a switch.               */
00838 /*   usertest: -u switch.                                                    */
00839 /*   regionattrib: -A switch.  convex: -c switch.                            */
00840 /*   weighted: 1 for -w switch, 2 for -W switch.  jettison: -j switch        */
00841 /*   firstnumber: inverse of -z switch.  All items are numbered starting     */
00842 /*     from `firstnumber'.                                                   */
00843 /*   edgesout: -e switch.  voronoi: -v switch.                               */
00844 /*   neighbors: -n switch.  geomview: -g switch.                             */
00845 /*   nobound: -B switch.  nopolywritten: -P switch.                          */
00846 /*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
00847 /*   noiterationnum: -I switch.  noholes: -O switch.                         */
00848 /*   noexact: -X switch.                                                     */
00849 /*   order: element order, specified after -o switch.                        */
00850 /*   nobisect: count of how often -Y switch is selected.                     */
00851 /*   steiner: maximum number of Steiner points, specified after -S switch.   */
00852 /*   incremental: -i switch.  sweepline: -F switch.                          */
00853 /*   dwyer: inverse of -l switch.                                            */
00854 /*   splitseg: -s switch.                                                    */
00855 /*   conformdel: -D switch.  docheck: -C switch.                             */
00856 /*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
00857 /*   usesegments: -p, -r, -q, or -c switch; determines whether segments are  */
00858 /*     used at all.                                                          */
00859 /*                                                                           */
00860 /* Read the instructions to find out the meaning of these switches.          */
00861 
00862   int poly, refine, quality, vararea, fixedarea, usertest;
00863   int regionattrib, convex, weighted, jettison;
00864   int firstnumber;
00865   int edgesout, voronoi, neighbors, geomview;
00866   int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
00867   int noholes, noexact, conformdel;
00868   int incremental, sweepline, dwyer;
00869   int splitseg;
00870   int docheck;
00871   int quiet, verbose;
00872   int usesegments;
00873   int order;
00874   int nobisect;
00875   int steiner;
00876   REAL minangle, goodangle, offconstant;
00877   REAL maxarea;
00878 
00879 /* Variables for file names.                                                 */
00880 
00881 #ifndef TRILIBRARY
00882   char innodefilename[FILENAMESIZE];
00883   char inelefilename[FILENAMESIZE];
00884   char inpolyfilename[FILENAMESIZE];
00885   char areafilename[FILENAMESIZE];
00886   char outnodefilename[FILENAMESIZE];
00887   char outelefilename[FILENAMESIZE];
00888   char outpolyfilename[FILENAMESIZE];
00889   char edgefilename[FILENAMESIZE];
00890   char vnodefilename[FILENAMESIZE];
00891   char vedgefilename[FILENAMESIZE];
00892   char neighborfilename[FILENAMESIZE];
00893   char offfilename[FILENAMESIZE];
00894 #endif /* not TRILIBRARY */
00895 
00896 };                                              /* End of `struct behavior'. */
00897 
00898 
00899 /*****************************************************************************/
00900 /*                                                                           */
00901 /*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
00902 /*  other triangles, with orientations.  Each pointer points not to the      */
00903 /*  first byte of a triangle, but to one of the first three bytes of a       */
00904 /*  triangle.  It is necessary to extract both the triangle itself and the   */
00905 /*  orientation.  To save memory, I keep both pieces of information in one   */
00906 /*  pointer.  To make this possible, I assume that all triangles are aligned */
00907 /*  to four-byte boundaries.  The decode() routine below decodes a pointer,  */
00908 /*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
00909 /*  beginning of a triangle.  The encode() routine compresses a pointer to a */
00910 /*  triangle and an orientation into a single pointer.  My assumptions that  */
00911 /*  triangles are four-byte-aligned and that the `unsigned long' type is     */
00912 /*  long enough to hold a pointer are two of the few kludges in this program.*/
00913 /*                                                                           */
00914 /*  Subsegments are manipulated similarly.  A pointer to a subsegment        */
00915 /*  carries both an address and an orientation in the range 0 to 1.          */
00916 /*                                                                           */
00917 /*  The other primitives take an oriented triangle or oriented subsegment,   */
00918 /*  and return an oriented triangle or oriented subsegment or vertex; or     */
00919 /*  they change the connections in the data structure.                       */
00920 /*                                                                           */
00921 /*  Below, triangles and subsegments are denoted by their vertices.  The     */
00922 /*  triangle abc has origin (org) a, destination (dest) b, and apex (apex)   */
00923 /*  c.  These vertices occur in counterclockwise order about the triangle.   */
00924 /*  The handle abc may simultaneously denote vertex a, edge ab, and triangle */
00925 /*  abc.                                                                     */
00926 /*                                                                           */
00927 /*  Similarly, the subsegment ab has origin (sorg) a and destination (sdest) */
00928 /*  b.  If ab is thought to be directed upward (with b directly above a),    */
00929 /*  then the handle ab is thought to grasp the right side of ab, and may     */
00930 /*  simultaneously denote vertex a and edge ab.                              */
00931 /*                                                                           */
00932 /*  An asterisk (*) denotes a vertex whose identity is unknown.              */
00933 /*                                                                           */
00934 /*  Given this notation, a partial list of mesh manipulation primitives      */
00935 /*  follows.                                                                 */
00936 /*                                                                           */
00937 /*                                                                           */
00938 /*  For triangles:                                                           */
00939 /*                                                                           */
00940 /*  sym:  Find the abutting triangle; same edge.                             */
00941 /*  sym(abc) -> ba*                                                          */
00942 /*                                                                           */
00943 /*  lnext:  Find the next edge (counterclockwise) of a triangle.             */
00944 /*  lnext(abc) -> bca                                                        */
00945 /*                                                                           */
00946 /*  lprev:  Find the previous edge (clockwise) of a triangle.                */
00947 /*  lprev(abc) -> cab                                                        */
00948 /*                                                                           */
00949 /*  onext:  Find the next edge counterclockwise with the same origin.        */
00950 /*  onext(abc) -> ac*                                                        */
00951 /*                                                                           */
00952 /*  oprev:  Find the next edge clockwise with the same origin.               */
00953 /*  oprev(abc) -> a*b                                                        */
00954 /*                                                                           */
00955 /*  dnext:  Find the next edge counterclockwise with the same destination.   */
00956 /*  dnext(abc) -> *ba                                                        */
00957 /*                                                                           */
00958 /*  dprev:  Find the next edge clockwise with the same destination.          */
00959 /*  dprev(abc) -> cb*                                                        */
00960 /*                                                                           */
00961 /*  rnext:  Find the next edge (counterclockwise) of the adjacent triangle.  */
00962 /*  rnext(abc) -> *a*                                                        */
00963 /*                                                                           */
00964 /*  rprev:  Find the previous edge (clockwise) of the adjacent triangle.     */
00965 /*  rprev(abc) -> b**                                                        */
00966 /*                                                                           */
00967 /*  org:  Origin          dest:  Destination          apex:  Apex            */
00968 /*  org(abc) -> a         dest(abc) -> b              apex(abc) -> c         */
00969 /*                                                                           */
00970 /*  bond:  Bond two triangles together at the resepective handles.           */
00971 /*  bond(abc, bad)                                                           */
00972 /*                                                                           */
00973 /*                                                                           */
00974 /*  For subsegments:                                                         */
00975 /*                                                                           */
00976 /*  ssym:  Reverse the orientation of a subsegment.                          */
00977 /*  ssym(ab) -> ba                                                           */
00978 /*                                                                           */
00979 /*  spivot:  Find adjoining subsegment with the same origin.                 */
00980 /*  spivot(ab) -> a*                                                         */
00981 /*                                                                           */
00982 /*  snext:  Find next subsegment in sequence.                                */
00983 /*  snext(ab) -> b*                                                          */
00984 /*                                                                           */
00985 /*  sorg:  Origin                      sdest:  Destination                   */
00986 /*  sorg(ab) -> a                      sdest(ab) -> b                        */
00987 /*                                                                           */
00988 /*  sbond:  Bond two subsegments together at the respective origins.         */
00989 /*  sbond(ab, ac)                                                            */
00990 /*                                                                           */
00991 /*                                                                           */
00992 /*  For interacting tetrahedra and subfacets:                                */
00993 /*                                                                           */
00994 /*  tspivot:  Find a subsegment abutting a triangle.                         */
00995 /*  tspivot(abc) -> ba                                                       */
00996 /*                                                                           */
00997 /*  stpivot:  Find a triangle abutting a subsegment.                         */
00998 /*  stpivot(ab) -> ba*                                                       */
00999 /*                                                                           */
01000 /*  tsbond:  Bond a triangle to a subsegment.                                */
01001 /*  tsbond(abc, ba)                                                          */
01002 /*                                                                           */
01003 /*****************************************************************************/
01004 
01005 /********* Mesh manipulation primitives begin here                   *********/
01009 /* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
01010 
01011 int plus1mod3[3] = {1, 2, 0};
01012 int minus1mod3[3] = {2, 0, 1};
01013 
01014 /********* Primitives for triangles                                  *********/
01015 /*                                                                           */
01016 /*                                                                           */
01017 
01018 /* decode() converts a pointer to an oriented triangle.  The orientation is  */
01019 /*   extracted from the two least significant bits of the pointer.           */
01020 
01021 #define decode(ptr, otri)                                                     \
01022   (otri).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);         \
01023   (otri).tri = (triangle *)                                                   \
01024                   ((unsigned long) (ptr) ^ (unsigned long) (otri).orient)
01025 
01026 /* encode() compresses an oriented triangle into a single pointer.  It       */
01027 /*   relies on the assumption that all triangles are aligned to four-byte    */
01028 /*   boundaries, so the two least significant bits of (otri).tri are zero.   */
01029 
01030 #define encode(otri)                                                          \
01031   (triangle) ((unsigned long) (otri).tri | (unsigned long) (otri).orient)
01032 
01033 /* The following handle manipulation primitives are all described by Guibas  */
01034 /*   and Stolfi.  However, Guibas and Stolfi use an edge-based data          */
01035 /*   structure, whereas I use a triangle-based data structure.               */
01036 
01037 /* sym() finds the abutting triangle, on the same edge.  Note that the edge  */
01038 /*   direction is necessarily reversed, because the handle specified by an   */
01039 /*   oriented triangle is directed counterclockwise around the triangle.     */
01040 
01041 #define sym(otri1, otri2)                                                     \
01042   ptr = (otri1).tri[(otri1).orient];                                          \
01043   decode(ptr, otri2);
01044 
01045 #define symself(otri)                                                         \
01046   ptr = (otri).tri[(otri).orient];                                            \
01047   decode(ptr, otri);
01048 
01049 /* lnext() finds the next edge (counterclockwise) of a triangle.             */
01050 
01051 #define lnext(otri1, otri2)                                                   \
01052   (otri2).tri = (otri1).tri;                                                  \
01053   (otri2).orient = plus1mod3[(otri1).orient]
01054 
01055 #define lnextself(otri)                                                       \
01056   (otri).orient = plus1mod3[(otri).orient]
01057 
01058 /* lprev() finds the previous edge (clockwise) of a triangle.                */
01059 
01060 #define lprev(otri1, otri2)                                                   \
01061   (otri2).tri = (otri1).tri;                                                  \
01062   (otri2).orient = minus1mod3[(otri1).orient]
01063 
01064 #define lprevself(otri)                                                       \
01065   (otri).orient = minus1mod3[(otri).orient]
01066 
01067 /* onext() spins counterclockwise around a vertex; that is, it finds the     */
01068 /*   next edge with the same origin in the counterclockwise direction.  This */
01069 /*   edge is part of a different triangle.                                   */
01070 
01071 #define onext(otri1, otri2)                                                   \
01072   lprev(otri1, otri2);                                                        \
01073   symself(otri2);
01074 
01075 #define onextself(otri)                                                       \
01076   lprevself(otri);                                                            \
01077   symself(otri);
01078 
01079 /* oprev() spins clockwise around a vertex; that is, it finds the next edge  */
01080 /*   with the same origin in the clockwise direction.  This edge is part of  */
01081 /*   a different triangle.                                                   */
01082 
01083 #define oprev(otri1, otri2)                                                   \
01084   sym(otri1, otri2);                                                          \
01085   lnextself(otri2);
01086 
01087 #define oprevself(otri)                                                       \
01088   symself(otri);                                                              \
01089   lnextself(otri);
01090 
01091 /* dnext() spins counterclockwise around a vertex; that is, it finds the     */
01092 /*   next edge with the same destination in the counterclockwise direction.  */
01093 /*   This edge is part of a different triangle.                              */
01094 
01095 #define dnext(otri1, otri2)                                                   \
01096   sym(otri1, otri2);                                                          \
01097   lprevself(otri2);
01098 
01099 #define dnextself(otri)                                                       \
01100   symself(otri);                                                              \
01101   lprevself(otri);
01102 
01103 /* dprev() spins clockwise around a vertex; that is, it finds the next edge  */
01104 /*   with the same destination in the clockwise direction.  This edge is     */
01105 /*   part of a different triangle.                                           */
01106 
01107 #define dprev(otri1, otri2)                                                   \
01108   lnext(otri1, otri2);                                                        \
01109   symself(otri2);
01110 
01111 #define dprevself(otri)                                                       \
01112   lnextself(otri);                                                            \
01113   symself(otri);
01114 
01115 /* rnext() moves one edge counterclockwise about the adjacent triangle.      */
01116 /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
01117 /*   changing triangles twice.)                                              */
01118 
01119 #define rnext(otri1, otri2)                                                   \
01120   sym(otri1, otri2);                                                          \
01121   lnextself(otri2);                                                           \
01122   symself(otri2);
01123 
01124 #define rnextself(otri)                                                       \
01125   symself(otri);                                                              \
01126   lnextself(otri);                                                            \
01127   symself(otri);
01128 
01129 /* rprev() moves one edge clockwise about the adjacent triangle.             */
01130 /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
01131 /*   changing triangles twice.)                                              */
01132 
01133 #define rprev(otri1, otri2)                                                   \
01134   sym(otri1, otri2);                                                          \
01135   lprevself(otri2);                                                           \
01136   symself(otri2);
01137 
01138 #define rprevself(otri)                                                       \
01139   symself(otri);                                                              \
01140   lprevself(otri);                                                            \
01141   symself(otri);
01142 
01143 /* These primitives determine or set the origin, destination, or apex of a   */
01144 /* triangle.                                                                 */
01145 
01146 #define org(otri, vertexptr)                                                  \
01147   vertexptr = (vertex) (otri).tri[plus1mod3[(otri).orient] + 3]
01148 
01149 #define dest(otri, vertexptr)                                                 \
01150   vertexptr = (vertex) (otri).tri[minus1mod3[(otri).orient] + 3]
01151 
01152 #define apex(otri, vertexptr)                                                 \
01153   vertexptr = (vertex) (otri).tri[(otri).orient + 3]
01154 
01155 #define setorg(otri, vertexptr)                                               \
01156   (otri).tri[plus1mod3[(otri).orient] + 3] = (triangle) vertexptr
01157 
01158 #define setdest(otri, vertexptr)                                              \
01159   (otri).tri[minus1mod3[(otri).orient] + 3] = (triangle) vertexptr
01160 
01161 #define setapex(otri, vertexptr)                                              \
01162   (otri).tri[(otri).orient + 3] = (triangle) vertexptr
01163 
01164 /* Bond two triangles together.                                              */
01165 
01166 #define bond(otri1, otri2)                                                    \
01167   (otri1).tri[(otri1).orient] = encode(otri2);                                \
01168   (otri2).tri[(otri2).orient] = encode(otri1)
01169 
01170 /* Dissolve a bond (from one side).  Note that the other triangle will still */
01171 /*   think it's connected to this triangle.  Usually, however, the other     */
01172 /*   triangle is being deleted entirely, or bonded to another triangle, so   */
01173 /*   it doesn't matter.                                                      */
01174 
01175 #define dissolve(otri)                                                        \
01176   (otri).tri[(otri).orient] = (triangle) m->dummytri
01177 
01178 /* Copy an oriented triangle.                                                */
01179 
01180 #define otricopy(otri1, otri2)                                                \
01181   (otri2).tri = (otri1).tri;                                                  \
01182   (otri2).orient = (otri1).orient
01183 
01184 /* Test for equality of oriented triangles.                                  */
01185 
01186 #define otriequal(otri1, otri2)                                               \
01187   (((otri1).tri == (otri2).tri) &&                                            \
01188    ((otri1).orient == (otri2).orient))
01189 
01190 /* Primitives to infect or cure a triangle with the virus.  These rely on    */
01191 /*   the assumption that all subsegments are aligned to four-byte boundaries.*/
01192 
01193 #define infect(otri)                                                          \
01194   (otri).tri[6] = (triangle)                                                  \
01195                     ((unsigned long) (otri).tri[6] | (unsigned long) 2l)
01196 
01197 #define uninfect(otri)                                                        \
01198   (otri).tri[6] = (triangle)                                                  \
01199                     ((unsigned long) (otri).tri[6] & ~ (unsigned long) 2l)
01200 
01201 /* Test a triangle for viral infection.                                      */
01202 
01203 #define infected(otri)                                                        \
01204   (((unsigned long) (otri).tri[6] & (unsigned long) 2l) != 0l)
01205 
01206 /* Check or set a triangle's attributes.                                     */
01207 
01208 #define elemattribute(otri, attnum)                                           \
01209   ((REAL *) (otri).tri)[m->elemattribindex + (attnum)]
01210 
01211 #define setelemattribute(otri, attnum, value)                                 \
01212   ((REAL *) (otri).tri)[m->elemattribindex + (attnum)] = value
01213 
01214 /* Check or set a triangle's maximum area bound.                             */
01215 
01216 #define areabound(otri)  ((REAL *) (otri).tri)[m->areaboundindex]
01217 
01218 #define setareabound(otri, value)                                             \
01219   ((REAL *) (otri).tri)[m->areaboundindex] = value
01220 
01221 /* Check or set a triangle's deallocation.  Its second pointer is set to     */
01222 /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
01223 /*   for the stack of dead items.)  Its fourth pointer (its first vertex)    */
01224 /*   is set to NULL in case a `badtriang' structure points to it.            */
01225 
01226 #define deadtri(tria)  ((tria)[1] == (triangle) NULL)
01227 
01228 #define killtri(tria)                                                         \
01229   (tria)[1] = (triangle) NULL;                                                \
01230   (tria)[3] = (triangle) NULL
01231 
01232 /********* Primitives for subsegments                                *********/
01233 /*                                                                           */
01234 /*                                                                           */
01235 
01236 /* sdecode() converts a pointer to an oriented subsegment.  The orientation  */
01237 /*   is extracted from the least significant bit of the pointer.  The two    */
01238 /*   least significant bits (one for orientation, one for viral infection)   */
01239 /*   are masked out to produce the real pointer.                             */
01240 
01241 #define sdecode(sptr, osub)                                                   \
01242   (osub).ssorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \
01243   (osub).ss = (subseg *)                                                      \
01244               ((unsigned long) (sptr) & ~ (unsigned long) 3l)
01245 
01246 /* sencode() compresses an oriented subsegment into a single pointer.  It    */
01247 /*   relies on the assumption that all subsegments are aligned to two-byte   */
01248 /*   boundaries, so the least significant bit of (osub).ss is zero.          */
01249 
01250 #define sencode(osub)                                                         \
01251   (subseg) ((unsigned long) (osub).ss | (unsigned long) (osub).ssorient)
01252 
01253 /* ssym() toggles the orientation of a subsegment.                           */
01254 
01255 #define ssym(osub1, osub2)                                                    \
01256   (osub2).ss = (osub1).ss;                                                    \
01257   (osub2).ssorient = 1 - (osub1).ssorient
01258 
01259 #define ssymself(osub)                                                        \
01260   (osub).ssorient = 1 - (osub).ssorient
01261 
01262 /* spivot() finds the other subsegment (from the same segment) that shares   */
01263 /*   the same origin.                                                        */
01264 
01265 #define spivot(osub1, osub2)                                                  \
01266   sptr = (osub1).ss[(osub1).ssorient];                                        \
01267   sdecode(sptr, osub2)
01268 
01269 #define spivotself(osub)                                                      \
01270   sptr = (osub).ss[(osub).ssorient];                                          \
01271   sdecode(sptr, osub)
01272 
01273 /* snext() finds the next subsegment (from the same segment) in sequence;    */
01274 /*   one whose origin is the input subsegment's destination.                 */
01275 
01276 #define snext(osub1, osub2)                                                   \
01277   sptr = (osub1).ss[1 - (osub1).ssorient];                                    \
01278   sdecode(sptr, osub2)
01279 
01280 #define snextself(osub)                                                       \
01281   sptr = (osub).ss[1 - (osub).ssorient];                                      \
01282   sdecode(sptr, osub)
01283 
01284 /* These primitives determine or set the origin or destination of a          */
01285 /*   subsegment or the segment that includes it.                             */
01286 
01287 #define sorg(osub, vertexptr)                                                 \
01288   vertexptr = (vertex) (osub).ss[2 + (osub).ssorient]
01289 
01290 #define sdest(osub, vertexptr)                                                \
01291   vertexptr = (vertex) (osub).ss[3 - (osub).ssorient]
01292 
01293 #define setsorg(osub, vertexptr)                                              \
01294   (osub).ss[2 + (osub).ssorient] = (subseg) vertexptr
01295 
01296 #define setsdest(osub, vertexptr)                                             \
01297   (osub).ss[3 - (osub).ssorient] = (subseg) vertexptr
01298 
01299 #define segorg(osub, vertexptr)                                               \
01300   vertexptr = (vertex) (osub).ss[4 + (osub).ssorient]
01301 
01302 #define segdest(osub, vertexptr)                                              \
01303   vertexptr = (vertex) (osub).ss[5 - (osub).ssorient]
01304 
01305 #define setsegorg(osub, vertexptr)                                            \
01306   (osub).ss[4 + (osub).ssorient] = (subseg) vertexptr
01307 
01308 #define setsegdest(osub, vertexptr)                                           \
01309   (osub).ss[5 - (osub).ssorient] = (subseg) vertexptr
01310 
01311 /* These primitives read or set a boundary marker.  Boundary markers are     */
01312 /*   used to hold user-defined tags for setting boundary conditions in       */
01313 /*   finite element solvers.                                                 */
01314 
01315 #define mark(osub)  (* (int *) ((osub).ss + 8))
01316 
01317 #define setmark(osub, value)                                                  \
01318   * (int *) ((osub).ss + 8) = value
01319 
01320 /* Bond two subsegments together.                                            */
01321 
01322 #define sbond(osub1, osub2)                                                   \
01323   (osub1).ss[(osub1).ssorient] = sencode(osub2);                              \
01324   (osub2).ss[(osub2).ssorient] = sencode(osub1)
01325 
01326 /* Dissolve a subsegment bond (from one side).  Note that the other          */
01327 /*   subsegment will still think it's connected to this subsegment.          */
01328 
01329 #define sdissolve(osub)                                                       \
01330   (osub).ss[(osub).ssorient] = (subseg) m->dummysub
01331 
01332 /* Copy a subsegment.                                                        */
01333 
01334 #define subsegcopy(osub1, osub2)                                              \
01335   (osub2).ss = (osub1).ss;                                                    \
01336   (osub2).ssorient = (osub1).ssorient
01337 
01338 /* Test for equality of subsegments.                                         */
01339 
01340 #define subsegequal(osub1, osub2)                                             \
01341   (((osub1).ss == (osub2).ss) &&                                              \
01342    ((osub1).ssorient == (osub2).ssorient))
01343 
01344 /* Check or set a subsegment's deallocation.  Its second pointer is set to   */
01345 /*   NULL to indicate that it is not allocated.  (Its first pointer is used  */
01346 /*   for the stack of dead items.)  Its third pointer (its first vertex)     */
01347 /*   is set to NULL in case a `badsubseg' structure points to it.            */
01348 
01349 #define deadsubseg(sub)  ((sub)[1] == (subseg) NULL)
01350 
01351 #define killsubseg(sub)                                                       \
01352   (sub)[1] = (subseg) NULL;                                                   \
01353   (sub)[2] = (subseg) NULL
01354 
01355 /********* Primitives for interacting triangles and subsegments      *********/
01356 /*                                                                           */
01357 /*                                                                           */
01358 
01359 /* tspivot() finds a subsegment abutting a triangle.                         */
01360 
01361 #define tspivot(otri, osub)                                                   \
01362   sptr = (subseg) (otri).tri[6 + (otri).orient];                              \
01363   sdecode(sptr, osub)
01364 
01365 /* stpivot() finds a triangle abutting a subsegment.  It requires that the   */
01366 /*   variable `ptr' of type `triangle' be defined.                           */
01367 
01368 #define stpivot(osub, otri)                                                   \
01369   ptr = (triangle) (osub).ss[6 + (osub).ssorient];                            \
01370   decode(ptr, otri)
01371 
01372 /* Bond a triangle to a subsegment.                                          */
01373 
01374 #define tsbond(otri, osub)                                                    \
01375   (otri).tri[6 + (otri).orient] = (triangle) sencode(osub);                   \
01376   (osub).ss[6 + (osub).ssorient] = (subseg) encode(otri)
01377 
01378 /* Dissolve a bond (from the triangle side).                                 */
01379 
01380 #define tsdissolve(otri)                                                      \
01381   (otri).tri[6 + (otri).orient] = (triangle) m->dummysub
01382 
01383 /* Dissolve a bond (from the subsegment side).                               */
01384 
01385 #define stdissolve(osub)                                                      \
01386   (osub).ss[6 + (osub).ssorient] = (subseg) m->dummytri
01387 
01388 /********* Primitives for vertices                                   *********/
01389 /*                                                                           */
01390 /*                                                                           */
01391 
01392 #define vertexmark(vx)  ((int *) (vx))[m->vertexmarkindex]
01393 
01394 #define setvertexmark(vx, value)                                              \
01395   ((int *) (vx))[m->vertexmarkindex] = value
01396 
01397 #define vertextype(vx)  ((int *) (vx))[m->vertexmarkindex + 1]
01398 
01399 #define setvertextype(vx, value)                                              \
01400   ((int *) (vx))[m->vertexmarkindex + 1] = value
01401 
01402 #define vertex2tri(vx)  ((triangle *) (vx))[m->vertex2triindex]
01403 
01404 #define setvertex2tri(vx, value)                                              \
01405   ((triangle *) (vx))[m->vertex2triindex] = value
01406 
01409 /********* Mesh manipulation primitives end here                     *********/
01410 
01411 /********* User-defined triangle evaluation routine begins here      *********/
01415 /*****************************************************************************/
01416 /*                                                                           */
01417 /*  triunsuitable()   Determine if a triangle is unsuitable, and thus must   */
01418 /*                    be further refined.                                    */
01419 /*                                                                           */
01420 /*  You may write your own procedure that decides whether or not a selected  */
01421 /*  triangle is too big (and needs to be refined).  There are two ways to do */
01422 /*  this.                                                                    */
01423 /*                                                                           */
01424 /*  (1)  Modify the procedure `triunsuitable' below, then recompile          */
01425 /*  Triangle.                                                                */
01426 /*                                                                           */
01427 /*  (2)  Define the symbol EXTERNAL_TEST (either by adding the definition    */
01428 /*  to this file, or by using the appropriate compiler switch).  This way,   */
01429 /*  you can compile triangle.c separately from your test.  Write your own    */
01430 /*  `triunsuitable' procedure in a separate C file (using the same prototype */
01431 /*  as below).  Compile it and link the object code with triangle.o.         */
01432 /*                                                                           */
01433 /*  This procedure returns 1 if the triangle is too large and should be      */
01434 /*  refined; 0 otherwise.                                                    */
01435 /*                                                                           */
01436 /*****************************************************************************/
01437 
01438 #ifdef EXTERNAL_TEST
01439 
01440 int triunsuitable();
01441 
01442 #else /* not EXTERNAL_TEST */
01443 
01444 #ifdef ANSI_DECLARATORS
01445 int triunsuitable(vertex triorg, vertex tridest, vertex triapex, REAL area)
01446 #else /* not ANSI_DECLARATORS */
01447 int triunsuitable(triorg, tridest, triapex, area)
01448 vertex triorg;                              /* The triangle's origin vertex. */
01449 vertex tridest;                        /* The triangle's destination vertex. */
01450 vertex triapex;                               /* The triangle's apex vertex. */
01451 REAL area;                                      /* The area of the triangle. */
01452 #endif /* not ANSI_DECLARATORS */
01453 
01454 {
01455   REAL dxoa, dxda, dxod;
01456   REAL dyoa, dyda, dyod;
01457   REAL oalen, dalen, odlen;
01458   REAL maxlen;
01459 
01460   dxoa = triorg[0] - triapex[0];
01461   dyoa = triorg[1] - triapex[1];
01462   dxda = tridest[0] - triapex[0];
01463   dyda = tridest[1] - triapex[1];
01464   dxod = triorg[0] - tridest[0];
01465   dyod = triorg[1] - tridest[1];
01466   /* Find the squares of the lengths of the triangle's three edges. */
01467   oalen = dxoa * dxoa + dyoa * dyoa;
01468   dalen = dxda * dxda + dyda * dyda;
01469   odlen = dxod * dxod + dyod * dyod;
01470   /* Find the square of the length of the longest edge. */
01471   maxlen = (dalen > oalen) ? dalen : oalen;
01472   maxlen = (odlen > maxlen) ? odlen : maxlen;
01473 
01474   if (maxlen > 0.05 * (triorg[0] * triorg[0] + triorg[1] * triorg[1]) + 0.02) {
01475     return 1;
01476   } else {
01477     return 0;
01478   }
01479 }
01480 
01481 #endif /* not EXTERNAL_TEST */
01482 
01485 /********* User-defined triangle evaluation routine ends here        *********/
01486 
01487 /********* Memory allocation and program exit wrappers begin here    *********/
01491 #ifdef ANSI_DECLARATORS
01492 void triexit(int status)
01493 #else /* not ANSI_DECLARATORS */
01494 void triexit(status)
01495 int status;
01496 #endif /* not ANSI_DECLARATORS */
01497 
01498 {
01499   exit(status);
01500 }
01501 
01502 #ifdef ANSI_DECLARATORS
01503 VOID *trimalloc(int size)
01504 #else /* not ANSI_DECLARATORS */
01505 VOID *trimalloc(size)
01506 int size;
01507 #endif /* not ANSI_DECLARATORS */
01508 
01509 {
01510   VOID *memptr;
01511 
01512   memptr = (VOID *) malloc((unsigned int) size);
01513   if (memptr == (VOID *) NULL) {
01514     printf("Error:  Out of memory.\n");
01515     triexit(1);
01516   }
01517   return(memptr);
01518 }
01519 
01520 #ifdef ANSI_DECLARATORS
01521 void trifree(VOID *memptr)
01522 #else /* not ANSI_DECLARATORS */
01523 void trifree(memptr)
01524 VOID *memptr;
01525 #endif /* not ANSI_DECLARATORS */
01526 
01527 {
01528   free(memptr);
01529 }
01530 
01533 /********* Memory allocation and program exit wrappers end here      *********/
01534 
01535 /********* User interaction routines begin here                      *********/
01539 /*****************************************************************************/
01540 /*                                                                           */
01541 /*  syntax()   Print list of command line switches.                          */
01542 /*                                                                           */
01543 /*****************************************************************************/
01544 
01545 #ifndef TRILIBRARY
01546 
01547 void syntax()
01548 {
01549 #ifdef CDT_ONLY
01550 #ifdef REDUCED
01551   printf("triangle [-pAcjevngBPNEIOXzo_lQVh] input_file\n");
01552 #else /* not REDUCED */
01553   printf("triangle [-pAcjevngBPNEIOXzo_iFlCQVh] input_file\n");
01554 #endif /* not REDUCED */
01555 #else /* not CDT_ONLY */
01556 #ifdef REDUCED
01557   printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__lQVh] input_file\n");
01558 #else /* not REDUCED */
01559   printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
01560 #endif /* not REDUCED */
01561 #endif /* not CDT_ONLY */
01562 
01563   printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
01564 #ifndef CDT_ONLY
01565   printf("    -r  Refines a previously generated mesh.\n");
01566   printf(
01567     "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
01568   printf("    -a  Applies a maximum triangle area constraint.\n");
01569   printf("    -u  Applies a user-defined triangle constraint.\n");
01570 #endif /* not CDT_ONLY */
01571   printf(
01572     "    -A  Applies attributes to identify triangles in certain regions.\n");
01573   printf("    -c  Encloses the convex hull with segments.\n");
01574 #ifndef CDT_ONLY
01575   printf("    -D  Conforming Delaunay:  all triangles are truly Delaunay.\n");
01576 #endif /* not CDT_ONLY */
01577 /*
01578   printf("    -w  Weighted Delaunay triangulation.\n");
01579   printf("    -W  Regular triangulation (lower hull of a height field).\n");
01580 */
01581   printf("    -j  Jettison unused vertices from output .node file.\n");
01582   printf("    -e  Generates an edge list.\n");
01583   printf("    -v  Generates a Voronoi diagram.\n");
01584   printf("    -n  Generates a list of triangle neighbors.\n");
01585   printf("    -g  Generates an .off file for Geomview.\n");
01586   printf("    -B  Suppresses output of boundary information.\n");
01587   printf("    -P  Suppresses output of .poly file.\n");
01588   printf("    -N  Suppresses output of .node file.\n");
01589   printf("    -E  Suppresses output of .ele file.\n");
01590   printf("    -I  Suppresses mesh iteration numbers.\n");
01591   printf("    -O  Ignores holes in .poly file.\n");
01592   printf("    -X  Suppresses use of exact arithmetic.\n");
01593   printf("    -z  Numbers all items starting from zero (rather than one).\n");
01594   printf("    -o2 Generates second-order subparametric elements.\n");
01595 #ifndef CDT_ONLY
01596   printf("    -Y  Suppresses boundary segment splitting.\n");
01597   printf("    -S  Specifies maximum number of added Steiner points.\n");
01598 #endif /* not CDT_ONLY */
01599 #ifndef REDUCED
01600   printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
01601   printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
01602 #endif /* not REDUCED */
01603   printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
01604 #ifndef REDUCED
01605 #ifndef CDT_ONLY
01606   printf(
01607     "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
01608 #endif /* not CDT_ONLY */
01609   printf("    -C  Check consistency of final mesh.\n");
01610 #endif /* not REDUCED */
01611   printf("    -Q  Quiet:  No terminal output except errors.\n");
01612   printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
01613   printf("    -h  Help:  Detailed instructions for Triangle.\n");
01614   triexit(0);
01615 }
01616 
01617 #endif /* not TRILIBRARY */
01618 
01619 /*****************************************************************************/
01620 /*                                                                           */
01621 /*  info()   Print out complete instructions.                                */
01622 /*                                                                           */
01623 /*****************************************************************************/
01624 
01625 #ifndef TRILIBRARY
01626 
01627 void info()
01628 {
01629   printf("Triangle\n");
01630   printf(
01631 "A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
01632   printf("Version 1.6\n\n");
01633   printf(
01634 "Copyright 1993, 1995, 1997, 1998, 2002, 2005 Jonathan Richard Shewchuk\n");
01635   printf("2360 Woolsey #H / Berkeley, California 94705-1927\n");
01636   printf("Bugs/comments to jrs@cs.berkeley.edu\n");
01637   printf(
01638 "Created as part of the Quake project (tools for earthquake simulation).\n");
01639   printf(
01640 "Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
01641   printf("There is no warranty whatsoever.  Use at your own risk.\n");
01642 #ifdef SINGLE
01643   printf("This executable is compiled for single precision arithmetic.\n\n\n");
01644 #else /* not SINGLE */
01645   printf("This executable is compiled for double precision arithmetic.\n\n\n");
01646 #endif /* not SINGLE */
01647   printf(
01648 "Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
01649   printf(
01650 "triangulations, conforming Delaunay triangulations, Voronoi diagrams, and\n");
01651   printf(
01652 "high-quality triangular meshes.  The latter can be generated with no small\n"
01653 );
01654   printf(
01655 "or large angles, and are thus suitable for finite element analysis.  If no\n"
01656 );
01657   printf(
01658 "command line switch is specified, your .node input file is read, and the\n");
01659   printf(
01660 "Delaunay triangulation is returned in .node and .ele output files.  The\n");
01661   printf("command syntax is:\n\n");
01662   printf("triangle [-prq__a__uAcDjevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
01663   printf(
01664 "Underscores indicate that numbers may optionally follow certain switches.\n");
01665   printf(
01666 "Do not leave any space between a switch and its numeric parameter.\n");
01667   printf(
01668 "input_file must be a file with extension .node, or extension .poly if the\n");
01669   printf(
01670 "-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
01671   printf(
01672 "and possibly a .poly file and an .area file as well.  The formats of these\n"
01673 );
01674   printf("files are described below.\n\n");
01675   printf("Command Line Switches:\n\n");
01676   printf(
01677 "    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n"
01678 );
01679   printf(
01680 "        vertices, segments, holes, regional attributes, and regional area\n");
01681   printf(
01682 "        constraints.  Generates a constrained Delaunay triangulation (CDT)\n"
01683 );
01684   printf(
01685 "        fitting the input; or, if -s, -q, -a, or -u is used, a conforming\n");
01686   printf(
01687 "        constrained Delaunay triangulation (CCDT).  If you want a truly\n");
01688   printf(
01689 "        Delaunay (not just constrained Delaunay) triangulation, use -D as\n");
01690   printf(
01691 "        well.  When -p is not used, Triangle reads a .node file by default.\n"
01692 );
01693   printf(
01694 "    -r  Refines a previously generated mesh.  The mesh is read from a .node\n"
01695 );
01696   printf(
01697 "        file and an .ele file.  If -p is also used, a .poly file is read\n");
01698   printf(
01699 "        and used to constrain segments in the mesh.  If -a is also used\n");
01700   printf(
01701 "        (with no number following), an .area file is read and used to\n");
01702   printf(
01703 "        impose area constraints on the mesh.  Further details on refinement\n"
01704 );
01705   printf("        appear below.\n");
01706   printf(
01707 "    -q  Quality mesh generation by Delaunay refinement (a hybrid of Paul\n");
01708   printf(
01709 "        Chew's and Jim Ruppert's algorithms).  Adds vertices to the mesh to\n"
01710 );
01711   printf(
01712 "        ensure that all angles are between 20 and 140 degrees.  An\n");
01713   printf(
01714 "        alternative bound on the minimum angle, replacing 20 degrees, may\n");
01715   printf(
01716 "        be specified after the `q'.  The specified angle may include a\n");
01717   printf(
01718 "        decimal point, but not exponential notation.  Note that a bound of\n"
01719 );
01720   printf(
01721 "        theta degrees on the smallest angle also implies a bound of\n");
01722   printf(
01723 "        (180 - 2 theta) on the largest angle.  If the minimum angle is 28.6\n"
01724 );
01725   printf(
01726 "        degrees or smaller, Triangle is mathematically guaranteed to\n");
01727   printf(
01728 "        terminate (assuming infinite precision arithmetic--Triangle may\n");
01729   printf(
01730 "        fail to terminate if you run out of precision).  In practice,\n");
01731   printf(
01732 "        Triangle often succeeds for minimum angles up to 34 degrees.  For\n");
01733   printf(
01734 "        some meshes, however, you might need to reduce the minimum angle to\n"
01735 );
01736   printf(
01737 "        avoid problems associated with insufficient floating-point\n");
01738   printf("        precision.\n");
01739   printf(
01740 "    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
01741   printf(
01742 "        triangle is generated whose area is larger than that number.  If no\n"
01743 );
01744   printf(
01745 "        number is specified, an .area file (if -r is used) or .poly file\n");
01746   printf(
01747 "        (if -r is not used) specifies a set of maximum area constraints.\n");
01748   printf(
01749 "        An .area file contains a separate area constraint for each\n");
01750   printf(
01751 "        triangle, and is useful for refining a finite element mesh based on\n"
01752 );
01753   printf(
01754 "        a posteriori error estimates.  A .poly file can optionally contain\n"
01755 );
01756   printf(
01757 "        an area constraint for each segment-bounded region, thereby\n");
01758   printf(
01759 "        controlling triangle densities in a first triangulation of a PSLG.\n"
01760 );
01761   printf(
01762 "        You can impose both a fixed area constraint and a varying area\n");
01763   printf(
01764 "        constraint by invoking the -a switch twice, once with and once\n");
01765   printf(
01766 "        without a number following.  Each area specified may include a\n");
01767   printf("        decimal point.\n");
01768   printf(
01769 "    -u  Imposes a user-defined constraint on triangle size.  There are two\n"
01770 );
01771   printf(
01772 "        ways to use this feature.  One is to edit the triunsuitable()\n");
01773   printf(
01774 "        procedure in triangle.c to encode any constraint you like, then\n");
01775   printf(
01776 "        recompile Triangle.  The other is to compile triangle.c with the\n");
01777   printf(
01778 "        EXTERNAL_TEST symbol set (compiler switch -DEXTERNAL_TEST), then\n");
01779   printf(
01780 "        link Triangle with a separate object file that implements\n");
01781   printf(
01782 "        triunsuitable().  In either case, the -u switch causes the user-\n");
01783   printf("        defined test to be applied to every triangle.\n");
01784   printf(
01785 "    -A  Assigns an additional floating-point attribute to each triangle\n");
01786   printf(
01787 "        that identifies what segment-bounded region each triangle belongs\n");
01788   printf(
01789 "        to.  Attributes are assigned to regions by the .poly file.  If a\n");
01790   printf(
01791 "        region is not explicitly marked by the .poly file, triangles in\n");
01792   printf(
01793 "        that region are assigned an attribute of zero.  The -A switch has\n");
01794   printf(
01795 "        an effect only when the -p switch is used and the -r switch is not.\n"
01796 );
01797   printf(
01798 "    -c  Creates segments on the convex hull of the triangulation.  If you\n");
01799   printf(
01800 "        are triangulating a vertex set, this switch causes a .poly file to\n"
01801 );
01802   printf(
01803 "        be written, containing all edges of the convex hull.  If you are\n");
01804   printf(
01805 "        triangulating a PSLG, this switch specifies that the whole convex\n");
01806   printf(
01807 "        hull of the PSLG should be triangulated, regardless of what\n");
01808   printf(
01809 "        segments the PSLG has.  If you do not use this switch when\n");
01810   printf(
01811 "        triangulating a PSLG, Triangle assumes that you have identified the\n"
01812 );
01813   printf(
01814 "        region to be triangulated by surrounding it with segments of the\n");
01815   printf(
01816 "        input PSLG.  Beware:  if you are not careful, this switch can cause\n"
01817 );
01818   printf(
01819 "        the introduction of an extremely thin angle between a PSLG segment\n"
01820 );
01821   printf(
01822 "        and a convex hull segment, which can cause overrefinement (and\n");
01823   printf(
01824 "        possibly failure if Triangle runs out of precision).  If you are\n");
01825   printf(
01826 "        refining a mesh, the -c switch works differently:  it causes a\n");
01827   printf(
01828 "        .poly file to be written containing the boundary edges of the mesh\n"
01829 );
01830   printf("        (useful if no .poly file was read).\n");
01831   printf(
01832 "    -D  Conforming Delaunay triangulation:  use this switch if you want to\n"
01833 );
01834   printf(
01835 "        ensure that all the triangles in the mesh are Delaunay, and not\n");
01836   printf(
01837 "        merely constrained Delaunay; or if you want to ensure that all the\n"
01838 );
01839   printf(
01840 "        Voronoi vertices lie within the triangulation.  (Some finite volume\n"
01841 );
01842   printf(
01843 "        methods have this requirement.)  This switch invokes Ruppert's\n");
01844   printf(
01845 "        original algorithm, which splits every subsegment whose diametral\n");
01846   printf(
01847 "        circle is encroached.  It usually increases the number of vertices\n"
01848 );
01849   printf("        and triangles.\n");
01850   printf(
01851 "    -j  Jettisons vertices that are not part of the final triangulation\n");
01852   printf(
01853 "        from the output .node file.  By default, Triangle copies all\n");
01854   printf(
01855 "        vertices in the input .node file to the output .node file, in the\n");
01856   printf(
01857 "        same order, so their indices do not change.  The -j switch prevents\n"
01858 );
01859   printf(
01860 "        duplicated input vertices, or vertices `eaten' by holes, from\n");
01861   printf(
01862 "        appearing in the output .node file.  Thus, if two input vertices\n");
01863   printf(
01864 "        have exactly the same coordinates, only the first appears in the\n");
01865   printf(
01866 "        output.  If any vertices are jettisoned, the vertex numbering in\n");
01867   printf(
01868 "        the output .node file differs from that of the input .node file.\n");
01869   printf(
01870 "    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
01871   printf(
01872 "    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
01873   printf(
01874 "        Does not attempt to detect degeneracies, so some Voronoi vertices\n");
01875   printf(
01876 "        may be duplicated.  See the discussion of Voronoi diagrams below.\n");
01877   printf(
01878 "    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
01879   printf("        triangle.\n");
01880   printf(
01881 "    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n"
01882 );
01883   printf("        viewing with the Geometry Center's Geomview package.\n");
01884   printf(
01885 "    -B  No boundary markers in the output .node, .poly, and .edge output\n");
01886   printf(
01887 "        files.  See the detailed discussion of boundary markers below.\n");
01888   printf(
01889 "    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
01890   printf(
01891 "        to maintain constraining segments on later refinements of the mesh.\n"
01892 );
01893   printf("    -N  No output .node file.\n");
01894   printf("    -E  No output .ele file.\n");
01895   printf(
01896 "    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
01897   printf(
01898 "        files, so your input files won't be overwritten.  (If your input is\n"
01899 );
01900   printf(
01901 "        a .poly file only, a .node file is written.)  Cannot be used with\n");
01902   printf(
01903 "        the -r switch, because that would overwrite your input .ele file.\n");
01904   printf(
01905 "        Shouldn't be used with the -q, -a, -u, or -s switch if you are\n");
01906   printf(
01907 "        using a .node file for input, because no .node file is written, so\n"
01908 );
01909   printf("        there is no record of any added Steiner points.\n");
01910   printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
01911   printf(
01912 "    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n"
01913 );
01914   printf(
01915 "        arithmetic for certain tests if it thinks the inexact tests are not\n"
01916 );
01917   printf(
01918 "        accurate enough.  Exact arithmetic ensures the robustness of the\n");
01919   printf(
01920 "        triangulation algorithms, despite floating-point roundoff error.\n");
01921   printf(
01922 "        Disabling exact arithmetic with the -X switch causes a small\n");
01923   printf(
01924 "        improvement in speed and creates the possibility that Triangle will\n"
01925 );
01926   printf("        fail to produce a valid mesh.  Not recommended.\n");
01927   printf(
01928 "    -z  Numbers all items starting from zero (rather than one).  Note that\n"
01929 );
01930   printf(
01931 "        this switch is normally overridden by the value used to number the\n"
01932 );
01933   printf(
01934 "        first vertex of the input .node or .poly file.  However, this\n");
01935   printf(
01936 "        switch is useful when calling Triangle from another program.\n");
01937   printf(
01938 "    -o2 Generates second-order subparametric elements with six nodes each.\n"
01939 );
01940   printf(
01941 "    -Y  No new vertices on the boundary.  This switch is useful when the\n");
01942   printf(
01943 "        mesh boundary must be preserved so that it conforms to some\n");
01944   printf(
01945 "        adjacent mesh.  Be forewarned that you will probably sacrifice much\n"
01946 );
01947   printf(
01948 "        of the quality of the mesh; Triangle will try, but the resulting\n");
01949   printf(
01950 "        mesh may contain poorly shaped triangles.  Works well if all the\n");
01951   printf(
01952 "        boundary vertices are closely spaced.  Specify this switch twice\n");
01953   printf(
01954 "        (`-YY') to prevent all segment splitting, including internal\n");
01955   printf("        boundaries.\n");
01956   printf(
01957 "    -S  Specifies the maximum number of Steiner points (vertices that are\n");
01958   printf(
01959 "        not in the input, but are added to meet the constraints on minimum\n"
01960 );
01961   printf(
01962 "        angle and maximum area).  The default is to allow an unlimited\n");
01963   printf(
01964 "        number.  If you specify this switch with no number after it,\n");
01965   printf(
01966 "        the limit is set to zero.  Triangle always adds vertices at segment\n"
01967 );
01968   printf(
01969 "        intersections, even if it needs to use more vertices than the limit\n"
01970 );
01971   printf(
01972 "        you set.  When Triangle inserts segments by splitting (-s), it\n");
01973   printf(
01974 "        always adds enough vertices to ensure that all the segments of the\n"
01975 );
01976   printf("        PLSG are recovered, ignoring the limit if necessary.\n");
01977   printf(
01978 "    -i  Uses an incremental rather than a divide-and-conquer algorithm to\n");
01979   printf(
01980 "        construct a Delaunay triangulation.  Try it if the divide-and-\n");
01981   printf("        conquer algorithm fails.\n");
01982   printf(
01983 "    -F  Uses Steven Fortune's sweepline algorithm to construct a Delaunay\n");
01984   printf(
01985 "        triangulation.  Warning:  does not use exact arithmetic for all\n");
01986   printf("        calculations.  An exact result is not guaranteed.\n");
01987   printf(
01988 "    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
01989   printf(
01990 "        default, Triangle alternates between vertical and horizontal cuts,\n"
01991 );
01992   printf(
01993 "        which usually improve the speed except with vertex sets that are\n");
01994   printf(
01995 "        small or short and wide.  This switch is primarily of theoretical\n");
01996   printf("        interest.\n");
01997   printf(
01998 "    -s  Specifies that segments should be forced into the triangulation by\n"
01999 );
02000   printf(
02001 "        recursively splitting them at their midpoints, rather than by\n");
02002   printf(
02003 "        generating a constrained Delaunay triangulation.  Segment splitting\n"
02004 );
02005   printf(
02006 "        is true to Ruppert's original algorithm, but can create needlessly\n"
02007 );
02008   printf(
02009 "        small triangles.  This switch is primarily of theoretical interest.\n"
02010 );
02011   printf(
02012 "    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n"
02013 );
02014   printf(
02015 "        checking, even if the -X switch is used.  Useful if you suspect\n");
02016   printf("        Triangle is buggy.\n");
02017   printf(
02018 "    -Q  Quiet:  Suppresses all explanation of what Triangle is doing,\n");
02019   printf("        unless an error occurs.\n");
02020   printf(
02021 "    -V  Verbose:  Gives detailed information about what Triangle is doing.\n"
02022 );
02023   printf(
02024 "        Add more `V's for increasing amount of detail.  `-V' is most\n");
02025   printf(
02026 "        useful; itgives information on algorithmic progress and much more\n");
02027   printf(
02028 "        detailed statistics.  `-VV' gives vertex-by-vertex details, and\n");
02029   printf(
02030 "        prints so much that Triangle runs much more slowly.  `-VVVV' gives\n"
02031 );
02032   printf("        information only a debugger could love.\n");
02033   printf("    -h  Help:  Displays these instructions.\n");
02034   printf("\n");
02035   printf("Definitions:\n");
02036   printf("\n");
02037   printf(
02038 "  A Delaunay triangulation of a vertex set is a triangulation whose\n");
02039   printf(
02040 "  vertices are the vertex set, that covers the convex hull of the vertex\n");
02041   printf(
02042 "  set.  A Delaunay triangulation has the property that no vertex lies\n");
02043   printf(
02044 "  inside the circumscribing circle (circle that passes through all three\n");
02045   printf("  vertices) of any triangle in the triangulation.\n\n");
02046   printf(
02047 "  A Voronoi diagram of a vertex set is a subdivision of the plane into\n");
02048   printf(
02049 "  polygonal cells (some of which may be unbounded, meaning infinitely\n");
02050   printf(
02051 "  large), where each cell is the set of points in the plane that are closer\n"
02052 );
02053   printf(
02054 "  to some input vertex than to any other input vertex.  The Voronoi diagram\n"
02055 );
02056   printf("  is a geometric dual of the Delaunay triangulation.\n\n");
02057   printf(
02058 "  A Planar Straight Line Graph (PSLG) is a set of vertices and segments.\n");
02059   printf(
02060 "  Segments are simply edges, whose endpoints are all vertices in the PSLG.\n"
02061 );
02062   printf(
02063 "  Segments may intersect each other only at their endpoints.  The file\n");
02064   printf("  format for PSLGs (.poly files) is described below.\n\n");
02065   printf(
02066 "  A constrained Delaunay triangulation (CDT) of a PSLG is similar to a\n");
02067   printf(
02068 "  Delaunay triangulation, but each PSLG segment is present as a single edge\n"
02069 );
02070   printf(
02071 "  of the CDT.  (A constrained Delaunay triangulation is not truly a\n");
02072   printf(
02073 "  Delaunay triangulation, because some of its triangles might not be\n");
02074   printf(
02075 "  Delaunay.)  By definition, a CDT does not have any vertices other than\n");
02076   printf(
02077 "  those specified in the input PSLG.  Depending on context, a CDT might\n");
02078   printf(
02079 "  cover the convex hull of the PSLG, or it might cover only a segment-\n");
02080   printf("  bounded region (e.g. a polygon).\n\n");
02081   printf(
02082 "  A conforming Delaunay triangulation of a PSLG is a triangulation in which\n"
02083 );
02084   printf(
02085 "  each triangle is truly Delaunay, and each PSLG segment is represented by\n"
02086 );
02087   printf(
02088 "  a linear contiguous sequence of edges of the triangulation.  New vertices\n"
02089 );
02090   printf(
02091 "  (not part of the PSLG) may appear, and each input segment may have been\n");
02092   printf(
02093 "  subdivided into shorter edges (subsegments) by these additional vertices.\n"
02094 );
02095   printf(
02096 "  The new vertices are frequently necessary to maintain the Delaunay\n");
02097   printf("  property while ensuring that every segment is represented.\n\n");
02098   printf(
02099 "  A conforming constrained Delaunay triangulation (CCDT) of a PSLG is a\n");
02100   printf(
02101 "  triangulation of a PSLG whose triangles are constrained Delaunay.  New\n");
02102   printf("  vertices may appear, and input segments may be subdivided into\n");
02103   printf(
02104 "  subsegments, but not to guarantee that segments are respected; rather, to\n"
02105 );
02106   printf(
02107 "  improve the quality of the triangles.  The high-quality meshes produced\n");
02108   printf(
02109 "  by the -q switch are usually CCDTs, but can be made conforming Delaunay\n");
02110   printf("  with the -D switch.\n\n");
02111   printf("File Formats:\n\n");
02112   printf(
02113 "  All files may contain comments prefixed by the character '#'.  Vertices,\n"
02114 );
02115   printf(
02116 "  triangles, edges, holes, and maximum area constraints must be numbered\n");
02117   printf(
02118 "  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
02119   printf(
02120 "  input files must be consistent; if the vertices are numbered from 1, so\n");
02121   printf(
02122 "  must be all other objects.  Triangle automatically detects your choice\n");
02123   printf(
02124 "  while reading the .node (or .poly) file.  (When calling Triangle from\n");
02125   printf(
02126 "  another program, use the -z switch if you wish to number objects from\n");
02127   printf("  zero.)  Examples of these file formats are given below.\n\n");
02128   printf("  .node files:\n");
02129   printf(
02130 "    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
02131 );
02132   printf(
02133 "                                           <# of boundary markers (0 or 1)>\n"
02134 );
02135   printf(
02136 "    Remaining lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
02137   printf("\n");
02138   printf(
02139 "    The attributes, which are typically floating-point values of physical\n");
02140   printf(
02141 "    quantities (such as mass or conductivity) associated with the nodes of\n"
02142 );
02143   printf(
02144 "    a finite element mesh, are copied unchanged to the output mesh.  If -q,\n"
02145 );
02146   printf(
02147 "    -a, -u, -D, or -s is selected, each new Steiner point added to the mesh\n"
02148 );
02149   printf("    has attributes assigned to it by linear interpolation.\n\n");
02150   printf(
02151 "    If the fourth entry of the first line is `1', the last column of the\n");
02152   printf(
02153 "    remainder of the file is assumed to contain boundary markers.  Boundary\n"
02154 );
02155   printf(
02156 "    markers are used to identify boundary vertices and vertices resting on\n"
02157 );
02158   printf(
02159 "    PSLG segments; a complete description appears in a section below.  The\n"
02160 );
02161   printf(
02162 "    .node file produced by Triangle contains boundary markers in the last\n");
02163   printf("    column unless they are suppressed by the -B switch.\n\n");
02164   printf("  .ele files:\n");
02165   printf(
02166 "    First line:  <# of triangles> <nodes per triangle> <# of attributes>\n");
02167   printf(
02168 "    Remaining lines:  <triangle #> <node> <node> <node> ... [attributes]\n");
02169   printf("\n");
02170   printf(
02171 "    Nodes are indices into the corresponding .node file.  The first three\n");
02172   printf(
02173 "    nodes are the corner vertices, and are listed in counterclockwise order\n"
02174 );
02175   printf(
02176 "    around each triangle.  (The remaining nodes, if any, depend on the type\n"
02177 );
02178   printf("    of finite element used.)\n\n");
02179   printf(
02180 "    The attributes are just like those of .node files.  Because there is no\n"
02181 );
02182   printf(
02183 "    simple mapping from input to output triangles, Triangle attempts to\n");
02184   printf(
02185 "    interpolate attributes, and may cause a lot of diffusion of attributes\n"
02186 );
02187   printf(
02188 "    among nearby triangles as the triangulation is refined.  Attributes do\n"
02189 );
02190   printf("    not diffuse across segments, so attributes used to identify\n");
02191   printf("    segment-bounded regions remain intact.\n\n");
02192   printf(
02193 "    In .ele files produced by Triangle, each triangular element has three\n");
02194   printf(
02195 "    nodes (vertices) unless the -o2 switch is used, in which case\n");
02196   printf(
02197 "    subparametric quadratic elements with six nodes each are generated.\n");
02198   printf(
02199 "    The first three nodes are the corners in counterclockwise order, and\n");
02200   printf(
02201 "    the fourth, fifth, and sixth nodes lie on the midpoints of the edges\n");
02202   printf(
02203 "    opposite the first, second, and third vertices, respectively.\n");
02204   printf("\n");
02205   printf("  .poly files:\n");
02206   printf(
02207 "    First line:  <# of vertices> <dimension (must be 2)> <# of attributes>\n"
02208 );
02209   printf(
02210 "                                           <# of boundary markers (0 or 1)>\n"
02211 );
02212   printf(
02213 "    Following lines:  <vertex #> <x> <y> [attributes] [boundary marker]\n");
02214   printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
02215   printf(
02216 "    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
02217   printf("    One line:  <# of holes>\n");
02218   printf("    Following lines:  <hole #> <x> <y>\n");
02219   printf(
02220 "    Optional line:  <# of regional attributes and/or area constraints>\n");
02221   printf(
02222 "    Optional following lines:  <region #> <x> <y> <attribute> <max area>\n");
02223   printf("\n");
02224   printf(
02225 "    A .poly file represents a PSLG, as well as some additional information.\n"
02226 );
02227   printf(
02228 "    The first section lists all the vertices, and is identical to the\n");
02229   printf(
02230 "    format of .node files.  <# of vertices> may be set to zero to indicate\n"
02231 );
02232   printf(
02233 "    that the vertices are listed in a separate .node file; .poly files\n");
02234   printf(
02235 "    produced by Triangle always have this format.  A vertex set represented\n"
02236 );
02237   printf(
02238 "    this way has the advantage that it may easily be triangulated with or\n");
02239   printf(
02240 "    without segments (depending on whether the -p switch is invoked).\n");
02241   printf("\n");
02242   printf(
02243 "    The second section lists the segments.  Segments are edges whose\n");
02244   printf(
02245 "    presence in the triangulation is enforced.  (Depending on the choice of\n"
02246 );
02247   printf(
02248 "    switches, segment might be subdivided into smaller edges).  Each\n");
02249   printf(
02250 "    segment is specified by listing the indices of its two endpoints.  This\n"
02251 );
02252   printf(
02253 "    means that you must include its endpoints in the vertex list.  Each\n");
02254   printf("    segment, like each point, may have a boundary marker.\n\n");
02255   printf(
02256 "    If -q, -a, -u, and -s are not selected, Triangle produces a constrained\n"
02257 );
02258   printf(
02259 "    Delaunay triangulation (CDT), in which each segment appears as a single\n"
02260 );
02261   printf(
02262 "    edge in the triangulation.  If -q, -a, -u, or -s is selected, Triangle\n"
02263 );
02264   printf(
02265 "    produces a conforming constrained Delaunay triangulation (CCDT), in\n");
02266   printf(
02267 "    which segments may be subdivided into smaller edges.  If -D is\n");
02268   printf(
02269 "    selected, Triangle produces a conforming Delaunay triangulation, so\n");
02270   printf(
02271 "    that every triangle is Delaunay, and not just constrained Delaunay.\n");
02272   printf("\n");
02273   printf(
02274 "    The third section lists holes (and concavities, if -c is selected) in\n");
02275   printf(
02276 "    the triangulation.  Holes are specified by identifying a point inside\n");
02277   printf(
02278 "    each hole.  After the triangulation is formed, Triangle creates holes\n");
02279   printf(
02280 "    by eating triangles, spreading out from each hole point until its\n");
02281   printf(
02282 "    progress is blocked by segments in the PSLG.  You must be careful to\n");
02283   printf(
02284 "    enclose each hole in segments, or your whole triangulation might be\n");
02285   printf(
02286 "    eaten away.  If the two triangles abutting a segment are eaten, the\n");
02287   printf(
02288 "    segment itself is also eaten.  Do not place a hole directly on a\n");
02289   printf("    segment; if you do, Triangle chooses one side of the segment\n");
02290   printf("    arbitrarily.\n\n");
02291   printf(
02292 "    The optional fourth section lists regional attributes (to be assigned\n");
02293   printf(
02294 "    to all triangles in a region) and regional constraints on the maximum\n");
02295   printf(
02296 "    triangle area.  Triangle reads this section only if the -A switch is\n");
02297   printf(
02298 "    used or the -a switch is used without a number following it, and the -r\n"
02299 );
02300   printf(
02301 "    switch is not used.  Regional attributes and area constraints are\n");
02302   printf(
02303 "    propagated in the same manner as holes:  you specify a point for each\n");
02304   printf(
02305 "    attribute and/or constraint, and the attribute and/or constraint\n");
02306   printf(
02307 "    affects the whole region (bounded by segments) containing the point.\n");
02308   printf(
02309 "    If two values are written on a line after the x and y coordinate, the\n");
02310   printf(
02311 "    first such value is assumed to be a regional attribute (but is only\n");
02312   printf(
02313 "    applied if the -A switch is selected), and the second value is assumed\n"
02314 );
02315   printf(
02316 "    to be a regional area constraint (but is only applied if the -a switch\n"
02317 );
02318   printf(
02319 "    is selected).  You may specify just one value after the coordinates,\n");
02320   printf(
02321 "    which can serve as both an attribute and an area constraint, depending\n"
02322 );
02323   printf(
02324 "    on the choice of switches.  If you are using the -A and -a switches\n");
02325   printf(
02326 "    simultaneously and wish to assign an attribute to some region without\n");
02327   printf("    imposing an area constraint, use a negative maximum area.\n\n");
02328   printf(
02329 "    When a triangulation is created from a .poly file, you must either\n");
02330   printf(
02331 "    enclose the entire region to be triangulated in PSLG segments, or\n");
02332   printf(
02333 "    use the -c switch, which automatically creates extra segments that\n");
02334   printf(
02335 "    enclose the convex hull of the PSLG.  If you do not use the -c switch,\n"
02336 );
02337   printf(
02338 "    Triangle eats all triangles that are not enclosed by segments; if you\n");
02339   printf(
02340 "    are not careful, your whole triangulation may be eaten away.  If you do\n"
02341 );
02342   printf(
02343 "    use the -c switch, you can still produce concavities by the appropriate\n"
02344 );
02345   printf(
02346 "    placement of holes just inside the boundary of the convex hull.\n");
02347   printf("\n");
02348   printf(
02349 "    An ideal PSLG has no intersecting segments, nor any vertices that lie\n");
02350   printf(
02351 "    upon segments (except, of course, the endpoints of each segment).  You\n"
02352 );
02353   printf(
02354 "    aren't required to make your .poly files ideal, but you should be aware\n"
02355 );
02356   printf(
02357 "    of what can go wrong.  Segment intersections are relatively safe--\n");
02358   printf(
02359 "    Triangle calculates the intersection points for you and adds them to\n");
02360   printf(
02361 "    the triangulation--as long as your machine's floating-point precision\n");
02362   printf(
02363 "    doesn't become a problem.  You are tempting the fates if you have three\n"
02364 );
02365   printf(
02366 "    segments that cross at the same location, and expect Triangle to figure\n"
02367 );
02368   printf(
02369 "    out where the intersection point is.  Thanks to floating-point roundoff\n"
02370 );
02371   printf(
02372 "    error, Triangle will probably decide that the three segments intersect\n"
02373 );
02374   printf(
02375 "    at three different points, and you will find a minuscule triangle in\n");
02376   printf(
02377 "    your output--unless Triangle tries to refine the tiny triangle, uses\n");
02378   printf(
02379 "    up the last bit of machine precision, and fails to terminate at all.\n");
02380   printf(
02381 "    You're better off putting the intersection point in the input files,\n");
02382   printf(
02383 "    and manually breaking up each segment into two.  Similarly, if you\n");
02384   printf(
02385 "    place a vertex at the middle of a segment, and hope that Triangle will\n"
02386 );
02387   printf(
02388 "    break up the segment at that vertex, you might get lucky.  On the other\n"
02389 );
02390   printf(
02391 "    hand, Triangle might decide that the vertex doesn't lie precisely on\n");
02392   printf(
02393 "    the segment, and you'll have a needle-sharp triangle in your output--or\n"
02394 );
02395   printf("    a lot of tiny triangles if you're generating a quality mesh.\n");
02396   printf("\n");
02397   printf(
02398 "    When Triangle reads a .poly file, it also writes a .poly file, which\n");
02399   printf(
02400 "    includes all the subsegments--the edges that are parts of input\n");
02401   printf(
02402 "    segments.  If the -c switch is used, the output .poly file also\n");
02403   printf(
02404 "    includes all of the edges on the convex hull.  Hence, the output .poly\n"
02405 );
02406   printf(
02407 "    file is useful for finding edges associated with input segments and for\n"
02408 );
02409   printf(
02410 "    setting boundary conditions in finite element simulations.  Moreover,\n");
02411   printf(
02412 "    you will need the output .poly file if you plan to refine the output\n");
02413   printf(
02414 "    mesh, and don't want segments to be missing in later triangulations.\n");
02415   printf("\n");
02416   printf("  .area files:\n");
02417   printf("    First line:  <# of triangles>\n");
02418   printf("    Following lines:  <triangle #> <maximum area>\n");
02419   printf("\n");
02420   printf(
02421 "    An .area file associates with each triangle a maximum area that is used\n"
02422 );
02423   printf(
02424 "    for mesh refinement.  As with other file formats, every triangle must\n");
02425   printf(
02426 "    be represented, and the triangles must be numbered consecutively.  A\n");
02427   printf(
02428 "    triangle may be left unconstrained by assigning it a negative maximum\n");
02429   printf("    area.\n\n");
02430   printf("  .edge files:\n");
02431   printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
02432   printf(
02433 "    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
02434   printf("\n");
02435   printf(
02436 "    Endpoints are indices into the corresponding .node file.  Triangle can\n"
02437 );
02438   printf(
02439 "    produce .edge files (use the -e switch), but cannot read them.  The\n");
02440   printf(
02441 "    optional column of boundary markers is suppressed by the -B switch.\n");
02442   printf("\n");
02443   printf(
02444 "    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
02445   printf(
02446 "    infinite ray with only one endpoint.  For these edges, a different\n");
02447   printf("    format is used:\n\n");
02448   printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
02449   printf(
02450 "    The `direction' is a floating-point vector that indicates the direction\n"
02451 );
02452   printf("    of the infinite ray.\n\n");
02453   printf("  .neigh files:\n");
02454   printf(
02455 "    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n"
02456 );
02457   printf(
02458 "    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");
02459   printf("\n");
02460   printf(
02461 "    Neighbors are indices into the corresponding .ele file.  An index of -1\n"
02462 );
02463   printf(
02464 "    indicates no neighbor (because the triangle is on an exterior\n");
02465   printf(
02466 "    boundary).  The first neighbor of triangle i is opposite the first\n");
02467   printf("    corner of triangle i, and so on.\n\n");
02468   printf(
02469 "    Triangle can produce .neigh files (use the -n switch), but cannot read\n"
02470 );
02471   printf("    them.\n\n");
02472   printf("Boundary Markers:\n\n");
02473   printf(
02474 "  Boundary markers are tags used mainly to identify which output vertices\n");
02475   printf(
02476 "  and edges are associated with which PSLG segment, and to identify which\n");
02477   printf(
02478 "  vertices and edges occur on a boundary of the triangulation.  A common\n");
02479   printf(
02480 "  use is to determine where boundary conditions should be applied to a\n");
02481   printf(
02482 "  finite element mesh.  You can prevent boundary markers from being written\n"
02483 );
02484   printf("  into files produced by Triangle by using the -B switch.\n\n");
02485   printf(
02486 "  The boundary marker associated with each segment in an output .poly file\n"
02487 );
02488   printf("  and each edge in an output .edge file is chosen as follows:\n");
02489   printf(
02490 "    - If an output edge is part or all of a PSLG segment with a nonzero\n");
02491   printf(
02492 "      boundary marker, then the edge is assigned the same marker.\n");
02493   printf(
02494 "    - Otherwise, if the edge lies on a boundary of the triangulation\n");
02495   printf(
02496 "      (even the boundary of a hole), then the edge is assigned the marker\n");
02497   printf("      one (1).\n");
02498   printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
02499   printf(
02500 "  The boundary marker associated with each vertex in an output .node file\n");
02501   printf("  is chosen as follows:\n");
02502   printf(
02503 "    - If a vertex is assigned a nonzero boundary marker in the input file,\n"
02504 );
02505   printf(
02506 "      then it is assigned the same marker in the output .node file.\n");
02507   printf(
02508 "    - Otherwise, if the vertex lies on a PSLG segment (even if it is an\n");
02509   printf(
02510 "      endpoint of the segment) with a nonzero boundary marker, then the\n");
02511   printf(
02512 "      vertex is assigned the same marker.  If the vertex lies on several\n");
02513   printf("      such segments, one of the markers is chosen arbitrarily.\n");
02514   printf(
02515 "    - Otherwise, if the vertex occurs on a boundary of the triangulation,\n");
02516   printf("      then the vertex is assigned the marker one (1).\n");
02517   printf("    - Otherwise, the vertex is assigned the marker zero (0).\n");
02518   printf("\n");
02519   printf(
02520 "  If you want Triangle to determine for you which vertices and edges are on\n"
02521 );
02522   printf(
02523 "  the boundary, assign them the boundary marker zero (or use no markers at\n"
02524 );
02525   printf(
02526 "  all) in your input files.  In the output files, all boundary vertices,\n");
02527   printf("  edges, and segments will be assigned the value one.\n\n");
02528   printf("Triangulation Iteration Numbers:\n\n");
02529   printf(
02530 "  Because Triangle can read and refine its own triangulations, input\n");
02531   printf(
02532 "  and output files have iteration numbers.  For instance, Triangle might\n");
02533   printf(
02534 "  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
02535   printf(
02536 "  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
02537   printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
02538   printf(
02539 "  their iteration number is zero; hence, Triangle might read the file\n");
02540   printf(
02541 "  points.node, triangulate it, and produce the files points.1.node and\n");
02542   printf("  points.1.ele.\n\n");
02543   printf(
02544 "  Iteration numbers allow you to create a sequence of successively finer\n");
02545   printf(
02546 "  meshes suitable for multigrid methods.  They also allow you to produce a\n"
02547 );
02548   printf(
02549 "  sequence of meshes using error estimate-driven mesh refinement.\n");
02550   printf("\n");
02551   printf(
02552 "  If you're not using refinement or quality meshing, and you don't like\n");
02553   printf(
02554 "  iteration numbers, use the -I switch to disable them.  This switch also\n");
02555   printf(
02556 "  disables output of .node and .poly files to prevent your input files from\n"
02557 );
02558   printf(
02559 "  being overwritten.  (If the input is a .poly file that contains its own\n");
02560   printf(
02561 "  points, a .node file is written.  This can be quite convenient for\n");
02562   printf("  computing CDTs or quality meshes.)\n\n");
02563   printf("Examples of How to Use Triangle:\n\n");
02564   printf(
02565 "  `triangle dots' reads vertices from dots.node, and writes their Delaunay\n"
02566 );
02567   printf(
02568 "  triangulation to dots.1.node and dots.1.ele.  (dots.1.node is identical\n");
02569   printf(
02570 "  to dots.node.)  `triangle -I dots' writes the triangulation to dots.ele\n");
02571   printf(
02572 "  instead.  (No additional .node file is needed, so none is written.)\n");
02573   printf("\n");
02574   printf(
02575 "  `triangle -pe object.1' reads a PSLG from object.1.poly (and possibly\n");
02576   printf(
02577 "  object.1.node, if the vertices are omitted from object.1.poly) and writes\n"
02578 );
02579   printf(
02580 "  its constrained Delaunay triangulation to object.2.node and object.2.ele.\n"
02581 );
02582   printf(
02583 "  The segments are copied to object.2.poly, and all edges are written to\n");
02584   printf("  object.2.edge.\n\n");
02585   printf(
02586 "  `triangle -pq31.5a.1 object' reads a PSLG from object.poly (and possibly\n"
02587 );
02588   printf(
02589 "  object.node), generates a mesh whose angles are all between 31.5 and 117\n"
02590 );
02591   printf(
02592 "  degrees and whose triangles all have areas of 0.1 or less, and writes the\n"
02593 );
02594   printf(
02595 "  mesh to object.1.node and object.1.ele.  Each segment may be broken up\n");
02596   printf("  into multiple subsegments; these are written to object.1.poly.\n");
02597   printf("\n");
02598   printf(
02599 "  Here is a sample file `box.poly' describing a square with a square hole:\n"
02600 );
02601   printf("\n");
02602   printf(
02603 "    # A box with eight vertices in 2D, no attributes, one boundary marker.\n"
02604 );
02605   printf("    8 2 0 1\n");
02606   printf("     # Outer box has these vertices:\n");
02607   printf("     1   0 0   0\n");
02608   printf("     2   0 3   0\n");
02609   printf("     3   3 0   0\n");
02610   printf("     4   3 3   33     # A special marker for this vertex.\n");
02611   printf("     # Inner square has these vertices:\n");
02612   printf("     5   1 1   0\n");
02613   printf("     6   1 2   0\n");
02614   printf("     7   2 1   0\n");
02615   printf("     8   2 2   0\n");
02616   printf("    # Five segments with boundary markers.\n");
02617   printf("    5 1\n");
02618   printf("     1   1 2   5      # Left side of outer box.\n");
02619   printf("     # Square hole has these segments:\n");
02620   printf("     2   5 7   0\n");
02621   printf("     3   7 8   0\n");
02622   printf("     4   8 6   10\n");
02623   printf("     5   6 5   0\n");
02624   printf("    # One hole in the middle of the inner square.\n");
02625   printf("    1\n");
02626   printf("     1   1.5 1.5\n");
02627   printf("\n");
02628   printf(
02629 "  Note that some segments are missing from the outer square, so you must\n");
02630   printf(
02631 "  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n"
02632 );
02633   printf(
02634 "  file `box.1.node', with twelve vertices.  The last four vertices were\n");
02635   printf(
02636 "  added to meet the angle constraint.  Vertices 1, 2, and 9 have markers\n");
02637   printf(
02638 "  from segment 1.  Vertices 6 and 8 have markers from segment 4.  All the\n");
02639   printf(
02640 "  other vertices but 4 have been marked to indicate that they lie on a\n");
02641   printf("  boundary.\n\n");
02642   printf("    12  2  0  1\n");
02643   printf("       1    0   0      5\n");
02644   printf("       2    0   3      5\n");
02645   printf("       3    3   0      1\n");
02646   printf("       4    3   3     33\n");
02647   printf("       5    1   1      1\n");
02648   printf("       6    1   2     10\n");
02649   printf("       7    2   1      1\n");
02650   printf("       8    2   2     10\n");
02651   printf("       9    0   1.5    5\n");
02652   printf("      10    1.5   0    1\n");
02653   printf("      11    3   1.5    1\n");
02654   printf("      12    1.5   3    1\n");
02655   printf("    # Generated by triangle -pqc box.poly\n");
02656   printf("\n");
02657   printf("  Here is the output file `box.1.ele', with twelve triangles.\n");
02658   printf("\n");
02659   printf("    12  3  0\n");
02660   printf("       1     5   6   9\n");
02661   printf("       2    10   3   7\n");
02662   printf("       3     6   8  12\n");
02663   printf("       4     9   1   5\n");
02664   printf("       5     6   2   9\n");
02665   printf("       6     7   3  11\n");
02666   printf("       7    11   4   8\n");
02667   printf("       8     7   5  10\n");
02668   printf("       9    12   2   6\n");
02669   printf("      10     8   7  11\n");
02670   printf("      11     5   1  10\n");
02671   printf("      12     8   4  12\n");
02672   printf("    # Generated by triangle -pqc box.poly\n\n");
02673   printf(
02674 "  Here is the output file `box.1.poly'.  Note that segments have been added\n"
02675 );
02676   printf(
02677 "  to represent the convex hull, and some segments have been subdivided by\n");
02678   printf(
02679 "  newly added vertices.  Note also that <# of vertices> is set to zero to\n");
02680   printf("  indicate that the vertices should be read from the .node file.\n");
02681   printf("\n");
02682   printf("    0  2  0  1\n");
02683   printf("    12  1\n");
02684   printf("       1     1   9     5\n");
02685   printf("       2     5   7     1\n");
02686   printf("       3     8   7     1\n");
02687   printf("       4     6   8    10\n");
02688   printf("       5     5   6     1\n");
02689   printf("       6     3  10     1\n");
02690   printf("       7     4  11     1\n");
02691   printf("       8     2  12     1\n");
02692   printf("       9     9   2     5\n");
02693   printf("      10    10   1     1\n");
02694   printf("      11    11   3     1\n");
02695   printf("      12    12   4     1\n");
02696   printf("    1\n");
02697   printf("       1   1.5 1.5\n");
02698   printf("    # Generated by triangle -pqc box.poly\n");
02699   printf("\n");
02700   printf("Refinement and Area Constraints:\n");
02701   printf("\n");
02702   printf(
02703 "  The -r switch causes a mesh (.node and .ele files) to be read and\n");
02704   printf(
02705 "  refined.  If the -p switch is also used, a .poly file is read and used to\n"
02706 );
02707   printf(
02708 "  specify edges that are constrained and cannot be eliminated (although\n");
02709   printf(
02710 "  they can be subdivided into smaller edges) by the refinement process.\n");
02711   printf("\n");
02712   printf(
02713 "  When you refine a mesh, you generally want to impose tighter constraints.\n"
02714 );
02715   printf(
02716 "  One way to accomplish this is to use -q with a larger angle, or -a\n");
02717   printf(
02718 "  followed by a smaller area than you used to generate the mesh you are\n");
02719   printf(
02720 "  refining.  Another way to do this is to create an .area file, which\n");
02721   printf(
02722 "  specifies a maximum area for each triangle, and use the -a switch\n");
02723   printf(
02724 "  (without a number following).  Each triangle's area constraint is applied\n"
02725 );
02726   printf(
02727 "  to that triangle.  Area constraints tend to diffuse as the mesh is\n");
02728   printf(
02729 "  refined, so if there are large variations in area constraint between\n");
02730   printf(
02731 "  adjacent triangles, you may not get the results you want.  In that case,\n"
02732 );
02733   printf(
02734 "  consider instead using the -u switch and writing a C procedure that\n");
02735   printf("  determines which triangles are too large.\n\n");
02736   printf(
02737 "  If you are refining a mesh composed of linear (three-node) elements, the\n"
02738 );
02739   printf(
02740 "  output mesh contains all the nodes present in the input mesh, in the same\n"
02741 );
02742   printf(
02743 "  order, with new nodes added at the end of the .node file.  However, the\n");
02744   printf(
02745 "  refinement is not hierarchical: there is no guarantee that each output\n");
02746   printf(
02747 "  element is contained in a single input element.  Often, an output element\n"
02748 );
02749   printf(
02750 "  can overlap two or three input elements, and some input edges are not\n");
02751   printf(
02752 "  present in the output mesh.  Hence, a sequence of refined meshes forms a\n"
02753 );
02754   printf(
02755 "  hierarchy of nodes, but not a hierarchy of elements.  If you refine a\n");
02756   printf(
02757 "  mesh of higher-order elements, the hierarchical property applies only to\n"
02758 );
02759   printf(
02760 "  the nodes at the corners of an element; the midpoint nodes on each edge\n");
02761   printf("  are discarded before the mesh is refined.\n\n");
02762   printf(
02763 "  Maximum area constraints in .poly files operate differently from those in\n"
02764 );
02765   printf(
02766 "  .area files.  A maximum area in a .poly file applies to the whole\n");
02767   printf(
02768 "  (segment-bounded) region in which a point falls, whereas a maximum area\n");
02769   printf(
02770 "  in an .area file applies to only one triangle.  Area constraints in .poly\n"
02771 );
02772   printf(
02773 "  files are used only when a mesh is first generated, whereas area\n");
02774   printf(
02775 "  constraints in .area files are used only to refine an existing mesh, and\n"
02776 );
02777   printf(
02778 "  are typically based on a posteriori error estimates resulting from a\n");
02779   printf("  finite element simulation on that mesh.\n\n");
02780   printf(
02781 "  `triangle -rq25 object.1' reads object.1.node and object.1.ele, then\n");
02782   printf(
02783 "  refines the triangulation to enforce a 25 degree minimum angle, and then\n"
02784 );
02785   printf(
02786 "  writes the refined triangulation to object.2.node and object.2.ele.\n");
02787   printf("\n");
02788   printf(
02789 "  `triangle -rpaa6.2 z.3' reads z.3.node, z.3.ele, z.3.poly, and z.3.area.\n"
02790 );
02791   printf(
02792 "  After reconstructing the mesh and its subsegments, Triangle refines the\n");
02793   printf(
02794 "  mesh so that no triangle has area greater than 6.2, and furthermore the\n");
02795   printf(
02796 "  triangles satisfy the maximum area constraints in z.3.area.  No angle\n");
02797   printf(
02798 "  bound is imposed at all.  The output is written to z.4.node, z.4.ele, and\n"
02799 );
02800   printf("  z.4.poly.\n\n");
02801   printf(
02802 "  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
02803   printf(
02804 "  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
02805   printf("  suitable for multigrid.\n\n");
02806   printf("Convex Hulls and Mesh Boundaries:\n\n");
02807   printf(
02808 "  If the input is a vertex set (not a PSLG), Triangle produces its convex\n");
02809   printf(
02810 "  hull as a by-product in the output .poly file if you use the -c switch.\n");
02811   printf(
02812 "  There are faster algorithms for finding a two-dimensional convex hull\n");
02813   printf("  than triangulation, of course, but this one comes for free.\n\n");
02814   printf(
02815 "  If the input is an unconstrained mesh (you are using the -r switch but\n");
02816   printf(
02817 "  not the -p switch), Triangle produces a list of its boundary edges\n");
02818   printf(
02819 "  (including hole boundaries) as a by-product when you use the -c switch.\n");
02820   printf(
02821 "  If you also use the -p switch, the output .poly file contains all the\n");
02822   printf("  segments from the input .poly file as well.\n\n");
02823   printf("Voronoi Diagrams:\n\n");
02824   printf(
02825 "  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
02826   printf(
02827 "  .v.edge.  For example, `triangle -v points' reads points.node, produces\n");
02828   printf(
02829 "  its Delaunay triangulation in points.1.node and points.1.ele, and\n");
02830   printf(
02831 "  produces its Voronoi diagram in points.1.v.node and points.1.v.edge.  The\n"
02832 );
02833   printf(
02834 "  .v.node file contains a list of all Voronoi vertices, and the .v.edge\n");
02835   printf(
02836 "  file contains a list of all Voronoi edges, some of which may be infinite\n"
02837 );
02838   printf(
02839 "  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
02840   printf("  vertices through Triangle, if so desired.)\n\n");
02841   printf(
02842 "  This implementation does not use exact arithmetic to compute the Voronoi\n"
02843 );
02844   printf(
02845 "  vertices, and does not check whether neighboring vertices are identical.\n"
02846 );
02847   printf(
02848 "  Be forewarned that if the Delaunay triangulation is degenerate or\n");
02849   printf(
02850 "  near-degenerate, the Voronoi diagram may have duplicate vertices or\n");
02851   printf("  crossing edges.\n\n");
02852   printf(
02853 "  The result is a valid Voronoi diagram only if Triangle's output is a true\n"
02854 );
02855   printf(
02856 "  Delaunay triangulation.  The Voronoi output is usually meaningless (and\n");
02857   printf(
02858 "  may contain crossing edges and other pathology) if the output is a CDT or\n"
02859 );
02860   printf(
02861 "  CCDT, or if it has holes or concavities.  If the triangulated domain is\n");
02862   printf(
02863 "  convex and has no holes, you can use -D switch to force Triangle to\n");
02864   printf(
02865 "  construct a conforming Delaunay triangulation instead of a CCDT, so the\n");
02866   printf("  Voronoi diagram will be valid.\n\n");
02867   printf("Mesh Topology:\n\n");
02868   printf(
02869 "  You may wish to know which triangles are adjacent to a certain Delaunay\n");
02870   printf(
02871 "  edge in an .edge file, which Voronoi cells are adjacent to a certain\n");
02872   printf(
02873 "  Voronoi edge in a .v.edge file, or which Voronoi cells are adjacent to\n");
02874   printf(
02875 "  each other.  All of this information can be found by cross-referencing\n");
02876   printf(
02877 "  output files with the recollection that the Delaunay triangulation and\n");
02878   printf("  the Voronoi diagram are planar duals.\n\n");
02879   printf(
02880 "  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
02881   printf(
02882 "  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
02883   printf(
02884 "  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
02885   printf(
02886 "  vertex j of the corresponding .v.node file.  Voronoi cell k is the dual\n");
02887   printf("  of vertex k of the corresponding .node file.\n\n");
02888   printf(
02889 "  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
02890   printf(
02891 "  vertices of the corresponding Voronoi edge.  If the endpoints of a\n");
02892   printf(
02893 "  Voronoi edge are Voronoi vertices 2 and 6 respectively, then triangles 2\n"
02894 );
02895   printf(
02896 "  and 6 adjoin the left and right sides of the corresponding Delaunay edge,\n"
02897 );
02898   printf(
02899 "  respectively.  To find the Voronoi cells adjacent to a Voronoi edge, look\n"
02900 );
02901   printf(
02902 "  at the endpoints of the corresponding Delaunay edge.  If the endpoints of\n"
02903 );
02904   printf(
02905 "  a Delaunay edge are input vertices 7 and 12, then Voronoi cells 7 and 12\n"
02906 );
02907   printf(
02908 "  adjoin the right and left sides of the corresponding Voronoi edge,\n");
02909   printf(
02910 "  respectively.  To find which Voronoi cells are adjacent to each other,\n");
02911   printf("  just read the list of Delaunay edges.\n\n");
02912   printf(
02913 "  Triangle does not write a list of the edges adjoining each Voronoi cell,\n"
02914 );
02915   printf(
02916 "  but you can reconstructed it straightforwardly.  For instance, to find\n");
02917   printf(
02918 "  all the edges of Voronoi cell 1, search the output .edge file for every\n");
02919   printf(
02920 "  edge that has input vertex 1 as an endpoint.  The corresponding dual\n");
02921   printf(
02922 "  edges in the output .v.edge file form the boundary of Voronoi cell 1.\n");
02923   printf("\n");
02924   printf(
02925 "  For each Voronoi vertex, the .neigh file gives a list of the three\n");
02926   printf(
02927 "  Voronoi vertices attached to it.  You might find this more convenient\n");
02928   printf("  than the .v.edge file.\n\n");
02929   printf("Quadratic Elements:\n\n");
02930   printf(
02931 "  Triangle generates meshes with subparametric quadratic elements if the\n");
02932   printf(
02933 "  -o2 switch is specified.  Quadratic elements have six nodes per element,\n"
02934 );
02935   printf(
02936 "  rather than three.  `Subparametric' means that the edges of the triangles\n"
02937 );
02938   printf(
02939 "  are always straight, so that subparametric quadratic elements are\n");
02940   printf(
02941 "  geometrically identical to linear elements, even though they can be used\n"
02942 );
02943   printf(
02944 "  with quadratic interpolating functions.  The three extra nodes of an\n");
02945   printf(
02946 "  element fall at the midpoints of the three edges, with the fourth, fifth,\n"
02947 );
02948   printf(
02949 "  and sixth nodes appearing opposite the first, second, and third corners\n");
02950   printf("  respectively.\n\n");
02951   printf("Domains with Small Angles:\n\n");
02952   printf(
02953 "  If two input segments adjoin each other at a small angle, clearly the -q\n"
02954 );
02955   printf(
02956 "  switch cannot remove the small angle.  Moreover, Triangle may have no\n");
02957   printf(
02958 "  choice but to generate additional triangles whose smallest angles are\n");
02959   printf(
02960 "  smaller than the specified bound.  However, these triangles only appear\n");
02961   printf(
02962 "  between input segments separated by small angles.  Moreover, if you\n");
02963   printf(
02964 "  request a minimum angle of theta degrees, Triangle will generally produce\n"
02965 );
02966   printf(
02967 "  no angle larger than 180 - 2 theta, even if it is forced to compromise on\n"
02968 );
02969   printf("  the minimum angle.\n\n");
02970   printf("Statistics:\n\n");
02971   printf(
02972 "  After generating a mesh, Triangle prints a count of entities in the\n");
02973   printf(
02974 "  output mesh, including the number of vertices, triangles, edges, exterior\n"
02975 );
02976   printf(
02977 "  boundary edges (i.e. subsegments on the boundary of the triangulation,\n");
02978   printf(
02979 "  including hole boundaries), interior boundary edges (i.e. subsegments of\n"
02980 );
02981   printf(
02982 "  input segments not on the boundary), and total subsegments.  If you've\n");
02983   printf(
02984 "  forgotten the statistics for an existing mesh, run Triangle on that mesh\n"
02985 );
02986   printf(
02987 "  with the -rNEP switches to read the mesh and print the statistics without\n"
02988 );
02989   printf(
02990 "  writing any files.  Use -rpNEP if you've got a .poly file for the mesh.\n");
02991   printf("\n");
02992   printf(
02993 "  The -V switch produces extended statistics, including a rough estimate\n");
02994   printf(
02995 "  of memory use, the number of calls to geometric predicates, and\n");
02996   printf(
02997 "  histograms of the angles and the aspect ratios of the triangles in the\n");
02998   printf("  mesh.\n\n");
02999   printf("Exact Arithmetic:\n\n");
03000   printf(
03001 "  Triangle uses adaptive exact arithmetic to perform what computational\n");
03002   printf(
03003 "  geometers call the `orientation' and `incircle' tests.  If the floating-\n"
03004 );
03005   printf(
03006 "  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
03007   printf(
03008 "  most workstations do), and does not use extended precision internal\n");
03009   printf(
03010 "  floating-point registers, then your output is guaranteed to be an\n");
03011   printf(
03012 "  absolutely true Delaunay or constrained Delaunay triangulation, roundoff\n"
03013 );
03014   printf(
03015 "  error notwithstanding.  The word `adaptive' implies that these arithmetic\n"
03016 );
03017   printf(
03018 "  routines compute the result only to the precision necessary to guarantee\n"
03019 );
03020   printf(
03021 "  correctness, so they are usually nearly as fast as their approximate\n");
03022   printf("  counterparts.\n\n");
03023   printf(
03024 "  May CPUs, including Intel x86 processors, have extended precision\n");
03025   printf(
03026 "  floating-point registers.  These must be reconfigured so their precision\n"
03027 );
03028   printf(
03029 "  is reduced to memory precision.  Triangle does this if it is compiled\n");
03030   printf("  correctly.  See the makefile for details.\n\n");
03031   printf(
03032 "  The exact tests can be disabled with the -X switch.  On most inputs, this\n"
03033 );
03034   printf(
03035 "  switch reduces the computation time by about eight percent--it's not\n");
03036   printf(
03037 "  worth the risk.  There are rare difficult inputs (having many collinear\n");
03038   printf(
03039 "  and cocircular vertices), however, for which the difference in speed\n");
03040   printf(
03041 "  could be a factor of two.  Be forewarned that these are precisely the\n");
03042   printf(
03043 "  inputs most likely to cause errors if you use the -X switch.  Hence, the\n"
03044 );
03045   printf("  -X switch is not recommended.\n\n");
03046   printf(
03047 "  Unfortunately, the exact tests don't solve every numerical problem.\n");
03048   printf(
03049 "  Exact arithmetic is not used to compute the positions of new vertices,\n");
03050   printf(
03051 "  because the bit complexity of vertex coordinates would grow without\n");
03052   printf(
03053 "  bound.  Hence, segment intersections aren't computed exactly; in very\n");
03054   printf(
03055 "  unusual cases, roundoff error in computing an intersection point might\n");
03056   printf(
03057 "  actually lead to an inverted triangle and an invalid triangulation.\n");
03058   printf(
03059 "  (This is one reason to specify your own intersection points in your .poly\n"
03060 );
03061   printf(
03062 "  files.)  Similarly, exact arithmetic is not used to compute the vertices\n"
03063 );
03064   printf("  of the Voronoi diagram.\n\n");
03065   printf(
03066 "  Another pair of problems not solved by the exact arithmetic routines is\n");
03067   printf(
03068 "  underflow and overflow.  If Triangle is compiled for double precision\n");
03069   printf(
03070 "  arithmetic, I believe that Triangle's geometric predicates work correctly\n"
03071 );
03072   printf(
03073 "  if the exponent of every input coordinate falls in the range [-148, 201].\n"
03074 );
03075   printf(
03076 "  Underflow can silently prevent the orientation and incircle tests from\n");
03077   printf(
03078 "  being performed exactly, while overflow typically causes a floating\n");
03079   printf("  exception.\n\n");
03080   printf("Calling Triangle from Another Program:\n\n");
03081   printf("  Read the file triangle.h for details.\n\n");
03082   printf("Troubleshooting:\n\n");
03083   printf("  Please read this section before mailing me bugs.\n\n");
03084   printf("  `My output mesh has no triangles!'\n\n");
03085   printf(
03086 "    If you're using a PSLG, you've probably failed to specify a proper set\n"
03087 );
03088   printf(
03089 "    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
03090   printf(
03091 "    have placed a hole badly, thereby eating all your triangles.  To test\n");
03092   printf("    these possibilities, try again with the -c and -O switches.\n");
03093   printf(
03094 "    Alternatively, all your input vertices may be collinear, in which case\n"
03095 );
03096   printf("    you can hardly expect to triangulate them.\n\n");
03097   printf("  `Triangle doesn't terminate, or just crashes.'\n\n");
03098   printf(
03099 "    Bad things can happen when triangles get so small that the distance\n");
03100   printf(
03101 "    between their vertices isn't much larger than the precision of your\n");
03102   printf(
03103 "    machine's arithmetic.  If you've compiled Triangle for single-precision\n"
03104 );
03105   printf(
03106 "    arithmetic, you might do better by recompiling it for double-precision.\n"
03107 );
03108   printf(
03109 "    Then again, you might just have to settle for more lenient constraints\n"
03110 );
03111   printf(
03112 "    on the minimum angle and the maximum area than you had planned.\n");
03113   printf("\n");
03114   printf(
03115 "    You can minimize precision problems by ensuring that the origin lies\n");
03116   printf(
03117 "    inside your vertex set, or even inside the densest part of your\n");
03118   printf(
03119 "    mesh.  If you're triangulating an object whose x-coordinates all fall\n");
03120   printf(
03121 "    between 6247133 and 6247134, you're not leaving much floating-point\n");
03122   printf("    precision for Triangle to work with.\n\n");
03123   printf(
03124 "    Precision problems can occur covertly if the input PSLG contains two\n");
03125   printf(
03126 "    segments that meet (or intersect) at an extremely small angle, or if\n");
03127   printf(
03128 "    such an angle is introduced by the -c switch.  If you don't realize\n");
03129   printf(
03130 "    that a tiny angle is being formed, you might never discover why\n");
03131   printf(
03132 "    Triangle is crashing.  To check for this possibility, use the -S switch\n"
03133 );
03134   printf(
03135 "    (with an appropriate limit on the number of Steiner points, found by\n");
03136   printf(
03137 "    trial-and-error) to stop Triangle early, and view the output .poly file\n"
03138 );
03139   printf(
03140 "    with Show Me (described below).  Look carefully for regions where dense\n"
03141 );
03142   printf(
03143 "    clusters of vertices are forming and for small angles between segments.\n"
03144 );
03145   printf(
03146 "    Zoom in closely, as such segments might look like a single segment from\n"
03147 );
03148   printf("    a distance.\n\n");
03149   printf(
03150 "    If some of the input values are too large, Triangle may suffer a\n");
03151   printf(
03152 "    floating exception due to overflow when attempting to perform an\n");
03153   printf(
03154 "    orientation or incircle test.  (Read the section on exact arithmetic\n");
03155   printf(
03156 "    above.)  Again, I recommend compiling Triangle for double (rather\n");
03157   printf("    than single) precision arithmetic.\n\n");
03158   printf(
03159 "    Unexpected problems can arise if you use quality meshing (-q, -a, or\n");
03160   printf(
03161 "    -u) with an input that is not segment-bounded--that is, if your input\n");
03162   printf(
03163 "    is a vertex set, or you're using the -c switch.  If the convex hull of\n"
03164 );
03165   printf(
03166 "    your input vertices has collinear vertices on its boundary, an input\n");
03167   printf(
03168 "    vertex that you think lies on the convex hull might actually lie just\n");
03169   printf(
03170 "    inside the convex hull.  If so, the vertex and the nearby convex hull\n");
03171   printf(
03172 "    edge form an extremely thin triangle.  When Triangle tries to refine\n");
03173   printf(
03174 "    the mesh to enforce angle and area constraints, Triangle might generate\n"
03175 );
03176   printf(
03177 "    extremely tiny triangles, or it might fail because of insufficient\n");
03178   printf("    floating-point precision.\n\n");
03179   printf(
03180 "  `The numbering of the output vertices doesn't match the input vertices.'\n"
03181 );
03182   printf("\n");
03183   printf(
03184 "    You may have had duplicate input vertices, or you may have eaten some\n");
03185   printf(
03186 "    of your input vertices with a hole, or by placing them outside the area\n"
03187 );
03188   printf(
03189 "    enclosed by segments.  In any case, you can solve the problem by not\n");
03190   printf("    using the -j switch.\n\n");
03191   printf(
03192 "  `Triangle executes without incident, but when I look at the resulting\n");
03193   printf(
03194 "  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
03195   printf("\n");
03196   printf(
03197 "    If you select the -X switch, Triangle occasionally makes mistakes due\n");
03198   printf(
03199 "    to floating-point roundoff error.  Although these errors are rare,\n");
03200   printf(
03201 "    don't use the -X switch.  If you still have problems, please report the\n"
03202 );
03203   printf("    bug.\n\n");
03204   printf(
03205 "  `Triangle executes without incident, but when I look at the resulting\n");
03206   printf("  Voronoi diagram, it has overlapping edges or other geometric\n");
03207   printf("  inconsistencies.'\n");
03208   printf("\n");
03209   printf(
03210 "    If your input is a PSLG (-p), you can only expect a meaningful Voronoi\n"
03211 );
03212   printf(
03213 "    diagram if the domain you are triangulating is convex and free of\n");
03214   printf(
03215 "    holes, and you use the -D switch to construct a conforming Delaunay\n");
03216   printf("    triangulation (instead of a CDT or CCDT).\n\n");
03217   printf(
03218 "  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
03219   printf(
03220 "  you have a vertex lying in the middle of a segment?  Triangle sometimes\n");
03221   printf(
03222 "  copes poorly with that sort of thing.  Do you want to lay out a collinear\n"
03223 );
03224   printf(
03225 "  row of evenly spaced, segment-connected vertices?  Have you simply\n");
03226   printf(
03227 "  defined one long segment connecting the leftmost vertex to the rightmost\n"
03228 );
03229   printf(
03230 "  vertex, and a bunch of vertices lying along it?  This method occasionally\n"
03231 );
03232   printf(
03233 "  works, especially with horizontal and vertical lines, but often it\n");
03234   printf(
03235 "  doesn't, and you'll have to connect each adjacent pair of vertices with a\n"
03236 );
03237   printf("  separate segment.  If you don't like it, tough.\n\n");
03238   printf(
03239 "  Furthermore, if you have segments that intersect other than at their\n");
03240   printf(
03241 "  endpoints, try not to let the intersections fall extremely close to PSLG\n"
03242 );
03243   printf("  vertices or each other.\n\n");
03244   printf(
03245 "  If you have problems refining a triangulation not produced by Triangle:\n");
03246   printf(
03247 "  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
03248   printf(
03249 "  correctly for Triangle?  Are the triangles all listed so the first three\n"
03250 );
03251   printf(
03252 "  vertices are their corners in counterclockwise order?  Are all of the\n");
03253   printf(
03254 "  triangles constrained Delaunay?  Triangle's Delaunay refinement algorithm\n"
03255 );
03256   printf("  assumes that it starts with a CDT.\n\n");
03257   printf("Show Me:\n\n");
03258   printf(
03259 "  Triangle comes with a separate program named `Show Me', whose primary\n");
03260   printf(
03261 "  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n"
03262 );
03263   printf(
03264 "  purpose is to check the validity of your input files, and do so more\n");
03265   printf(
03266 "  thoroughly than Triangle does.  Unlike Triangle, Show Me requires that\n");
03267   printf(
03268 "  you have the X Windows system.  Sorry, Microsoft Windows users.\n");
03269   printf("\n");
03270   printf("Triangle on the Web:\n");
03271   printf("\n");
03272   printf("  To see an illustrated version of these instructions, check out\n");
03273   printf("\n");
03274   printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");
03275   printf("\n");
03276   printf("A Brief Plea:\n");
03277   printf("\n");
03278   printf(
03279 "  If you use Triangle, and especially if you use it to accomplish real\n");
03280   printf(
03281 "  work, I would like very much to hear from you.  A short letter or email\n");
03282   printf(
03283 "  (to jrs@cs.berkeley.edu) describing how you use Triangle will mean a lot\n"
03284 );
03285   printf(
03286 "  to me.  The more people I know are using this program, the more easily I\n"
03287 );
03288   printf(
03289 "  can justify spending time on improvements, which in turn will benefit\n");
03290   printf(
03291 "  you.  Also, I can put you on a list to receive email whenever a new\n");
03292   printf("  version of Triangle is available.\n\n");
03293   printf(
03294 "  If you use a mesh generated by Triangle in a publication, please include\n"
03295 );
03296   printf(
03297 "  an acknowledgment as well.  And please spell Triangle with a capital `T'!\n"
03298 );
03299   printf(
03300 "  If you want to include a citation, use `Jonathan Richard Shewchuk,\n");
03301   printf(
03302 "  ``Triangle: Engineering a 2D Quality Mesh Generator and Delaunay\n");
03303   printf(
03304 "  Triangulator,'' in Applied Computational Geometry:  Towards Geometric\n");
03305   printf(
03306 "  Engineering (Ming C. Lin and Dinesh Manocha, editors), volume 1148 of\n");
03307   printf(
03308 "  Lecture Notes in Computer Science, pages 203-222, Springer-Verlag,\n");
03309   printf(
03310 "  Berlin, May 1996.  (From the First ACM Workshop on Applied Computational\n"
03311 );
03312   printf("  Geometry.)'\n\n");
03313   printf("Research credit:\n\n");
03314   printf(
03315 "  Of course, I can take credit for only a fraction of the ideas that made\n");
03316   printf(
03317 "  this mesh generator possible.  Triangle owes its existence to the efforts\n"
03318 );
03319   printf(
03320 "  of many fine computational geometers and other researchers, including\n");
03321   printf(
03322 "  Marshall Bern, L. Paul Chew, Kenneth L. Clarkson, Boris Delaunay, Rex A.\n"
03323 );
03324   printf(
03325 "  Dwyer, David Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E.\n");
03326   printf(
03327 "  Knuth, Charles L. Lawson, Der-Tsai Lee, Gary L. Miller, Ernst P. Mucke,\n");
03328   printf(
03329 "  Steven E. Pav, Douglas M. Priest, Jim Ruppert, Isaac Saias, Bruce J.\n");
03330   printf(
03331 "  Schachter, Micha Sharir, Peter W. Shor, Daniel D. Sleator, Jorge Stolfi,\n"
03332 );
03333   printf("  Robert E. Tarjan, Alper Ungor, Christopher J. Van Wyk, Noel J.\n");
03334   printf(
03335 "  Walkington, and Binhai Zhu.  See the comments at the beginning of the\n");
03336   printf("  source code for references.\n\n");
03337   triexit(0);
03338 }
03339 
03340 #endif /* not TRILIBRARY */
03341 
03342 /*****************************************************************************/
03343 /*                                                                           */
03344 /*  internalerror()   Ask the user to send me the defective product.  Exit.  */
03345 /*                                                                           */
03346 /*****************************************************************************/
03347 
03348 void internalerror()
03349 {
03350   printf("  Please report this bug to jrs@cs.berkeley.edu\n");
03351   printf("  Include the message above, your input data set, and the exact\n");
03352   printf("    command line you used to run Triangle.\n");
03353   triexit(1);
03354 }
03355 
03356 /*****************************************************************************/
03357 /*                                                                           */
03358 /*  parsecommandline()   Read the command line, identify switches, and set   */
03359 /*                       up options and file names.                          */
03360 /*                                                                           */
03361 /*****************************************************************************/
03362 
03363 #ifdef ANSI_DECLARATORS
03364 void parsecommandline(int argc, char **argv, struct behavior *b)
03365 #else /* not ANSI_DECLARATORS */
03366 void parsecommandline(argc, argv, b)
03367 int argc;
03368 char **argv;
03369 struct behavior *b;
03370 #endif /* not ANSI_DECLARATORS */
03371 
03372 {
03373 #ifdef TRILIBRARY
03374 #define STARTINDEX 0
03375 #else /* not TRILIBRARY */
03376 #define STARTINDEX 1
03377   int increment;
03378   int meshnumber;
03379 #endif /* not TRILIBRARY */
03380   int i, j, k;
03381   char workstring[FILENAMESIZE];
03382 
03383   b->poly = b->refine = b->quality = 0;
03384   b->vararea = b->fixedarea = b->usertest = 0;
03385   b->regionattrib = b->convex = b->weighted = b->jettison = 0;
03386   b->firstnumber = 1;
03387   b->edgesout = b->voronoi = b->neighbors = b->geomview = 0;
03388   b->nobound = b->nopolywritten = b->nonodewritten = b->noelewritten = 0;
03389   b->noiterationnum = 0;
03390   b->noholes = b->noexact = 0;
03391   b->incremental = b->sweepline = 0;
03392   b->dwyer = 1;
03393   b->splitseg = 0;
03394   b->docheck = 0;
03395   b->nobisect = 0;
03396   b->conformdel = 0;
03397   b->steiner = -1;
03398   b->order = 1;
03399   b->minangle = 0.0;
03400   b->maxarea = -1.0;
03401   b->quiet = b->verbose = 0;
03402 #ifndef TRILIBRARY
03403   b->innodefilename[0] = '\0';
03404 #endif /* not TRILIBRARY */
03405 
03406   for (i = STARTINDEX; i < argc; i++) {
03407 #ifndef TRILIBRARY
03408     if (argv[i][0] == '-') {
03409 #endif /* not TRILIBRARY */
03410       for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
03411         if (argv[i][j] == 'p') {
03412           b->poly = 1;
03413     }
03414 #ifndef CDT_ONLY
03415         if (argv[i][j] == 'r') {
03416           b->refine = 1;
03417     }
03418         if (argv[i][j] == 'q') {
03419           b->quality = 1;
03420           if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
03421               (argv[i][j + 1] == '.')) {
03422             k = 0;
03423             while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
03424                    (argv[i][j + 1] == '.')) {
03425               j++;
03426               workstring[k] = argv[i][j];
03427               k++;
03428             }
03429             workstring[k] = '\0';
03430             b->minangle = (REAL) strtod(workstring, (char **) NULL);
03431       } else {
03432             b->minangle = 20.0;
03433       }
03434     }
03435         if (argv[i][j] == 'a') {
03436           b->quality = 1;
03437           if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
03438               (argv[i][j + 1] == '.')) {
03439             b->fixedarea = 1;
03440             k = 0;
03441             while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
03442                    (argv[i][j + 1] == '.')) {
03443               j++;
03444               workstring[k] = argv[i][j];
03445               k++;
03446             }
03447             workstring[k] = '\0';
03448             b->maxarea = (REAL) strtod(workstring, (char **) NULL);
03449             if (b->maxarea <= 0.0) {
03450               printf("Error:  Maximum area must be greater than zero.\n");
03451               triexit(1);
03452         }
03453       } else {
03454             b->vararea = 1;
03455       }
03456     }
03457         if (argv[i][j] == 'u') {
03458           b->quality = 1;
03459           b->usertest = 1;
03460         }
03461 #endif /* not CDT_ONLY */
03462         if (argv[i][j] == 'A') {
03463           b->regionattrib = 1;
03464         }
03465         if (argv[i][j] == 'c') {
03466           b->convex = 1;
03467         }
03468         if (argv[i][j] == 'w') {
03469           b->weighted = 1;
03470         }
03471         if (argv[i][j] == 'W') {
03472           b->weighted = 2;
03473         }
03474         if (argv[i][j] == 'j') {
03475           b->jettison = 1;
03476         }
03477         if (argv[i][j] == 'z') {
03478           b->firstnumber = 0;
03479         }
03480         if (argv[i][j] == 'e') {
03481           b->edgesout = 1;
03482     }
03483         if (argv[i][j] == 'v') {
03484           b->voronoi = 1;
03485     }
03486         if (argv[i][j] == 'n') {
03487           b->neighbors = 1;
03488     }
03489         if (argv[i][j] == 'g') {
03490           b->geomview = 1;
03491     }
03492         if (argv[i][j] == 'B') {
03493           b->nobound = 1;
03494     }
03495         if (argv[i][j] == 'P') {
03496           b->nopolywritten = 1;
03497     }
03498         if (argv[i][j] == 'N') {
03499           b->nonodewritten = 1;
03500     }
03501         if (argv[i][j] == 'E') {
03502           b->noelewritten = 1;
03503     }
03504 #ifndef TRILIBRARY
03505         if (argv[i][j] == 'I') {
03506           b->noiterationnum = 1;
03507     }
03508 #endif /* not TRILIBRARY */
03509         if (argv[i][j] == 'O') {
03510           b->noholes = 1;
03511     }
03512         if (argv[i][j] == 'X') {
03513           b->noexact = 1;
03514     }
03515         if (argv[i][j] == 'o') {
03516           if (argv[i][j + 1] == '2') {
03517             j++;
03518             b->order = 2;
03519           }
03520     }
03521 #ifndef CDT_ONLY
03522         if (argv[i][j] == 'Y') {
03523           b->nobisect++;
03524     }
03525         if (argv[i][j] == 'S') {
03526           b->steiner = 0;
03527           while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
03528             j++;
03529             b->steiner = b->steiner * 10 + (int) (argv[i][j] - '0');
03530           }
03531         }
03532 #endif /* not CDT_ONLY */
03533 #ifndef REDUCED
03534         if (argv[i][j] == 'i') {
03535           b->incremental = 1;
03536         }
03537         if (argv[i][j] == 'F') {
03538           b->sweepline = 1;
03539         }
03540 #endif /* not REDUCED */
03541         if (argv[i][j] == 'l') {
03542           b->dwyer = 0;
03543         }
03544 #ifndef REDUCED
03545 #ifndef CDT_ONLY
03546         if (argv[i][j] == 's') {
03547           b->splitseg = 1;
03548         }
03549         if ((argv[i][j] == 'D') || (argv[i][j] == 'L')) {
03550           b->quality = 1;
03551           b->conformdel = 1;
03552         }
03553 #endif /* not CDT_ONLY */
03554         if (argv[i][j] == 'C') {
03555           b->docheck = 1;
03556         }
03557 #endif /* not REDUCED */
03558         if (argv[i][j] == 'Q') {
03559           b->quiet = 1;
03560         }
03561         if (argv[i][j] == 'V') {
03562           b->verbose++;
03563         }
03564 #ifndef TRILIBRARY
03565         if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
03566             (argv[i][j] == '?')) {
03567           info();
03568     }
03569 #endif /* not TRILIBRARY */
03570       }
03571 #ifndef TRILIBRARY
03572     } else {
03573       strncpy(b->innodefilename, argv[i], FILENAMESIZE - 1);
03574       b->innodefilename[FILENAMESIZE - 1] = '\0';
03575     }
03576 #endif /* not TRILIBRARY */
03577   }
03578 #ifndef TRILIBRARY
03579   if (b->innodefilename[0] == '\0') {
03580     syntax();
03581   }
03582   if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".node")) {
03583     b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
03584   }
03585   if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".poly")) {
03586     b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
03587     b->poly = 1;
03588   }
03589 #ifndef CDT_ONLY
03590   if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 4], ".ele")) {
03591     b->innodefilename[strlen(b->innodefilename) - 4] = '\0';
03592     b->refine = 1;
03593   }
03594   if (!strcmp(&b->innodefilename[strlen(b->innodefilename) - 5], ".area")) {
03595     b->innodefilename[strlen(b->innodefilename) - 5] = '\0';
03596     b->refine = 1;
03597     b->quality = 1;
03598     b->vararea = 1;
03599   }
03600 #endif /* not CDT_ONLY */
03601 #endif /* not TRILIBRARY */
03602   b->usesegments = b->poly || b->refine || b->quality || b->convex;
03603   b->goodangle = cos(b->minangle * PI / 180.0);
03604   if (b->goodangle == 1.0) {
03605     b->offconstant = 0.0;
03606   } else {
03607     b->offconstant = 0.475 * sqrt((1.0 + b->goodangle) / (1.0 - b->goodangle));
03608   }
03609   b->goodangle *= b->goodangle;
03610   if (b->refine && b->noiterationnum) {
03611     printf(
03612       "Error:  You cannot use the -I switch when refining a triangulation.\n");
03613     triexit(1);
03614   }
03615   /* Be careful not to allocate space for element area constraints that */
03616   /*   will never be assigned any value (other than the default -1.0).  */
03617   if (!b->refine && !b->poly) {
03618     b->vararea = 0;
03619   }
03620   /* Be careful not to add an extra attribute to each element unless the */
03621   /*   input supports it (PSLG in, but not refining a preexisting mesh). */
03622   if (b->refine || !b->poly) {
03623     b->regionattrib = 0;
03624   }
03625   /* Regular/weighted triangulations are incompatible with PSLGs */
03626   /*   and meshing.                                              */
03627   if (b->weighted && (b->poly || b->quality)) {
03628     b->weighted = 0;
03629     if (!b->quiet) {
03630       printf("Warning:  weighted triangulations (-w, -W) are incompatible\n");
03631       printf("  with PSLGs (-p) and meshing (-q, -a, -u).  Weights ignored.\n"
03632              );
03633     }
03634   }
03635   if (b->jettison && b->nonodewritten && !b->quiet) {
03636     printf("Warning:  -j and -N switches are somewhat incompatible.\n");
03637     printf("  If any vertices are jettisoned, you will need the output\n");
03638     printf("  .node file to reconstruct the new node indices.");
03639   }
03640 
03641 #ifndef TRILIBRARY
03642   strcpy(b->inpolyfilename, b->innodefilename);
03643   strcpy(b->inelefilename, b->innodefilename);
03644   strcpy(b->areafilename, b->innodefilename);
03645   increment = 0;
03646   strcpy(workstring, b->innodefilename);
03647   j = 1;
03648   while (workstring[j] != '\0') {
03649     if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
03650       increment = j + 1;
03651     }
03652     j++;
03653   }
03654   meshnumber = 0;
03655   if (increment > 0) {
03656     j = increment;
03657     do {
03658       if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
03659         meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
03660       } else {
03661         increment = 0;
03662       }
03663       j++;
03664     } while (workstring[j] != '\0');
03665   }
03666   if (b->noiterationnum) {
03667     strcpy(b->outnodefilename, b->innodefilename);
03668     strcpy(b->outelefilename, b->innodefilename);
03669     strcpy(b->edgefilename, b->innodefilename);
03670     strcpy(b->vnodefilename, b->innodefilename);
03671     strcpy(b->vedgefilename, b->innodefilename);
03672     strcpy(b->neighborfilename, b->innodefilename);
03673     strcpy(b->offfilename, b->innodefilename);
03674     strcat(b->outnodefilename, ".node");
03675     strcat(b->outelefilename, ".ele");
03676     strcat(b->edgefilename, ".edge");
03677     strcat(b->vnodefilename, ".v.node");
03678     strcat(b->vedgefilename, ".v.edge");
03679     strcat(b->neighborfilename, ".neigh");
03680     strcat(b->offfilename, ".off");
03681   } else if (increment == 0) {
03682     strcpy(b->outnodefilename, b->innodefilename);
03683     strcpy(b->outpolyfilename, b->innodefilename);
03684     strcpy(b->outelefilename, b->innodefilename);
03685     strcpy(b->edgefilename, b->innodefilename);
03686     strcpy(b->vnodefilename, b->innodefilename);
03687     strcpy(b->vedgefilename, b->innodefilename);
03688     strcpy(b->neighborfilename, b->innodefilename);
03689     strcpy(b->offfilename, b->innodefilename);
03690     strcat(b->outnodefilename, ".1.node");
03691     strcat(b->outpolyfilename, ".1.poly");
03692     strcat(b->outelefilename, ".1.ele");
03693     strcat(b->edgefilename, ".1.edge");
03694     strcat(b->vnodefilename, ".1.v.node");
03695     strcat(b->vedgefilename, ".1.v.edge");
03696     strcat(b->neighborfilename, ".1.neigh");
03697     strcat(b->offfilename, ".1.off");
03698   } else {
03699     workstring[increment] = '%';
03700     workstring[increment + 1] = 'd';
03701     workstring[increment + 2] = '\0';
03702     sprintf(b->outnodefilename, workstring, meshnumber + 1);
03703     strcpy(b->outpolyfilename, b->outnodefilename);
03704     strcpy(b->outelefilename, b->outnodefilename);
03705     strcpy(b->edgefilename, b->outnodefilename);
03706     strcpy(b->vnodefilename, b->outnodefilename);
03707     strcpy(b->vedgefilename, b->outnodefilename);
03708     strcpy(b->neighborfilename, b->outnodefilename);
03709     strcpy(b->offfilename, b->outnodefilename);
03710     strcat(b->outnodefilename, ".node");
03711     strcat(b->outpolyfilename, ".poly");
03712     strcat(b->outelefilename, ".ele");
03713     strcat(b->edgefilename, ".edge");
03714     strcat(b->vnodefilename, ".v.node");
03715     strcat(b->vedgefilename, ".v.edge");
03716     strcat(b->neighborfilename, ".neigh");
03717     strcat(b->offfilename, ".off");
03718   }
03719   strcat(b->innodefilename, ".node");
03720   strcat(b->inpolyfilename, ".poly");
03721   strcat(b->inelefilename, ".ele");
03722   strcat(b->areafilename, ".area");
03723 #endif /* not TRILIBRARY */
03724 }
03725 
03728 /********* User interaction routines begin here                      *********/
03729 
03730 /********* Debugging routines begin here                             *********/
03734 /*****************************************************************************/
03735 /*                                                                           */
03736 /*  printtriangle()   Print out the details of an oriented triangle.         */
03737 /*                                                                           */
03738 /*  I originally wrote this procedure to simplify debugging; it can be       */
03739 /*  called directly from the debugger, and presents information about an     */
03740 /*  oriented triangle in digestible form.  It's also used when the           */
03741 /*  highest level of verbosity (`-VVV') is specified.                        */
03742 /*                                                                           */
03743 /*****************************************************************************/
03744 
03745 #ifdef ANSI_DECLARATORS
03746 void printtriangle(struct mesh *m, struct behavior *b, struct otri *t)
03747 #else /* not ANSI_DECLARATORS */
03748 void printtriangle(m, b, t)
03749 struct mesh *m;
03750 struct behavior *b;
03751 struct otri *t;
03752 #endif /* not ANSI_DECLARATORS */
03753 
03754 {
03755   struct otri printtri;
03756   struct osub printsh;
03757   vertex printvertex;
03758 
03759   printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
03760          t->orient);
03761   decode(t->tri[0], printtri);
03762   if (printtri.tri == m->dummytri) {
03763     printf("    [0] = Outer space\n");
03764   } else {
03765     printf("    [0] = x%lx  %d\n", (unsigned long) printtri.tri,
03766            printtri.orient);
03767   }
03768   decode(t->tri[1], printtri);
03769   if (printtri.tri == m->dummytri) {
03770     printf("    [1] = Outer space\n");
03771   } else {
03772     printf("    [1] = x%lx  %d\n", (unsigned long) printtri.tri,
03773            printtri.orient);
03774   }
03775   decode(t->tri[2], printtri);
03776   if (printtri.tri == m->dummytri) {
03777     printf("    [2] = Outer space\n");
03778   } else {
03779     printf("    [2] = x%lx  %d\n", (unsigned long) printtri.tri,
03780            printtri.orient);
03781   }
03782 
03783   org(*t, printvertex);
03784   if (printvertex == (vertex) NULL)
03785     printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
03786   else
03787     printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
03788            (t->orient + 1) % 3 + 3, (unsigned long) printvertex,
03789            printvertex[0], printvertex[1]);
03790   dest(*t, printvertex);
03791   if (printvertex == (vertex) NULL)
03792     printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
03793   else
03794     printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
03795            (t->orient + 2) % 3 + 3, (unsigned long) printvertex,
03796            printvertex[0], printvertex[1]);
03797   apex(*t, printvertex);
03798   if (printvertex == (vertex) NULL)
03799     printf("    Apex  [%d] = NULL\n", t->orient + 3);
03800   else
03801     printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
03802            t->orient + 3, (unsigned long) printvertex,
03803            printvertex[0], printvertex[1]);
03804 
03805   if (b->usesegments) {
03806     sdecode(t->tri[6], printsh);
03807     if (printsh.ss != m->dummysub) {
03808       printf("    [6] = x%lx  %d\n", (unsigned long) printsh.ss,
03809              printsh.ssorient);
03810     }
03811     sdecode(t->tri[7], printsh);
03812     if (printsh.ss != m->dummysub) {
03813       printf("    [7] = x%lx  %d\n", (unsigned long) printsh.ss,
03814              printsh.ssorient);
03815     }
03816     sdecode(t->tri[8], printsh);
03817     if (printsh.ss != m->dummysub) {
03818       printf("    [8] = x%lx  %d\n", (unsigned long) printsh.ss,
03819              printsh.ssorient);
03820     }
03821   }
03822 
03823   if (b->vararea) {
03824     printf("    Area constraint:  %.4g\n", areabound(*t));
03825   }
03826 }
03827 
03828 /*****************************************************************************/
03829 /*                                                                           */
03830 /*  printsubseg()   Print out the details of an oriented subsegment.         */
03831 /*                                                                           */
03832 /*  I originally wrote this procedure to simplify debugging; it can be       */
03833 /*  called directly from the debugger, and presents information about an     */
03834 /*  oriented subsegment in digestible form.  It's also used when the highest */
03835 /*  level of verbosity (`-VVV') is specified.                                */
03836 /*                                                                           */
03837 /*****************************************************************************/
03838 
03839 #ifdef ANSI_DECLARATORS
03840 void printsubseg(struct mesh *m, struct behavior *b, struct osub *s)
03841 #else /* not ANSI_DECLARATORS */
03842 void printsubseg(m, b, s)
03843 struct mesh *m;
03844 struct behavior *b;
03845 struct osub *s;
03846 #endif /* not ANSI_DECLARATORS */
03847 
03848 {
03849   struct osub printsh;
03850   struct otri printtri;
03851   vertex printvertex;
03852 
03853   printf("subsegment x%lx with orientation %d and mark %d:\n",
03854          (unsigned long) s->ss, s->ssorient, mark(*s));
03855   sdecode(s->ss[0], printsh);
03856   if (printsh.ss == m->dummysub) {
03857     printf("    [0] = No subsegment\n");
03858   } else {
03859     printf("    [0] = x%lx  %d\n", (unsigned long) printsh.ss,
03860            printsh.ssorient);
03861   }
03862   sdecode(s->ss[1], printsh);
03863   if (printsh.ss == m->dummysub) {
03864     printf("    [1] = No subsegment\n");
03865   } else {
03866     printf("    [1] = x%lx  %d\n", (unsigned long) printsh.ss,
03867            printsh.ssorient);
03868   }
03869 
03870   sorg(*s, printvertex);
03871   if (printvertex == (vertex) NULL)
03872     printf("    Origin[%d] = NULL\n", 2 + s->ssorient);
03873   else
03874     printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
03875            2 + s->ssorient, (unsigned long) printvertex,
03876            printvertex[0], printvertex[1]);
03877   sdest(*s, printvertex);
03878   if (printvertex == (vertex) NULL)
03879     printf("    Dest  [%d] = NULL\n", 3 - s->ssorient);
03880   else
03881     printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
03882            3 - s->ssorient, (unsigned long) printvertex,
03883            printvertex[0], printvertex[1]);
03884 
03885   decode(s->ss[6], printtri);
03886   if (printtri.tri == m->dummytri) {
03887     printf("    [6] = Outer space\n");
03888   } else {
03889     printf("    [6] = x%lx  %d\n", (unsigned long) printtri.tri,
03890            printtri.orient);
03891   }
03892   decode(s->ss[7], printtri);
03893   if (printtri.tri == m->dummytri) {
03894     printf("    [7] = Outer space\n");
03895   } else {
03896     printf("    [7] = x%lx  %d\n", (unsigned long) printtri.tri,
03897            printtri.orient);
03898   }
03899 
03900   segorg(*s, printvertex);
03901   if (printvertex == (vertex) NULL)
03902     printf("    Segment origin[%d] = NULL\n", 4 + s->ssorient);
03903   else
03904     printf("    Segment origin[%d] = x%lx  (%.12g, %.12g)\n",
03905            4 + s->ssorient, (unsigned long) printvertex,
03906            printvertex[0], printvertex[1]);
03907   segdest(*s, printvertex);
03908   if (printvertex == (vertex) NULL)
03909     printf("    Segment dest  [%d] = NULL\n", 5 - s->ssorient);
03910   else
03911     printf("    Segment dest  [%d] = x%lx  (%.12g, %.12g)\n",
03912            5 - s->ssorient, (unsigned long) printvertex,
03913            printvertex[0], printvertex[1]);
03914 }
03915 
03918 /********* Debugging routines end here                               *********/
03919 
03920 /********* Memory management routines begin here                     *********/
03924 /*****************************************************************************/
03925 /*                                                                           */
03926 /*  poolzero()   Set all of a pool's fields to zero.                         */
03927 /*                                                                           */
03928 /*  This procedure should never be called on a pool that has any memory      */
03929 /*  allocated to it, as that memory would leak.                              */
03930 /*                                                                           */
03931 /*****************************************************************************/
03932 
03933 #ifdef ANSI_DECLARATORS
03934 void poolzero(struct memorypool* pool)
03935 #else /* not ANSI_DECLARATORS */
03936 void poolzero(pool)
03937 struct memorypool* pool;
03938 #endif /* not ANSI_DECLARATORS */
03939 
03940 {
03941   pool->firstblock = (VOID **) NULL;
03942   pool->nowblock = (VOID **) NULL;
03943   pool->nextitem = (VOID *) NULL;
03944   pool->deaditemstack = (VOID *) NULL;
03945   pool->pathblock = (VOID **) NULL;
03946   pool->pathitem = (VOID *) NULL;
03947   pool->alignbytes = 0;
03948   pool->itembytes = 0;
03949   pool->itemsperblock = 0;
03950   pool->itemsfirstblock = 0;
03951   pool->items = 0;
03952   pool->maxitems = 0;
03953   pool->unallocateditems = 0;
03954   pool->pathitemsleft = 0;
03955 }
03956 
03957 /*****************************************************************************/
03958 /*                                                                           */
03959 /*  poolrestart()   Deallocate all items in a pool.                          */
03960 /*                                                                           */
03961 /*  The pool is returned to its starting state, except that no memory is     */
03962 /*  freed to the operating system.  Rather, the previously allocated blocks  */
03963 /*  are ready to be reused.                                                  */
03964 /*                                                                           */
03965 /*****************************************************************************/
03966 
03967 #ifdef ANSI_DECLARATORS
03968 void poolrestart(struct memorypool* pool)
03969 #else /* not ANSI_DECLARATORS */
03970 void poolrestart(pool)
03971 struct memorypool* pool;
03972 #endif /* not ANSI_DECLARATORS */
03973 
03974 {
03975   unsigned long alignptr;
03976 
03977   pool->items = 0;
03978   pool->maxitems = 0;
03979 
03980   /* Set the currently active block. */
03981   pool->nowblock = pool->firstblock;
03982   /* Find the first item in the pool.  Increment by the size of (VOID *). */
03983   alignptr = (unsigned long) (pool->nowblock + 1);
03984   /* Align the item on an `alignbytes'-byte boundary. */
03985   pool->nextitem = (VOID *)
03986     (alignptr + (unsigned long) pool->alignbytes -
03987      (alignptr % (unsigned long) pool->alignbytes));
03988   /* There are lots of unallocated items left in this block. */
03989   pool->unallocateditems = pool->itemsfirstblock;
03990   /* The stack of deallocated items is empty. */
03991   pool->deaditemstack = (VOID *) NULL;
03992 }
03993 
03994 /*****************************************************************************/
03995 /*                                                                           */
03996 /*  poolinit()   Initialize a pool of memory for allocation of items.        */
03997 /*                                                                           */
03998 /*  This routine initializes the machinery for allocating items.  A `pool'   */
03999 /*  is created whose records have size at least `bytecount'.  Items will be  */
04000 /*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
04001 /*  collection of words, and either pointers or floating-point values are    */
04002 /*  assumed to be the "primary" word type.  (The "primary" word type is used */
04003 /*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
04004 /*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
04005 /*  a multiple or a factor of the primary word size; powers of two are safe. */
04006 /*  `alignment' is normally used to create a few unused bits at the bottom   */
04007 /*  of each item's pointer, in which information may be stored.              */
04008 /*                                                                           */
04009 /*  Don't change this routine unless you understand it.                      */
04010 /*                                                                           */
04011 /*****************************************************************************/
04012 
04013 #ifdef ANSI_DECLARATORS
04014 void poolinit(struct memorypool* pool, int bytecount, int itemcount,
04015               int firstitemcount, unsigned alignment)
04016 #else /* not ANSI_DECLARATORS */
04017 void poolinit(pool, bytecount, itemcount, firstitemcount, alignment)
04018 struct memorypool* pool;
04019 int bytecount;
04020 int itemcount;
04021 int firstitemcount;
04022 unsigned alignment;
04023 #endif /* not ANSI_DECLARATORS */
04024 
04025 {
04026   /* Find the proper alignment, which must be at least as large as:   */
04027   /*   - The parameter `alignment'.                                   */
04028   /*   - sizeof(VOID *), so the stack of dead items can be maintained */
04029   /*       without unaligned accesses.                                */
04030   if (alignment > sizeof(VOID *)) {
04031     pool->alignbytes = alignment;
04032   } else {
04033     pool->alignbytes = sizeof(VOID *);
04034   }
04035   pool->itembytes = ((bytecount - 1) / pool->alignbytes + 1) *
04036                     pool->alignbytes;
04037   pool->itemsperblock = itemcount;
04038   if (firstitemcount == 0) {
04039     pool->itemsfirstblock = itemcount;
04040   } else {
04041     pool->itemsfirstblock = firstitemcount;
04042   }
04043 
04044   /* Allocate a block of items.  Space for `itemsfirstblock' items and one  */
04045   /*   pointer (to point to the next block) are allocated, as well as space */
04046   /*   to ensure alignment of the items.                                    */
04047   pool->firstblock = (VOID **)
04048     trimalloc(pool->itemsfirstblock * pool->itembytes + (int) sizeof(VOID *) +
04049               pool->alignbytes);
04050   /* Set the next block pointer to NULL. */
04051   *(pool->firstblock) = (VOID *) NULL;
04052   poolrestart(pool);
04053 }
04054 
04055 /*****************************************************************************/
04056 /*                                                                           */
04057 /*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
04058 /*                                                                           */
04059 /*****************************************************************************/
04060 
04061 #ifdef ANSI_DECLARATORS
04062 void pooldeinit(struct memorypool* pool)
04063 #else /* not ANSI_DECLARATORS */
04064 void pooldeinit(pool)
04065 struct memorypool* pool;
04066 #endif /* not ANSI_DECLARATORS */
04067 
04068 {
04069   while (pool->firstblock != (VOID **) NULL) {
04070     pool->nowblock = (VOID **) *(pool->firstblock);
04071     trifree((VOID *) pool->firstblock);
04072     pool->firstblock = pool->nowblock;
04073   }
04074 }
04075 
04076 /*****************************************************************************/
04077 /*                                                                           */
04078 /*  poolalloc()   Allocate space for an item.                                */
04079 /*                                                                           */
04080 /*****************************************************************************/
04081 
04082 #ifdef ANSI_DECLARATORS
04083 VOID* poolalloc(struct memorypool* pool)
04084 #else /* not ANSI_DECLARATORS */
04085 VOID* poolalloc(pool)
04086 struct memorypool* pool;
04087 #endif /* not ANSI_DECLARATORS */
04088 
04089 {
04090   VOID *newitem;
04091   VOID **newblock;
04092   unsigned long alignptr;
04093 
04094   /* First check the linked list of dead items.  If the list is not   */
04095   /*   empty, allocate an item from the list rather than a fresh one. */
04096   if (pool->deaditemstack != (VOID *) NULL) {
04097     newitem = pool->deaditemstack;               /* Take first item in list. */
04098     pool->deaditemstack = * (VOID **) pool->deaditemstack;
04099   } else {
04100     /* Check if there are any free items left in the current block. */
04101     if (pool->unallocateditems == 0) {
04102       /* Check if another block must be allocated. */
04103       if (*(pool->nowblock) == (VOID *) NULL) {
04104         /* Allocate a new block of items, pointed to by the previous block. */
04105         newblock = (VOID **) trimalloc(pool->itemsperblock * pool->itembytes +
04106                                        (int) sizeof(VOID *) +
04107                                        pool->alignbytes);
04108         *(pool->nowblock) = (VOID *) newblock;
04109         /* The next block pointer is NULL. */
04110         *newblock = (VOID *) NULL;
04111       }
04112 
04113       /* Move to the new block. */
04114       pool->nowblock = (VOID **) *(pool->nowblock);
04115       /* Find the first item in the block.    */
04116       /*   Increment by the size of (VOID *). */
04117       alignptr = (unsigned long) (pool->nowblock + 1);
04118       /* Align the item on an `alignbytes'-byte boundary. */
04119       pool->nextitem = (VOID *)
04120         (alignptr + (unsigned long) pool->alignbytes -
04121          (alignptr % (unsigned long) pool->alignbytes));
04122       /* There are lots of unallocated items left in this block. */
04123       pool->unallocateditems = pool->itemsperblock;
04124     }
04125 
04126     /* Allocate a new item. */
04127     newitem = pool->nextitem;
04128     /* Advance `nextitem' pointer to next free item in block. */
04129     pool->nextitem = (VOID *) ((char *) pool->nextitem + pool->itembytes);
04130     pool->unallocateditems--;
04131     pool->maxitems++;
04132   }
04133   pool->items++;
04134   return newitem;
04135 }
04136 
04137 /*****************************************************************************/
04138 /*                                                                           */
04139 /*  pooldealloc()   Deallocate space for an item.                            */
04140 /*                                                                           */
04141 /*  The deallocated space is stored in a queue for later reuse.              */
04142 /*                                                                           */
04143 /*****************************************************************************/
04144 
04145 #ifdef ANSI_DECLARATORS
04146 void pooldealloc(struct memorypool* pool, VOID *dyingitem)
04147 #else /* not ANSI_DECLARATORS */
04148 void pooldealloc(pool, dyingitem)
04149 struct memorypool* pool;
04150 VOID *dyingitem;
04151 #endif /* not ANSI_DECLARATORS */
04152 
04153 {
04154   /* Push freshly killed item onto stack. */
04155   *((VOID **) dyingitem) = pool->deaditemstack;
04156   pool->deaditemstack = dyingitem;
04157   pool->items--;
04158 }
04159 
04160 /*****************************************************************************/
04161 /*                                                                           */
04162 /*  traversalinit()   Prepare to traverse the entire list of items.          */
04163 /*                                                                           */
04164 /*  This routine is used in conjunction with traverse().                     */
04165 /*                                                                           */
04166 /*****************************************************************************/
04167 
04168 #ifdef ANSI_DECLARATORS
04169 void traversalinit(struct memorypool* pool)
04170 #else /* not ANSI_DECLARATORS */
04171 void traversalinit(pool)
04172 struct memorypool* pool;
04173 #endif /* not ANSI_DECLARATORS */
04174 
04175 {
04176   unsigned long alignptr;
04177 
04178   /* Begin the traversal in the first block. */
04179   pool->pathblock = pool->firstblock;
04180   /* Find the first item in the block.  Increment by the size of (VOID *). */
04181   alignptr = (unsigned long) (pool->pathblock + 1);
04182   /* Align with item on an `alignbytes'-byte boundary. */
04183   pool->pathitem = (VOID *)
04184     (alignptr + (unsigned long) pool->alignbytes -
04185      (alignptr % (unsigned long) pool->alignbytes));
04186   /* Set the number of items left in the current block. */
04187   pool->pathitemsleft = pool->itemsfirstblock;
04188 }
04189 
04190 /*****************************************************************************/
04191 /*                                                                           */
04192 /*  traverse()   Find the next item in the list.                             */
04193 /*                                                                           */
04194 /*  This routine is used in conjunction with traversalinit().  Be forewarned */
04195 /*  that this routine successively returns all items in the list, including  */
04196 /*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
04197 /*  which ones are actually dead.  Why?  I don't want to allocate extra      */
04198 /*  space just to demarcate dead items.  It can usually be done more         */
04199 /*  space-efficiently by a routine that knows something about the structure  */
04200 /*  of the item.                                                             */
04201 /*                                                                           */
04202 /*****************************************************************************/
04203 
04204 #ifdef ANSI_DECLARATORS
04205 VOID *traverse(struct memorypool* pool)
04206 #else /* not ANSI_DECLARATORS */
04207 VOID *traverse(pool)
04208 struct memorypool* pool;
04209 #endif /* not ANSI_DECLARATORS */
04210 
04211 {
04212   VOID *newitem;
04213   unsigned long alignptr;
04214 
04215   /* Stop upon exhausting the list of items. */
04216   if (pool->pathitem == pool->nextitem) {
04217     return (VOID *) NULL;
04218   }
04219 
04220   /* Check whether any untraversed items remain in the current block. */
04221   if (pool->pathitemsleft == 0) {
04222     /* Find the next block. */
04223     pool->pathblock = (VOID **) *(pool->pathblock);
04224     /* Find the first item in the block.  Increment by the size of (VOID *). */
04225     alignptr = (unsigned long) (pool->pathblock + 1);
04226     /* Align with item on an `alignbytes'-byte boundary. */
04227     pool->pathitem = (VOID *)
04228       (alignptr + (unsigned long) pool->alignbytes -
04229        (alignptr % (unsigned long) pool->alignbytes));
04230     /* Set the number of items left in the current block. */
04231     pool->pathitemsleft = pool->itemsperblock;
04232   }
04233 
04234   newitem = pool->pathitem;
04235   /* Find the next item in the block. */
04236   pool->pathitem = (VOID *) ((char *) pool->pathitem + pool->itembytes);
04237   pool->pathitemsleft--;
04238   return newitem;
04239 }
04240 
04241 /*****************************************************************************/
04242 /*                                                                           */
04243 /*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
04244 /*                omnipresent subsegment.                                    */
04245 /*                                                                           */
04246 /*  The triangle that fills "outer space," called `dummytri', is pointed to  */
04247 /*  by every triangle and subsegment on a boundary (be it outer or inner) of */
04248 /*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
04249 /*  the convex hull (until the holes and concavities are carved), making it  */
04250 /*  possible to find a starting triangle for point location.                 */
04251 /*                                                                           */
04252 /*  The omnipresent subsegment, `dummysub', is pointed to by every triangle  */
04253 /*  or subsegment that doesn't have a full complement of real subsegments    */
04254 /*  to point to.                                                             */
04255 /*                                                                           */
04256 /*  `dummytri' and `dummysub' are generally required to fulfill only a few   */
04257 /*  invariants:  their vertices must remain NULL and `dummytri' must always  */
04258 /*  be bonded (at offset zero) to some triangle on the convex hull of the    */
04259 /*  mesh, via a boundary edge.  Otherwise, the connections of `dummytri' and */
04260 /*  `dummysub' may change willy-nilly.  This makes it possible to avoid      */
04261 /*  writing a good deal of special-case code (in the edge flip, for example) */
04262 /*  for dealing with the boundary of the mesh, places where no subsegment is */
04263 /*  present, and so forth.  Other entities are frequently bonded to          */
04264 /*  `dummytri' and `dummysub' as if they were real mesh entities, with no    */
04265 /*  harm done.                                                               */
04266 /*                                                                           */
04267 /*****************************************************************************/
04268 
04269 #ifdef ANSI_DECLARATORS
04270 void dummyinit(struct mesh *m, struct behavior *b, int trianglebytes,
04271                int subsegbytes)
04272 #else /* not ANSI_DECLARATORS */
04273 void dummyinit(m, b, trianglebytes, subsegbytes)
04274 struct mesh *m;
04275 struct behavior *b;
04276 int trianglebytes;
04277 int subsegbytes;
04278 #endif /* not ANSI_DECLARATORS */
04279 
04280 {
04281   unsigned long alignptr;
04282 
04283   /* Set up `dummytri', the `triangle' that occupies "outer space." */
04284   m->dummytribase = (triangle *) trimalloc(trianglebytes +
04285                                            m->triangles.alignbytes);
04286   /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
04287   alignptr = (unsigned long) m->dummytribase;
04288   m->dummytri = (triangle *)
04289     (alignptr + (unsigned long) m->triangles.alignbytes -
04290      (alignptr % (unsigned long) m->triangles.alignbytes));
04291   /* Initialize the three adjoining triangles to be "outer space."  These  */
04292   /*   will eventually be changed by various bonding operations, but their */
04293   /*   values don't really matter, as long as they can legally be          */
04294   /*   dereferenced.                                                       */
04295   m->dummytri[0] = (triangle) m->dummytri;
04296   m->dummytri[1] = (triangle) m->dummytri;
04297   m->dummytri[2] = (triangle) m->dummytri;
04298   /* Three NULL vertices. */
04299   m->dummytri[3] = (triangle) NULL;
04300   m->dummytri[4] = (triangle) NULL;
04301   m->dummytri[5] = (triangle) NULL;
04302 
04303   if (b->usesegments) {
04304     /* Set up `dummysub', the omnipresent subsegment pointed to by any */
04305     /*   triangle side or subsegment end that isn't attached to a real */
04306     /*   subsegment.                                                   */
04307     m->dummysubbase = (subseg *) trimalloc(subsegbytes +
04308                                            m->subsegs.alignbytes);
04309     /* Align `dummysub' on a `subsegs.alignbytes'-byte boundary. */
04310     alignptr = (unsigned long) m->dummysubbase;
04311     m->dummysub = (subseg *)
04312       (alignptr + (unsigned long) m->subsegs.alignbytes -
04313        (alignptr % (unsigned long) m->subsegs.alignbytes));
04314     /* Initialize the two adjoining subsegments to be the omnipresent      */
04315     /*   subsegment.  These will eventually be changed by various bonding  */
04316     /*   operations, but their values don't really matter, as long as they */
04317     /*   can legally be dereferenced.                                      */
04318     m->dummysub[0] = (subseg) m->dummysub;
04319     m->dummysub[1] = (subseg) m->dummysub;
04320     /* Four NULL vertices. */
04321     m->dummysub[2] = (subseg) NULL;
04322     m->dummysub[3] = (subseg) NULL;
04323     m->dummysub[4] = (subseg) NULL;
04324     m->dummysub[5] = (subseg) NULL;
04325     /* Initialize the two adjoining triangles to be "outer space." */
04326     m->dummysub[6] = (subseg) m->dummytri;
04327     m->dummysub[7] = (subseg) m->dummytri;
04328     /* Set the boundary marker to zero. */
04329     * (int *) (m->dummysub + 8) = 0;
04330 
04331     /* Initialize the three adjoining subsegments of `dummytri' to be */
04332     /*   the omnipresent subsegment.                                  */
04333     m->dummytri[6] = (triangle) m->dummysub;
04334     m->dummytri[7] = (triangle) m->dummysub;
04335     m->dummytri[8] = (triangle) m->dummysub;
04336   }
04337 }
04338 
04339 /*****************************************************************************/
04340 /*                                                                           */
04341 /*  initializevertexpool()   Calculate the size of the vertex data structure */
04342 /*                           and initialize its memory pool.                 */
04343 /*                                                                           */
04344 /*  This routine also computes the `vertexmarkindex' and `vertex2triindex'   */
04345 /*  indices used to find values within each vertex.                          */
04346 /*                                                                           */
04347 /*****************************************************************************/
04348 
04349 #ifdef ANSI_DECLARATORS
04350 void initializevertexpool(struct mesh *m, struct behavior *b)
04351 #else /* not ANSI_DECLARATORS */
04352 void initializevertexpool(m, b)
04353 struct mesh *m;
04354 struct behavior *b;
04355 #endif /* not ANSI_DECLARATORS */
04356 
04357 {
04358   int vertexsize;
04359 
04360   /* The index within each vertex at which the boundary marker is found,    */
04361   /*   followed by the vertex type.  Ensure the vertex marker is aligned to */
04362   /*   a sizeof(int)-byte address.                                          */
04363   m->vertexmarkindex = ((m->mesh_dim + m->nextras) * sizeof(REAL) +
04364                         sizeof(int) - 1) /
04365                        sizeof(int);
04366   vertexsize = (m->vertexmarkindex + 2) * sizeof(int);
04367   if (b->poly) {
04368     /* The index within each vertex at which a triangle pointer is found.  */
04369     /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
04370     m->vertex2triindex = (vertexsize + sizeof(triangle) - 1) /
04371                          sizeof(triangle);
04372     vertexsize = (m->vertex2triindex + 1) * sizeof(triangle);
04373   }
04374 
04375   /* Initialize the pool of vertices. */
04376   poolinit(&m->vertices, vertexsize, VERTEXPERBLOCK,
04377            m->invertices > VERTEXPERBLOCK ? m->invertices : VERTEXPERBLOCK,
04378            sizeof(REAL));
04379 }
04380 
04381 /*****************************************************************************/
04382 /*                                                                           */
04383 /*  initializetrisubpools()   Calculate the sizes of the triangle and        */
04384 /*                            subsegment data structures and initialize      */
04385 /*                            their memory pools.                            */
04386 /*                                                                           */
04387 /*  This routine also computes the `highorderindex', `elemattribindex', and  */
04388 /*  `areaboundindex' indices used to find values within each triangle.       */
04389 /*                                                                           */
04390 /*****************************************************************************/
04391 
04392 #ifdef ANSI_DECLARATORS
04393 void initializetrisubpools(struct mesh *m, struct behavior *b)
04394 #else /* not ANSI_DECLARATORS */
04395 void initializetrisubpools(m, b)
04396 struct mesh *m;
04397 struct behavior *b;
04398 #endif /* not ANSI_DECLARATORS */
04399 
04400 {
04401   unsigned trisize;
04402 
04403   /* The index within each triangle at which the extra nodes (above three)  */
04404   /*   associated with high order elements are found.  There are three      */
04405   /*   pointers to other triangles, three pointers to corners, and possibly */
04406   /*   three pointers to subsegments before the extra nodes.                */
04407   m->highorderindex = 6 + (b->usesegments * 3);
04408   /* The number of bytes occupied by a triangle. */
04409   trisize = ((b->order + 1) * (b->order + 2) / 2 + (m->highorderindex - 3)) *
04410             sizeof(triangle);
04411   /* The index within each triangle at which its attributes are found, */
04412   /*   where the index is measured in REALs.                           */
04413   m->elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
04414   /* The index within each triangle at which the maximum area constraint  */
04415   /*   is found, where the index is measured in REALs.  Note that if the  */
04416   /*   `regionattrib' flag is set, an additional attribute will be added. */
04417   m->areaboundindex = m->elemattribindex + m->eextras + b->regionattrib;
04418   /* If triangle attributes or an area bound are needed, increase the number */
04419   /*   of bytes occupied by a triangle.                                      */
04420   if (b->vararea) {
04421     trisize = (m->areaboundindex + 1) * sizeof(REAL);
04422   } else if (m->eextras + b->regionattrib > 0) {
04423     trisize = m->areaboundindex * sizeof(REAL);
04424   }
04425   /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
04426   /*   sure there's room to store an integer index in each triangle.  This */
04427   /*   integer index can occupy the same space as the subsegment pointers  */
04428   /*   or attributes or area constraint or extra nodes.                    */
04429   if ((b->voronoi || b->neighbors) &&
04430       (trisize < 6 * sizeof(triangle) + sizeof(int))) {
04431     trisize = 6 * sizeof(triangle) + sizeof(int);
04432   }
04433 
04434   /* Having determined the memory size of a triangle, initialize the pool. */
04435   poolinit(&m->triangles, trisize, TRIPERBLOCK,
04436            (2 * m->invertices - 2) > TRIPERBLOCK ? (2 * m->invertices - 2) :
04437            TRIPERBLOCK, 4);
04438 
04439   if (b->usesegments) {
04440     /* Initialize the pool of subsegments.  Take into account all eight */
04441     /*   pointers and one boundary marker.                              */
04442     poolinit(&m->subsegs, 8 * sizeof(triangle) + sizeof(int),
04443              SUBSEGPERBLOCK, SUBSEGPERBLOCK, 4);
04444 
04445     /* Initialize the "outer space" triangle and omnipresent subsegment. */
04446     dummyinit(m, b, m->triangles.itembytes, m->subsegs.itembytes);
04447   } else {
04448     /* Initialize the "outer space" triangle. */
04449     dummyinit(m, b, m->triangles.itembytes, 0);
04450   }
04451 }
04452 
04453 /*****************************************************************************/
04454 /*                                                                           */
04455 /*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
04456 /*                                                                           */
04457 /*****************************************************************************/
04458 
04459 #ifdef ANSI_DECLARATORS
04460 void triangledealloc(struct mesh *m, triangle *dyingtriangle)
04461 #else /* not ANSI_DECLARATORS */
04462 void triangledealloc(m, dyingtriangle)
04463 struct mesh *m;
04464 triangle *dyingtriangle;
04465 #endif /* not ANSI_DECLARATORS */
04466 
04467 {
04468   /* Mark the triangle as dead.  This makes it possible to detect dead */
04469   /*   triangles when traversing the list of all triangles.            */
04470   killtri(dyingtriangle);
04471   pooldealloc(&m->triangles, (VOID *) dyingtriangle);
04472 }
04473 
04474 /*****************************************************************************/
04475 /*                                                                           */
04476 /*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
04477 /*                                                                           */
04478 /*****************************************************************************/
04479 
04480 #ifdef ANSI_DECLARATORS
04481 triangle *triangletraverse(struct mesh *m)
04482 #else /* not ANSI_DECLARATORS */
04483 triangle *triangletraverse(m)
04484 struct mesh *m;
04485 #endif /* not ANSI_DECLARATORS */
04486 
04487 {
04488   triangle *newtriangle;
04489 
04490   do {
04491     newtriangle = (triangle *) traverse(&m->triangles);
04492     if (newtriangle == (triangle *) NULL) {
04493       return (triangle *) NULL;
04494     }
04495   } while (deadtri(newtriangle));                         /* Skip dead ones. */
04496   return newtriangle;
04497 }
04498 
04499 /*****************************************************************************/
04500 /*                                                                           */
04501 /*  subsegdealloc()   Deallocate space for a subsegment, marking it dead.    */
04502 /*                                                                           */
04503 /*****************************************************************************/
04504 
04505 #ifdef ANSI_DECLARATORS
04506 void subsegdealloc(struct mesh *m, subseg *dyingsubseg)
04507 #else /* not ANSI_DECLARATORS */
04508 void subsegdealloc(m, dyingsubseg)
04509 struct mesh *m;
04510 subseg *dyingsubseg;
04511 #endif /* not ANSI_DECLARATORS */
04512 
04513 {
04514   /* Mark the subsegment as dead.  This makes it possible to detect dead */
04515   /*   subsegments when traversing the list of all subsegments.          */
04516   killsubseg(dyingsubseg);
04517   pooldealloc(&m->subsegs, (VOID *) dyingsubseg);
04518 }
04519 
04520 /*****************************************************************************/
04521 /*                                                                           */
04522 /*  subsegtraverse()   Traverse the subsegments, skipping dead ones.         */
04523 /*                                                                           */
04524 /*****************************************************************************/
04525 
04526 #ifdef ANSI_DECLARATORS
04527 subseg *subsegtraverse(struct mesh *m)
04528 #else /* not ANSI_DECLARATORS */
04529 subseg *subsegtraverse(m)
04530 struct mesh *m;
04531 #endif /* not ANSI_DECLARATORS */
04532 
04533 {
04534   subseg *newsubseg;
04535 
04536   do {
04537     newsubseg = (subseg *) traverse(&m->subsegs);
04538     if (newsubseg == (subseg *) NULL) {
04539       return (subseg *) NULL;
04540     }
04541   } while (deadsubseg(newsubseg));                        /* Skip dead ones. */
04542   return newsubseg;
04543 }
04544 
04545 /*****************************************************************************/
04546 /*                                                                           */
04547 /*  vertexdealloc()   Deallocate space for a vertex, marking it dead.        */
04548 /*                                                                           */
04549 /*****************************************************************************/
04550 
04551 #ifdef ANSI_DECLARATORS
04552 void vertexdealloc(struct mesh *m, vertex dyingvertex)
04553 #else /* not ANSI_DECLARATORS */
04554 void vertexdealloc(m, dyingvertex)
04555 struct mesh *m;
04556 vertex dyingvertex;
04557 #endif /* not ANSI_DECLARATORS */
04558 
04559 {
04560   /* Mark the vertex as dead.  This makes it possible to detect dead */
04561   /*   vertices when traversing the list of all vertices.            */
04562   setvertextype(dyingvertex, DEADVERTEX);
04563   pooldealloc(&m->vertices, (VOID *) dyingvertex);
04564 }
04565 
04566 /*****************************************************************************/
04567 /*                                                                           */
04568 /*  vertextraverse()   Traverse the vertices, skipping dead ones.            */
04569 /*                                                                           */
04570 /*****************************************************************************/
04571 
04572 #ifdef ANSI_DECLARATORS
04573 vertex vertextraverse(struct mesh *m)
04574 #else /* not ANSI_DECLARATORS */
04575 vertex vertextraverse(m)
04576 struct mesh *m;
04577 #endif /* not ANSI_DECLARATORS */
04578 
04579 {
04580   vertex newvertex;
04581 
04582   do {
04583     newvertex = (vertex) traverse(&m->vertices);
04584     if (newvertex == (vertex) NULL) {
04585       return (vertex) NULL;
04586     }
04587   } while (vertextype(newvertex) == DEADVERTEX);          /* Skip dead ones. */
04588   return newvertex;
04589 }
04590 
04591 /*****************************************************************************/
04592 /*                                                                           */
04593 /*  badsubsegdealloc()   Deallocate space for a bad subsegment, marking it   */
04594 /*                       dead.                                               */
04595 /*                                                                           */
04596 /*****************************************************************************/
04597 
04598 #ifndef CDT_ONLY
04599 
04600 #ifdef ANSI_DECLARATORS
04601 void badsubsegdealloc(struct mesh *m, struct badsubseg *dyingseg)
04602 #else /* not ANSI_DECLARATORS */
04603 void badsubsegdealloc(m, dyingseg)
04604 struct mesh *m;
04605 struct badsubseg *dyingseg;
04606 #endif /* not ANSI_DECLARATORS */
04607 
04608 {
04609   /* Set subsegment's origin to NULL.  This makes it possible to detect dead */
04610   /*   badsubsegs when traversing the list of all badsubsegs             .   */
04611   dyingseg->subsegorg = (vertex) NULL;
04612   pooldealloc(&m->badsubsegs, (VOID *) dyingseg);
04613 }
04614 
04615 #endif /* not CDT_ONLY */
04616 
04617 /*****************************************************************************/
04618 /*                                                                           */
04619 /*  badsubsegtraverse()   Traverse the bad subsegments, skipping dead ones.  */
04620 /*                                                                           */
04621 /*****************************************************************************/
04622 
04623 #ifndef CDT_ONLY
04624 
04625 #ifdef ANSI_DECLARATORS
04626 struct badsubseg *badsubsegtraverse(struct mesh *m)
04627 #else /* not ANSI_DECLARATORS */
04628 struct badsubseg *badsubsegtraverse(m)
04629 struct mesh *m;
04630 #endif /* not ANSI_DECLARATORS */
04631 
04632 {
04633   struct badsubseg *newseg;
04634 
04635   do {
04636     newseg = (struct badsubseg *) traverse(&m->badsubsegs);
04637     if (newseg == (struct badsubseg *) NULL) {
04638       return (struct badsubseg *) NULL;
04639     }
04640   } while (newseg->subsegorg == (vertex) NULL);           /* Skip dead ones. */
04641   return newseg;
04642 }
04643 
04644 #endif /* not CDT_ONLY */
04645 
04646 /*****************************************************************************/
04647 /*                                                                           */
04648 /*  getvertex()   Get a specific vertex, by number, from the list.           */
04649 /*                                                                           */
04650 /*  The first vertex is number 'firstnumber'.                                */
04651 /*                                                                           */
04652 /*  Note that this takes O(n) time (with a small constant, if VERTEXPERBLOCK */
04653 /*  is large).  I don't care to take the trouble to make it work in constant */
04654 /*  time.                                                                    */
04655 /*                                                                           */
04656 /*****************************************************************************/
04657 
04658 #ifdef ANSI_DECLARATORS
04659 vertex getvertex(struct mesh *m, struct behavior *b, int number)
04660 #else /* not ANSI_DECLARATORS */
04661 vertex getvertex(m, b, number)
04662 struct mesh *m;
04663 struct behavior *b;
04664 int number;
04665 #endif /* not ANSI_DECLARATORS */
04666 
04667 {
04668   VOID **getblock;
04669   char *foundvertex;
04670   unsigned long alignptr;
04671   int current;
04672 
04673   getblock = m->vertices.firstblock;
04674   current = b->firstnumber;
04675 
04676   /* Find the right block. */
04677   if (current + m->vertices.itemsfirstblock <= number) {
04678     getblock = (VOID **) *getblock;
04679     current += m->vertices.itemsfirstblock;
04680     while (current + m->vertices.itemsperblock <= number) {
04681       getblock = (VOID **) *getblock;
04682       current += m->vertices.itemsperblock;
04683     }
04684   }
04685 
04686   /* Now find the right vertex. */
04687   alignptr = (unsigned long) (getblock + 1);
04688   foundvertex = (char *) (alignptr + (unsigned long) m->vertices.alignbytes -
04689                           (alignptr % (unsigned long) m->vertices.alignbytes));
04690   return (vertex) (foundvertex + m->vertices.itembytes * (number - current));
04691 }
04692 
04693 /*****************************************************************************/
04694 /*                                                                           */
04695 /*  triangledeinit()   Free all remaining allocated memory.                  */
04696 /*                                                                           */
04697 /*****************************************************************************/
04698 
04699 #ifdef ANSI_DECLARATORS
04700 void triangledeinit(struct mesh *m, struct behavior *b)
04701 #else /* not ANSI_DECLARATORS */
04702 void triangledeinit(m, b)
04703 struct mesh *m;
04704 struct behavior *b;
04705 #endif /* not ANSI_DECLARATORS */
04706 
04707 {
04708   pooldeinit(&m->triangles);
04709   trifree((VOID *) m->dummytribase);
04710   if (b->usesegments) {
04711     pooldeinit(&m->subsegs);
04712     trifree((VOID *) m->dummysubbase);
04713   }
04714   pooldeinit(&m->vertices);
04715 #ifndef CDT_ONLY
04716   if (b->quality) {
04717     pooldeinit(&m->badsubsegs);
04718     if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
04719       pooldeinit(&m->badtriangles);
04720       pooldeinit(&m->flipstackers);
04721     }
04722   }
04723 #endif /* not CDT_ONLY */
04724 }
04725 
04728 /********* Memory management routines end here                       *********/
04729 
04730 /********* Constructors begin here                                   *********/
04734 /*****************************************************************************/
04735 /*                                                                           */
04736 /*  maketriangle()   Create a new triangle with orientation zero.            */
04737 /*                                                                           */
04738 /*****************************************************************************/
04739 
04740 #ifdef ANSI_DECLARATORS
04741 void maketriangle(struct mesh *m, struct behavior *b, struct otri *newotri)
04742 #else /* not ANSI_DECLARATORS */
04743 void maketriangle(m, b, newotri)
04744 struct mesh *m;
04745 struct behavior *b;
04746 struct otri *newotri;
04747 #endif /* not ANSI_DECLARATORS */
04748 
04749 {
04750   int i;
04751 
04752   newotri->tri = (triangle *) poolalloc(&m->triangles);
04753   /* Initialize the three adjoining triangles to be "outer space". */
04754   newotri->tri[0] = (triangle) m->dummytri;
04755   newotri->tri[1] = (triangle) m->dummytri;
04756   newotri->tri[2] = (triangle) m->dummytri;
04757   /* Three NULL vertices. */
04758   newotri->tri[3] = (triangle) NULL;
04759   newotri->tri[4] = (triangle) NULL;
04760   newotri->tri[5] = (triangle) NULL;
04761   if (b->usesegments) {
04762     /* Initialize the three adjoining subsegments to be the omnipresent */
04763     /*   subsegment.                                                    */
04764     newotri->tri[6] = (triangle) m->dummysub;
04765     newotri->tri[7] = (triangle) m->dummysub;
04766     newotri->tri[8] = (triangle) m->dummysub;
04767   }
04768   for (i = 0; i < m->eextras; i++) {
04769     setelemattribute(*newotri, i, 0.0);
04770   }
04771   if (b->vararea) {
04772     setareabound(*newotri, -1.0);
04773   }
04774 
04775   newotri->orient = 0;
04776 }
04777 
04778 /*****************************************************************************/
04779 /*                                                                           */
04780 /*  makesubseg()   Create a new subsegment with orientation zero.            */
04781 /*                                                                           */
04782 /*****************************************************************************/
04783 
04784 #ifdef ANSI_DECLARATORS
04785 void makesubseg(struct mesh *m, struct osub *newsubseg)
04786 #else /* not ANSI_DECLARATORS */
04787 void makesubseg(m, newsubseg)
04788 struct mesh *m;
04789 struct osub *newsubseg;
04790 #endif /* not ANSI_DECLARATORS */
04791 
04792 {
04793   newsubseg->ss = (subseg *) poolalloc(&m->subsegs);
04794   /* Initialize the two adjoining subsegments to be the omnipresent */
04795   /*   subsegment.                                                  */
04796   newsubseg->ss[0] = (subseg) m->dummysub;
04797   newsubseg->ss[1] = (subseg) m->dummysub;
04798   /* Four NULL vertices. */
04799   newsubseg->ss[2] = (subseg) NULL;
04800   newsubseg->ss[3] = (subseg) NULL;
04801   newsubseg->ss[4] = (subseg) NULL;
04802   newsubseg->ss[5] = (subseg) NULL;
04803   /* Initialize the two adjoining triangles to be "outer space." */
04804   newsubseg->ss[6] = (subseg) m->dummytri;
04805   newsubseg->ss[7] = (subseg) m->dummytri;
04806   /* Set the boundary marker to zero. */
04807   setmark(*newsubseg, 0);
04808 
04809   newsubseg->ssorient = 0;
04810 }
04811 
04814 /********* Constructors end here                                     *********/
04815 
04816 /********* Geometric primitives begin here                           *********/
04820 /* The adaptive exact arithmetic geometric predicates implemented herein are */
04821 /*   described in detail in my paper, "Adaptive Precision Floating-Point     */
04822 /*   Arithmetic and Fast Robust Geometric Predicates."  See the header for a */
04823 /*   full citation.                                                          */
04824 
04825 /* Which of the following two methods of finding the absolute values is      */
04826 /*   fastest is compiler-dependent.  A few compilers can inline and optimize */
04827 /*   the fabs() call; but most will incur the overhead of a function call,   */
04828 /*   which is disastrously slow.  A faster way on IEEE machines might be to  */
04829 /*   mask the appropriate bit, but that's difficult to do in C without       */
04830 /*   forcing the value to be stored to memory (rather than be kept in the    */
04831 /*   register to which the optimizer assigned it).                           */
04832 
04833 #define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
04834 /* #define Absolute(a)  fabs(a) */
04835 
04836 /* Many of the operations are broken up into two pieces, a main part that    */
04837 /*   performs an approximate operation, and a "tail" that computes the       */
04838 /*   roundoff error of that operation.                                       */
04839 /*                                                                           */
04840 /* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
04841 /*   Split(), and Two_Product() are all implemented as described in the      */
04842 /*   reference.  Each of these macros requires certain variables to be       */
04843 /*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
04844 /*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
04845 /*   they store the result of an operation that may incur roundoff error.    */
04846 /*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
04847 /*   also be declared `INEXACT'.                                             */
04848 
04849 #define Fast_Two_Sum_Tail(a, b, x, y) \
04850   bvirt = x - a; \
04851   y = b - bvirt
04852 
04853 #define Fast_Two_Sum(a, b, x, y) \
04854   x = (REAL) (a + b); \
04855   Fast_Two_Sum_Tail(a, b, x, y)
04856 
04857 #define Two_Sum_Tail(a, b, x, y) \
04858   bvirt = (REAL) (x - a); \
04859   avirt = x - bvirt; \
04860   bround = b - bvirt; \
04861   around = a - avirt; \
04862   y = around + bround
04863 
04864 #define Two_Sum(a, b, x, y) \
04865   x = (REAL) (a + b); \
04866   Two_Sum_Tail(a, b, x, y)
04867 
04868 #define Two_Diff_Tail(a, b, x, y) \
04869   bvirt = (REAL) (a - x); \
04870   avirt = x + bvirt; \
04871   bround = bvirt - b; \
04872   around = a - avirt; \
04873   y = around + bround
04874 
04875 #define Two_Diff(a, b, x, y) \
04876   x = (REAL) (a - b); \
04877   Two_Diff_Tail(a, b, x, y)
04878 
04879 #define Split(a, ahi, alo) \
04880   c = (REAL) (splitter * a); \
04881   abig = (REAL) (c - a); \
04882   ahi = c - abig; \
04883   alo = a - ahi
04884 
04885 #define Two_Product_Tail(a, b, x, y) \
04886   Split(a, ahi, alo); \
04887   Split(b, bhi, blo); \
04888   err1 = x - (ahi * bhi); \
04889   err2 = err1 - (alo * bhi); \
04890   err3 = err2 - (ahi * blo); \
04891   y = (alo * blo) - err3
04892 
04893 #define Two_Product(a, b, x, y) \
04894   x = (REAL) (a * b); \
04895   Two_Product_Tail(a, b, x, y)
04896 
04897 /* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
04898 /*   already been split.  Avoids redundant splitting.                        */
04899 
04900 #define Two_Product_Presplit(a, b, bhi, blo, x, y) \
04901   x = (REAL) (a * b); \
04902   Split(a, ahi, alo); \
04903   err1 = x - (ahi * bhi); \
04904   err2 = err1 - (alo * bhi); \
04905   err3 = err2 - (ahi * blo); \
04906   y = (alo * blo) - err3
04907 
04908 /* Square() can be done more quickly than Two_Product().                     */
04909 
04910 #define Square_Tail(a, x, y) \
04911   Split(a, ahi, alo); \
04912   err1 = x - (ahi * ahi); \
04913   err3 = err1 - ((ahi + ahi) * alo); \
04914   y = (alo * alo) - err3
04915 
04916 #define Square(a, x, y) \
04917   x = (REAL) (a * a); \
04918   Square_Tail(a, x, y)
04919 
04920 /* Macros for summing expansions of various fixed lengths.  These are all    */
04921 /*   unrolled versions of Expansion_Sum().                                   */
04922 
04923 #define Two_One_Sum(a1, a0, b, x2, x1, x0) \
04924   Two_Sum(a0, b , _i, x0); \
04925   Two_Sum(a1, _i, x2, x1)
04926 
04927 #define Two_One_Diff(a1, a0, b, x2, x1, x0) \
04928   Two_Diff(a0, b , _i, x0); \
04929   Two_Sum( a1, _i, x2, x1)
04930 
04931 #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
04932   Two_One_Sum(a1, a0, b0, _j, _0, x0); \
04933   Two_One_Sum(_j, _0, b1, x3, x2, x1)
04934 
04935 #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
04936   Two_One_Diff(a1, a0, b0, _j, _0, x0); \
04937   Two_One_Diff(_j, _0, b1, x3, x2, x1)
04938 
04939 /* Macro for multiplying a two-component expansion by a single component.    */
04940 
04941 #define Two_One_Product(a1, a0, b, x3, x2, x1, x0) \
04942   Split(b, bhi, blo); \
04943   Two_Product_Presplit(a0, b, bhi, blo, _i, x0); \
04944   Two_Product_Presplit(a1, b, bhi, blo, _j, _0); \
04945   Two_Sum(_i, _0, _k, x1); \
04946   Fast_Two_Sum(_j, _k, x3, x2)
04947 
04948 /*****************************************************************************/
04949 /*                                                                           */
04950 /*  exactinit()   Initialize the variables used for exact arithmetic.        */
04951 /*                                                                           */
04952 /*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
04953 /*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
04954 /*  error.  It is used for floating-point error analysis.                    */
04955 /*                                                                           */
04956 /*  `splitter' is used to split floating-point numbers into two half-        */
04957 /*  length significands for exact multiplication.                            */
04958 /*                                                                           */
04959 /*  I imagine that a highly optimizing compiler might be too smart for its   */
04960 /*  own good, and somehow cause this routine to fail, if it pretends that    */
04961 /*  floating-point arithmetic is too much like real arithmetic.              */
04962 /*                                                                           */
04963 /*  Don't change this routine unless you fully understand it.                */
04964 /*                                                                           */
04965 /*****************************************************************************/
04966 
04967 void exactinit()
04968 {
04969   REAL half;
04970   REAL check, lastcheck;
04971   int every_other;
04972 #ifdef LINUX
04973   int cword;
04974 #endif /* LINUX */
04975 
04976 #ifdef CPU86
04977 #ifdef SINGLE
04978   _control87(_PC_24, _MCW_PC); /* Set FPU control word for single precision. */
04979 #else /* not SINGLE */
04980   _control87(_PC_53, _MCW_PC); /* Set FPU control word for double precision. */
04981 #endif /* not SINGLE */
04982 #endif /* CPU86 */
04983 #ifdef LINUX
04984 #ifdef SINGLE
04985   /*  cword = 4223; */
04986   cword = 4210;                 /* set FPU control word for single precision */
04987 #else /* not SINGLE */
04988   /*  cword = 4735; */
04989   cword = 4722;                 /* set FPU control word for double precision */
04990 #endif /* not SINGLE */
04991   _FPU_SETCW(cword);
04992 #endif /* LINUX */
04993 
04994   every_other = 1;
04995   half = 0.5;
04996   epsilon = 1.0;
04997   splitter = 1.0;
04998   check = 1.0;
04999   /* Repeatedly divide `epsilon' by two until it is too small to add to      */
05000   /*   one without causing roundoff.  (Also check if the sum is equal to     */
05001   /*   the previous sum, for machines that round up instead of using exact   */
05002   /*   rounding.  Not that these routines will work on such machines.)       */
05003   do {
05004     lastcheck = check;
05005     epsilon *= half;
05006     if (every_other) {
05007       splitter *= 2.0;
05008     }
05009     every_other = !every_other;
05010     check = 1.0 + epsilon;
05011   } while ((check != 1.0) && (check != lastcheck));
05012   splitter += 1.0;
05013   /* Error bounds for orientation and incircle tests. */
05014   resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
05015   ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
05016   ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
05017   ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
05018   iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
05019   iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
05020   iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
05021   o3derrboundA = (7.0 + 56.0 * epsilon) * epsilon;
05022   o3derrboundB = (3.0 + 28.0 * epsilon) * epsilon;
05023   o3derrboundC = (26.0 + 288.0 * epsilon) * epsilon * epsilon;
05024 }
05025 
05026 /*****************************************************************************/
05027 /*                                                                           */
05028 /*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
05029 /*                                  components from the output expansion.    */
05030 /*                                                                           */
05031 /*  Sets h = e + f.  See my Robust Predicates paper for details.             */
05032 /*                                                                           */
05033 /*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
05034 /*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
05035 /*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
05036 /*  properties.                                                              */
05037 /*                                                                           */
05038 /*****************************************************************************/
05039 
05040 #ifdef ANSI_DECLARATORS
05041 int fast_expansion_sum_zeroelim(int elen, REAL *e, int flen, REAL *f, REAL *h)
05042 #else /* not ANSI_DECLARATORS */
05043 int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */
05044 int elen;
05045 REAL *e;
05046 int flen;
05047 REAL *f;
05048 REAL *h;
05049 #endif /* not ANSI_DECLARATORS */
05050 
05051 {
05052   REAL Q;
05053   INEXACT REAL Qnew;
05054   INEXACT REAL hh;
05055   INEXACT REAL bvirt;
05056   REAL avirt, bround, around;
05057   int eindex, findex, hindex;
05058   REAL enow, fnow;
05059 
05060   enow = e[0];
05061   fnow = f[0];
05062   eindex = findex = 0;
05063   if ((fnow > enow) == (fnow > -enow)) {
05064     Q = enow;
05065     enow = e[++eindex];
05066   } else {
05067     Q = fnow;
05068     fnow = f[++findex];
05069   }
05070   hindex = 0;
05071   if ((eindex < elen) && (findex < flen)) {
05072     if ((fnow > enow) == (fnow > -enow)) {
05073       Fast_Two_Sum(enow, Q, Qnew, hh);
05074       enow = e[++eindex];
05075     } else {
05076       Fast_Two_Sum(fnow, Q, Qnew, hh);
05077       fnow = f[++findex];
05078     }
05079     Q = Qnew;
05080     if (hh != 0.0) {
05081       h[hindex++] = hh;
05082     }
05083     while ((eindex < elen) && (findex < flen)) {
05084       if ((fnow > enow) == (fnow > -enow)) {
05085         Two_Sum(Q, enow, Qnew, hh);
05086         enow = e[++eindex];
05087       } else {
05088         Two_Sum(Q, fnow, Qnew, hh);
05089         fnow = f[++findex];
05090       }
05091       Q = Qnew;
05092       if (hh != 0.0) {
05093         h[hindex++] = hh;
05094       }
05095     }
05096   }
05097   while (eindex < elen) {
05098     Two_Sum(Q, enow, Qnew, hh);
05099     enow = e[++eindex];
05100     Q = Qnew;
05101     if (hh != 0.0) {
05102       h[hindex++] = hh;
05103     }
05104   }
05105   while (findex < flen) {
05106     Two_Sum(Q, fnow, Qnew, hh);
05107     fnow = f[++findex];
05108     Q = Qnew;
05109     if (hh != 0.0) {
05110       h[hindex++] = hh;
05111     }
05112   }
05113   if ((Q != 0.0) || (hindex == 0)) {
05114     h[hindex++] = Q;
05115   }
05116   return hindex;
05117 }
05118 
05119 /*****************************************************************************/
05120 /*                                                                           */
05121 /*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
05122 /*                               eliminating zero components from the        */
05123 /*                               output expansion.                           */
05124 /*                                                                           */
05125 /*  Sets h = be.  See my Robust Predicates paper for details.                */
05126 /*                                                                           */
05127 /*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
05128 /*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
05129 /*  properties as well.  (That is, if e has one of these properties, so      */
05130 /*  will h.)                                                                 */
05131 /*                                                                           */
05132 /*****************************************************************************/
05133 
05134 #ifdef ANSI_DECLARATORS
05135 int scale_expansion_zeroelim(int elen, REAL *e, REAL b, REAL *h)
05136 #else /* not ANSI_DECLARATORS */
05137 int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */
05138 int elen;
05139 REAL *e;
05140 REAL b;
05141 REAL *h;
05142 #endif /* not ANSI_DECLARATORS */
05143 
05144 {
05145   INEXACT REAL Q, sum;
05146   REAL hh;
05147   INEXACT REAL product1;
05148   REAL product0;
05149   int eindex, hindex;
05150   REAL enow;
05151   INEXACT REAL bvirt;
05152   REAL avirt, bround, around;
05153   INEXACT REAL c;
05154   INEXACT REAL abig;
05155   REAL ahi, alo, bhi, blo;
05156   REAL err1, err2, err3;
05157 
05158   Split(b, bhi, blo);
05159   Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
05160   hindex = 0;
05161   if (hh != 0) {
05162     h[hindex++] = hh;
05163   }
05164   for (eindex = 1; eindex < elen; eindex++) {
05165     enow = e[eindex];
05166     Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
05167     Two_Sum(Q, product0, sum, hh);
05168     if (hh != 0) {
05169       h[hindex++] = hh;
05170     }
05171     Fast_Two_Sum(product1, sum, Q, hh);
05172     if (hh != 0) {
05173       h[hindex++] = hh;
05174     }
05175   }
05176   if ((Q != 0.0) || (hindex == 0)) {
05177     h[hindex++] = Q;
05178   }
05179   return hindex;
05180 }
05181 
05182 /*****************************************************************************/
05183 /*                                                                           */
05184 /*  estimate()   Produce a one-word estimate of an expansion's value.        */
05185 /*                                                                           */
05186 /*  See my Robust Predicates paper for details.                              */
05187 /*                                                                           */
05188 /*****************************************************************************/
05189 
05190 #ifdef ANSI_DECLARATORS
05191 REAL estimate(int elen, REAL *e)
05192 #else /* not ANSI_DECLARATORS */
05193 REAL estimate(elen, e)
05194 int elen;
05195 REAL *e;
05196 #endif /* not ANSI_DECLARATORS */
05197 
05198 {
05199   REAL Q;
05200   int eindex;
05201 
05202   Q = e[0];
05203   for (eindex = 1; eindex < elen; eindex++) {
05204     Q += e[eindex];
05205   }
05206   return Q;
05207 }
05208 
05209 /*****************************************************************************/
05210 /*                                                                           */
05211 /*  counterclockwise()   Return a positive value if the points pa, pb, and   */
05212 /*                       pc occur in counterclockwise order; a negative      */
05213 /*                       value if they occur in clockwise order; and zero    */
05214 /*                       if they are collinear.  The result is also a rough  */
05215 /*                       approximation of twice the signed area of the       */
05216 /*                       triangle defined by the three points.               */
05217 /*                                                                           */
05218 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
05219 /*  result returned is the determinant of a matrix.  This determinant is     */
05220 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
05221 /*  the degree it is needed to ensure that the returned value has the        */
05222 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
05223 /*  more slowly when the input points are collinear or nearly so.            */
05224 /*                                                                           */
05225 /*  See my Robust Predicates paper for details.                              */
05226 /*                                                                           */
05227 /*****************************************************************************/
05228 
05229 #ifdef ANSI_DECLARATORS
05230 REAL counterclockwiseadapt(vertex pa, vertex pb, vertex pc, REAL detsum)
05231 #else /* not ANSI_DECLARATORS */
05232 REAL counterclockwiseadapt(pa, pb, pc, detsum)
05233 vertex pa;
05234 vertex pb;
05235 vertex pc;
05236 REAL detsum;
05237 #endif /* not ANSI_DECLARATORS */
05238 
05239 {
05240   INEXACT REAL acx, acy, bcx, bcy;
05241   REAL acxtail, acytail, bcxtail, bcytail;
05242   INEXACT REAL detleft, detright;
05243   REAL detlefttail, detrighttail;
05244   REAL det, errbound;
05245   REAL B[4], C1[8], C2[12], D[16];
05246   INEXACT REAL B3;
05247   int C1length, C2length, Dlength;
05248   REAL u[4];
05249   INEXACT REAL u3;
05250   INEXACT REAL s1, t1;
05251   REAL s0, t0;
05252 
05253   INEXACT REAL bvirt;
05254   REAL avirt, bround, around;
05255   INEXACT REAL c;
05256   INEXACT REAL abig;
05257   REAL ahi, alo, bhi, blo;
05258   REAL err1, err2, err3;
05259   INEXACT REAL _i, _j;
05260   REAL _0;
05261 
05262   acx = (REAL) (pa[0] - pc[0]);
05263   bcx = (REAL) (pb[0] - pc[0]);
05264   acy = (REAL) (pa[1] - pc[1]);
05265   bcy = (REAL) (pb[1] - pc[1]);
05266 
05267   Two_Product(acx, bcy, detleft, detlefttail);
05268   Two_Product(acy, bcx, detright, detrighttail);
05269 
05270   Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
05271                B3, B[2], B[1], B[0]);
05272   B[3] = B3;
05273 
05274   det = estimate(4, B);
05275   errbound = ccwerrboundB * detsum;
05276   if ((det >= errbound) || (-det >= errbound)) {
05277     return det;
05278   }
05279 
05280   Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
05281   Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
05282   Two_Diff_Tail(pa[1], pc[1], acy, acytail);
05283   Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
05284 
05285   if ((acxtail == 0.0) && (acytail == 0.0)
05286       && (bcxtail == 0.0) && (bcytail == 0.0)) {
05287     return det;
05288   }
05289 
05290   errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
05291   det += (acx * bcytail + bcy * acxtail)
05292        - (acy * bcxtail + bcx * acytail);
05293   if ((det >= errbound) || (-det >= errbound)) {
05294     return det;
05295   }
05296 
05297   Two_Product(acxtail, bcy, s1, s0);
05298   Two_Product(acytail, bcx, t1, t0);
05299   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
05300   u[3] = u3;
05301   C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
05302 
05303   Two_Product(acx, bcytail, s1, s0);
05304   Two_Product(acy, bcxtail, t1, t0);
05305   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
05306   u[3] = u3;
05307   C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
05308 
05309   Two_Product(acxtail, bcytail, s1, s0);
05310   Two_Product(acytail, bcxtail, t1, t0);
05311   Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
05312   u[3] = u3;
05313   Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
05314 
05315   return(D[Dlength - 1]);
05316 }
05317 
05318 #ifdef ANSI_DECLARATORS
05319 REAL counterclockwise(struct mesh *m, struct behavior *b,
05320                       vertex pa, vertex pb, vertex pc)
05321 #else /* not ANSI_DECLARATORS */
05322 REAL counterclockwise(m, b, pa, pb, pc)
05323 struct mesh *m;
05324 struct behavior *b;
05325 vertex pa;
05326 vertex pb;
05327 vertex pc;
05328 #endif /* not ANSI_DECLARATORS */
05329 
05330 {
05331   REAL detleft, detright, det;
05332   REAL detsum, errbound;
05333 
05334   m->counterclockcount++;
05335 
05336   detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
05337   detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
05338   det = detleft - detright;
05339 
05340   if (b->noexact) {
05341     return det;
05342   }
05343 
05344   if (detleft > 0.0) {
05345     if (detright <= 0.0) {
05346       return det;
05347     } else {
05348       detsum = detleft + detright;
05349     }
05350   } else if (detleft < 0.0) {
05351     if (detright >= 0.0) {
05352       return det;
05353     } else {
05354       detsum = -detleft - detright;
05355     }
05356   } else {
05357     return det;
05358   }
05359 
05360   errbound = ccwerrboundA * detsum;
05361   if ((det >= errbound) || (-det >= errbound)) {
05362     return det;
05363   }
05364 
05365   return counterclockwiseadapt(pa, pb, pc, detsum);
05366 }
05367 
05368 /*****************************************************************************/
05369 /*                                                                           */
05370 /*  incircle()   Return a positive value if the point pd lies inside the     */
05371 /*               circle passing through pa, pb, and pc; a negative value if  */
05372 /*               it lies outside; and zero if the four points are cocircular.*/
05373 /*               The points pa, pb, and pc must be in counterclockwise       */
05374 /*               order, or the sign of the result will be reversed.          */
05375 /*                                                                           */
05376 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
05377 /*  result returned is the determinant of a matrix.  This determinant is     */
05378 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
05379 /*  the degree it is needed to ensure that the returned value has the        */
05380 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
05381 /*  more slowly when the input points are cocircular or nearly so.           */
05382 /*                                                                           */
05383 /*  See my Robust Predicates paper for details.                              */
05384 /*                                                                           */
05385 /*****************************************************************************/
05386 
05387 #ifdef ANSI_DECLARATORS
05388 REAL incircleadapt(vertex pa, vertex pb, vertex pc, vertex pd, REAL permanent)
05389 #else /* not ANSI_DECLARATORS */
05390 REAL incircleadapt(pa, pb, pc, pd, permanent)
05391 vertex pa;
05392 vertex pb;
05393 vertex pc;
05394 vertex pd;
05395 REAL permanent;
05396 #endif /* not ANSI_DECLARATORS */
05397 
05398 {
05399   INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
05400   REAL det, errbound;
05401 
05402   INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
05403   REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
05404   REAL bc[4], ca[4], ab[4];
05405   INEXACT REAL bc3, ca3, ab3;
05406   REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
05407   int axbclen, axxbclen, aybclen, ayybclen, alen;
05408   REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
05409   int bxcalen, bxxcalen, bycalen, byycalen, blen;
05410   REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
05411   int cxablen, cxxablen, cyablen, cyyablen, clen;
05412   REAL abdet[64];
05413   int ablen;
05414   REAL fin1[1152], fin2[1152];
05415   REAL *finnow, *finother, *finswap;
05416   int finlength;
05417 
05418   REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
05419   INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
05420   REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
05421   REAL aa[4], bb[4], cc[4];
05422   INEXACT REAL aa3, bb3, cc3;
05423   INEXACT REAL ti1, tj1;
05424   REAL ti0, tj0;
05425   REAL u[4], v[4];
05426   INEXACT REAL u3, v3;
05427   REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
05428   REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
05429   int temp8len, temp16alen, temp16blen, temp16clen;
05430   int temp32alen, temp32blen, temp48len, temp64len;
05431   REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
05432   int axtbblen, axtcclen, aytbblen, aytcclen;
05433   REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
05434   int bxtaalen, bxtcclen, bytaalen, bytcclen;
05435   REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
05436   int cxtaalen, cxtbblen, cytaalen, cytbblen;
05437   REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
05438   int axtbclen=0, aytbclen=0, bxtcalen=0, bytcalen=0, cxtablen=0, cytablen=0;
05439   REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
05440   int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
05441   REAL axtbctt[8], aytbctt[8], bxtcatt[8];
05442   REAL bytcatt[8], cxtabtt[8], cytabtt[8];
05443   int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
05444   REAL abt[8], bct[8], cat[8];
05445   int abtlen, bctlen, catlen;
05446   REAL abtt[4], bctt[4], catt[4];
05447   int abttlen, bcttlen, cattlen;
05448   INEXACT REAL abtt3, bctt3, catt3;
05449   REAL negate;
05450 
05451   INEXACT REAL bvirt;
05452   REAL avirt, bround, around;
05453   INEXACT REAL c;
05454   INEXACT REAL abig;
05455   REAL ahi, alo, bhi, blo;
05456   REAL err1, err2, err3;
05457   INEXACT REAL _i, _j;
05458   REAL _0;
05459 
05460   adx = (REAL) (pa[0] - pd[0]);
05461   bdx = (REAL) (pb[0] - pd[0]);
05462   cdx = (REAL) (pc[0] - pd[0]);
05463   ady = (REAL) (pa[1] - pd[1]);
05464   bdy = (REAL) (pb[1] - pd[1]);
05465   cdy = (REAL) (pc[1] - pd[1]);
05466 
05467   Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
05468   Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
05469   Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
05470   bc[3] = bc3;
05471   axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
05472   axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
05473   aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
05474   ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
05475   alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
05476 
05477   Two_Product(cdx, ady, cdxady1, cdxady0);
05478   Two_Product(adx, cdy, adxcdy1, adxcdy0);
05479   Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
05480   ca[3] = ca3;
05481   bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
05482   bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
05483   bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
05484   byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
05485   blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
05486 
05487   Two_Product(adx, bdy, adxbdy1, adxbdy0);
05488   Two_Product(bdx, ady, bdxady1, bdxady0);
05489   Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
05490   ab[3] = ab3;
05491   cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
05492   cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
05493   cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
05494   cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
05495   clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
05496 
05497   ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
05498   finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
05499 
05500   det = estimate(finlength, fin1);
05501   errbound = iccerrboundB * permanent;
05502   if ((det >= errbound) || (-det >= errbound)) {
05503     return det;
05504   }
05505 
05506   Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
05507   Two_Diff_Tail(pa[1], pd[1], ady, adytail);
05508   Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
05509   Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
05510   Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
05511   Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
05512   if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
05513       && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
05514     return det;
05515   }
05516 
05517   errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
05518   det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
05519                                      - (bdy * cdxtail + cdx * bdytail))
05520           + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
05521        + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
05522                                      - (cdy * adxtail + adx * cdytail))
05523           + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
05524        + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
05525                                      - (ady * bdxtail + bdx * adytail))
05526           + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
05527   if ((det >= errbound) || (-det >= errbound)) {
05528     return det;
05529   }
05530 
05531   finnow = fin1;
05532   finother = fin2;
05533 
05534   if ((bdxtail != 0.0) || (bdytail != 0.0)
05535       || (cdxtail != 0.0) || (cdytail != 0.0)) {
05536     Square(adx, adxadx1, adxadx0);
05537     Square(ady, adyady1, adyady0);
05538     Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
05539     aa[3] = aa3;
05540   }
05541   if ((cdxtail != 0.0) || (cdytail != 0.0)
05542       || (adxtail != 0.0) || (adytail != 0.0)) {
05543     Square(bdx, bdxbdx1, bdxbdx0);
05544     Square(bdy, bdybdy1, bdybdy0);
05545     Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
05546     bb[3] = bb3;
05547   }
05548   if ((adxtail != 0.0) || (adytail != 0.0)
05549       || (bdxtail != 0.0) || (bdytail != 0.0)) {
05550     Square(cdx, cdxcdx1, cdxcdx0);
05551     Square(cdy, cdycdy1, cdycdy0);
05552     Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
05553     cc[3] = cc3;
05554   }
05555 
05556   if (adxtail != 0.0) {
05557     axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
05558     temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
05559                                           temp16a);
05560 
05561     axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
05562     temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
05563 
05564     axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
05565     temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
05566 
05567     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05568                                             temp16blen, temp16b, temp32a);
05569     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05570                                             temp32alen, temp32a, temp48);
05571     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05572                                             temp48, finother);
05573     finswap = finnow; finnow = finother; finother = finswap;
05574   }
05575   if (adytail != 0.0) {
05576     aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
05577     temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
05578                                           temp16a);
05579 
05580     aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
05581     temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
05582 
05583     aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
05584     temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
05585 
05586     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05587                                             temp16blen, temp16b, temp32a);
05588     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05589                                             temp32alen, temp32a, temp48);
05590     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05591                                             temp48, finother);
05592     finswap = finnow; finnow = finother; finother = finswap;
05593   }
05594   if (bdxtail != 0.0) {
05595     bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
05596     temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
05597                                           temp16a);
05598 
05599     bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
05600     temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
05601 
05602     bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
05603     temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
05604 
05605     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05606                                             temp16blen, temp16b, temp32a);
05607     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05608                                             temp32alen, temp32a, temp48);
05609     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05610                                             temp48, finother);
05611     finswap = finnow; finnow = finother; finother = finswap;
05612   }
05613   if (bdytail != 0.0) {
05614     bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
05615     temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
05616                                           temp16a);
05617 
05618     bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
05619     temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
05620 
05621     bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
05622     temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
05623 
05624     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05625                                             temp16blen, temp16b, temp32a);
05626     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05627                                             temp32alen, temp32a, temp48);
05628     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05629                                             temp48, finother);
05630     finswap = finnow; finnow = finother; finother = finswap;
05631   }
05632   if (cdxtail != 0.0) {
05633     cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
05634     temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
05635                                           temp16a);
05636 
05637     cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
05638     temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
05639 
05640     cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
05641     temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
05642 
05643     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05644                                             temp16blen, temp16b, temp32a);
05645     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05646                                             temp32alen, temp32a, temp48);
05647     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05648                                             temp48, finother);
05649     finswap = finnow; finnow = finother; finother = finswap;
05650   }
05651   if (cdytail != 0.0) {
05652     cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
05653     temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
05654                                           temp16a);
05655 
05656     cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
05657     temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
05658 
05659     cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
05660     temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
05661 
05662     temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05663                                             temp16blen, temp16b, temp32a);
05664     temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
05665                                             temp32alen, temp32a, temp48);
05666     finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05667                                             temp48, finother);
05668     finswap = finnow; finnow = finother; finother = finswap;
05669   }
05670 
05671   if ((adxtail != 0.0) || (adytail != 0.0)) {
05672     if ((bdxtail != 0.0) || (bdytail != 0.0)
05673         || (cdxtail != 0.0) || (cdytail != 0.0)) {
05674       Two_Product(bdxtail, cdy, ti1, ti0);
05675       Two_Product(bdx, cdytail, tj1, tj0);
05676       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
05677       u[3] = u3;
05678       negate = -bdy;
05679       Two_Product(cdxtail, negate, ti1, ti0);
05680       negate = -bdytail;
05681       Two_Product(cdx, negate, tj1, tj0);
05682       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
05683       v[3] = v3;
05684       bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
05685 
05686       Two_Product(bdxtail, cdytail, ti1, ti0);
05687       Two_Product(cdxtail, bdytail, tj1, tj0);
05688       Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
05689       bctt[3] = bctt3;
05690       bcttlen = 4;
05691     } else {
05692       bct[0] = 0.0;
05693       bctlen = 1;
05694       bctt[0] = 0.0;
05695       bcttlen = 1;
05696     }
05697 
05698     if (adxtail != 0.0) {
05699       temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
05700       axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
05701       temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
05702                                             temp32a);
05703       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05704                                               temp32alen, temp32a, temp48);
05705       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05706                                               temp48, finother);
05707       finswap = finnow; finnow = finother; finother = finswap;
05708       if (bdytail != 0.0) {
05709         temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
05710         temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
05711                                               temp16a);
05712         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05713                                                 temp16a, finother);
05714         finswap = finnow; finnow = finother; finother = finswap;
05715       }
05716       if (cdytail != 0.0) {
05717         temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
05718         temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
05719                                               temp16a);
05720         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05721                                                 temp16a, finother);
05722         finswap = finnow; finnow = finother; finother = finswap;
05723       }
05724 
05725       temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
05726                                             temp32a);
05727       axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
05728       temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
05729                                             temp16a);
05730       temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
05731                                             temp16b);
05732       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05733                                               temp16blen, temp16b, temp32b);
05734       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05735                                               temp32blen, temp32b, temp64);
05736       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05737                                               temp64, finother);
05738       finswap = finnow; finnow = finother; finother = finswap;
05739     }
05740     if (adytail != 0.0) {
05741       temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
05742       aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
05743       temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
05744                                             temp32a);
05745       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05746                                               temp32alen, temp32a, temp48);
05747       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05748                                               temp48, finother);
05749       finswap = finnow; finnow = finother; finother = finswap;
05750 
05751 
05752       temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
05753                                             temp32a);
05754       aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
05755       temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
05756                                             temp16a);
05757       temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
05758                                             temp16b);
05759       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05760                                               temp16blen, temp16b, temp32b);
05761       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05762                                               temp32blen, temp32b, temp64);
05763       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05764                                               temp64, finother);
05765       finswap = finnow; finnow = finother; finother = finswap;
05766     }
05767   }
05768   if ((bdxtail != 0.0) || (bdytail != 0.0)) {
05769     if ((cdxtail != 0.0) || (cdytail != 0.0)
05770         || (adxtail != 0.0) || (adytail != 0.0)) {
05771       Two_Product(cdxtail, ady, ti1, ti0);
05772       Two_Product(cdx, adytail, tj1, tj0);
05773       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
05774       u[3] = u3;
05775       negate = -cdy;
05776       Two_Product(adxtail, negate, ti1, ti0);
05777       negate = -cdytail;
05778       Two_Product(adx, negate, tj1, tj0);
05779       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
05780       v[3] = v3;
05781       catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
05782 
05783       Two_Product(cdxtail, adytail, ti1, ti0);
05784       Two_Product(adxtail, cdytail, tj1, tj0);
05785       Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
05786       catt[3] = catt3;
05787       cattlen = 4;
05788     } else {
05789       cat[0] = 0.0;
05790       catlen = 1;
05791       catt[0] = 0.0;
05792       cattlen = 1;
05793     }
05794 
05795     if (bdxtail != 0.0) {
05796       temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
05797       bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
05798       temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
05799                                             temp32a);
05800       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05801                                               temp32alen, temp32a, temp48);
05802       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05803                                               temp48, finother);
05804       finswap = finnow; finnow = finother; finother = finswap;
05805       if (cdytail != 0.0) {
05806         temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
05807         temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
05808                                               temp16a);
05809         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05810                                                 temp16a, finother);
05811         finswap = finnow; finnow = finother; finother = finswap;
05812       }
05813       if (adytail != 0.0) {
05814         temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
05815         temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
05816                                               temp16a);
05817         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05818                                                 temp16a, finother);
05819         finswap = finnow; finnow = finother; finother = finswap;
05820       }
05821 
05822       temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
05823                                             temp32a);
05824       bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
05825       temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
05826                                             temp16a);
05827       temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
05828                                             temp16b);
05829       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05830                                               temp16blen, temp16b, temp32b);
05831       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05832                                               temp32blen, temp32b, temp64);
05833       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05834                                               temp64, finother);
05835       finswap = finnow; finnow = finother; finother = finswap;
05836     }
05837     if (bdytail != 0.0) {
05838       temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
05839       bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
05840       temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
05841                                             temp32a);
05842       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05843                                               temp32alen, temp32a, temp48);
05844       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05845                                               temp48, finother);
05846       finswap = finnow; finnow = finother; finother = finswap;
05847 
05848 
05849       temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
05850                                             temp32a);
05851       bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
05852       temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
05853                                             temp16a);
05854       temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
05855                                             temp16b);
05856       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05857                                               temp16blen, temp16b, temp32b);
05858       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05859                                               temp32blen, temp32b, temp64);
05860       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05861                                               temp64, finother);
05862       finswap = finnow; finnow = finother; finother = finswap;
05863     }
05864   }
05865   if ((cdxtail != 0.0) || (cdytail != 0.0)) {
05866     if ((adxtail != 0.0) || (adytail != 0.0)
05867         || (bdxtail != 0.0) || (bdytail != 0.0)) {
05868       Two_Product(adxtail, bdy, ti1, ti0);
05869       Two_Product(adx, bdytail, tj1, tj0);
05870       Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
05871       u[3] = u3;
05872       negate = -ady;
05873       Two_Product(bdxtail, negate, ti1, ti0);
05874       negate = -adytail;
05875       Two_Product(bdx, negate, tj1, tj0);
05876       Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
05877       v[3] = v3;
05878       abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
05879 
05880       Two_Product(adxtail, bdytail, ti1, ti0);
05881       Two_Product(bdxtail, adytail, tj1, tj0);
05882       Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
05883       abtt[3] = abtt3;
05884       abttlen = 4;
05885     } else {
05886       abt[0] = 0.0;
05887       abtlen = 1;
05888       abtt[0] = 0.0;
05889       abttlen = 1;
05890     }
05891 
05892     if (cdxtail != 0.0) {
05893       temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
05894       cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
05895       temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
05896                                             temp32a);
05897       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05898                                               temp32alen, temp32a, temp48);
05899       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05900                                               temp48, finother);
05901       finswap = finnow; finnow = finother; finother = finswap;
05902       if (adytail != 0.0) {
05903         temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
05904         temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
05905                                               temp16a);
05906         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05907                                                 temp16a, finother);
05908         finswap = finnow; finnow = finother; finother = finswap;
05909       }
05910       if (bdytail != 0.0) {
05911         temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
05912         temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
05913                                               temp16a);
05914         finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
05915                                                 temp16a, finother);
05916         finswap = finnow; finnow = finother; finother = finswap;
05917       }
05918 
05919       temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
05920                                             temp32a);
05921       cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
05922       temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
05923                                             temp16a);
05924       temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
05925                                             temp16b);
05926       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05927                                               temp16blen, temp16b, temp32b);
05928       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05929                                               temp32blen, temp32b, temp64);
05930       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05931                                               temp64, finother);
05932       finswap = finnow; finnow = finother; finother = finswap;
05933     }
05934     if (cdytail != 0.0) {
05935       temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
05936       cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
05937       temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
05938                                             temp32a);
05939       temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05940                                               temp32alen, temp32a, temp48);
05941       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
05942                                               temp48, finother);
05943       finswap = finnow; finnow = finother; finother = finswap;
05944 
05945 
05946       temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
05947                                             temp32a);
05948       cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
05949       temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
05950                                             temp16a);
05951       temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
05952                                             temp16b);
05953       temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
05954                                               temp16blen, temp16b, temp32b);
05955       temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
05956                                               temp32blen, temp32b, temp64);
05957       finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
05958                                               temp64, finother);
05959       finswap = finnow; finnow = finother; finother = finswap;
05960     }
05961   }
05962 
05963   return finnow[finlength - 1];
05964 }
05965 
05966 #ifdef ANSI_DECLARATORS
05967 REAL incircle(struct mesh *m, struct behavior *b,
05968               vertex pa, vertex pb, vertex pc, vertex pd)
05969 #else /* not ANSI_DECLARATORS */
05970 REAL incircle(m, b, pa, pb, pc, pd)
05971 struct mesh *m;
05972 struct behavior *b;
05973 vertex pa;
05974 vertex pb;
05975 vertex pc;
05976 vertex pd;
05977 #endif /* not ANSI_DECLARATORS */
05978 
05979 {
05980   REAL adx, bdx, cdx, ady, bdy, cdy;
05981   REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
05982   REAL alift, blift, clift;
05983   REAL det;
05984   REAL permanent, errbound;
05985 
05986   m->incirclecount++;
05987 
05988   adx = pa[0] - pd[0];
05989   bdx = pb[0] - pd[0];
05990   cdx = pc[0] - pd[0];
05991   ady = pa[1] - pd[1];
05992   bdy = pb[1] - pd[1];
05993   cdy = pc[1] - pd[1];
05994 
05995   bdxcdy = bdx * cdy;
05996   cdxbdy = cdx * bdy;
05997   alift = adx * adx + ady * ady;
05998 
05999   cdxady = cdx * ady;
06000   adxcdy = adx * cdy;
06001   blift = bdx * bdx + bdy * bdy;
06002 
06003   adxbdy = adx * bdy;
06004   bdxady = bdx * ady;
06005   clift = cdx * cdx + cdy * cdy;
06006 
06007   det = alift * (bdxcdy - cdxbdy)
06008       + blift * (cdxady - adxcdy)
06009       + clift * (adxbdy - bdxady);
06010 
06011   if (b->noexact) {
06012     return det;
06013   }
06014 
06015   permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
06016             + (Absolute(cdxady) + Absolute(adxcdy)) * blift
06017             + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
06018   errbound = iccerrboundA * permanent;
06019   if ((det > errbound) || (-det > errbound)) {
06020     return det;
06021   }
06022 
06023   return incircleadapt(pa, pb, pc, pd, permanent);
06024 }
06025 
06026 /*****************************************************************************/
06027 /*                                                                           */
06028 /*  orient3d()   Return a positive value if the point pd lies below the      */
06029 /*               plane passing through pa, pb, and pc; "below" is defined so */
06030 /*               that pa, pb, and pc appear in counterclockwise order when   */
06031 /*               viewed from above the plane.  Returns a negative value if   */
06032 /*               pd lies above the plane.  Returns zero if the points are    */
06033 /*               coplanar.  The result is also a rough approximation of six  */
06034 /*               times the signed volume of the tetrahedron defined by the   */
06035 /*               four points.                                                */
06036 /*                                                                           */
06037 /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
06038 /*  result returned is the determinant of a matrix.  This determinant is     */
06039 /*  computed adaptively, in the sense that exact arithmetic is used only to  */
06040 /*  the degree it is needed to ensure that the returned value has the        */
06041 /*  correct sign.  Hence, this function is usually quite fast, but will run  */
06042 /*  more slowly when the input points are coplanar or nearly so.             */
06043 /*                                                                           */
06044 /*  See my Robust Predicates paper for details.                              */
06045 /*                                                                           */
06046 /*****************************************************************************/
06047 
06048 #ifdef ANSI_DECLARATORS
06049 REAL orient3dadapt(vertex pa, vertex pb, vertex pc, vertex pd,
06050                    REAL aheight, REAL bheight, REAL cheight, REAL dheight,
06051                    REAL permanent)
06052 #else /* not ANSI_DECLARATORS */
06053 REAL orient3dadapt(pa, pb, pc, pd,
06054                    aheight, bheight, cheight, dheight, permanent)
06055 vertex pa;
06056 vertex pb;
06057 vertex pc;
06058 vertex pd;
06059 REAL aheight;
06060 REAL bheight;
06061 REAL cheight;
06062 REAL dheight;
06063 REAL permanent;
06064 #endif /* not ANSI_DECLARATORS */
06065 
06066 {
06067   INEXACT REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
06068   REAL det, errbound;
06069 
06070   INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
06071   REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
06072   REAL bc[4], ca[4], ab[4];
06073   INEXACT REAL bc3, ca3, ab3;
06074   REAL adet[8], bdet[8], cdet[8];
06075   int alen, blen, clen;
06076   REAL abdet[16];
06077   int ablen;
06078   REAL *finnow, *finother, *finswap;
06079   REAL fin1[192], fin2[192];
06080   int finlength;
06081 
06082   REAL adxtail, bdxtail, cdxtail;
06083   REAL adytail, bdytail, cdytail;
06084   REAL adheighttail, bdheighttail, cdheighttail;
06085   INEXACT REAL at_blarge, at_clarge;
06086   INEXACT REAL bt_clarge, bt_alarge;
06087   INEXACT REAL ct_alarge, ct_blarge;
06088   REAL at_b[4], at_c[4], bt_c[4], bt_a[4], ct_a[4], ct_b[4];
06089   int at_blen, at_clen, bt_clen, bt_alen, ct_alen, ct_blen;
06090   INEXACT REAL bdxt_cdy1, cdxt_bdy1, cdxt_ady1;
06091   INEXACT REAL adxt_cdy1, adxt_bdy1, bdxt_ady1;
06092   REAL bdxt_cdy0, cdxt_bdy0, cdxt_ady0;
06093   REAL adxt_cdy0, adxt_bdy0, bdxt_ady0;
06094   INEXACT REAL bdyt_cdx1, cdyt_bdx1, cdyt_adx1;
06095   INEXACT REAL adyt_cdx1, adyt_bdx1, bdyt_adx1;
06096   REAL bdyt_cdx0, cdyt_bdx0, cdyt_adx0;
06097   REAL adyt_cdx0, adyt_bdx0, bdyt_adx0;
06098   REAL bct[8], cat[8], abt[8];
06099   int bctlen, catlen, abtlen;
06100   INEXACT REAL bdxt_cdyt1, cdxt_bdyt1, cdxt_adyt1;
06101   INEXACT REAL adxt_cdyt1, adxt_bdyt1, bdxt_adyt1;
06102   REAL bdxt_cdyt0, cdxt_bdyt0, cdxt_adyt0;
06103   REAL adxt_cdyt0, adxt_bdyt0, bdxt_adyt0;
06104   REAL u[4], v[12], w[16];
06105   INEXACT REAL u3;
06106   int vlength, wlength;
06107   REAL negate;
06108 
06109   INEXACT REAL bvirt;
06110   REAL avirt, bround, around;
06111   INEXACT REAL c;
06112   INEXACT REAL abig;
06113   REAL ahi, alo, bhi, blo;
06114   REAL err1, err2, err3;
06115   INEXACT REAL _i, _j, _k;
06116   REAL _0;
06117 
06118   adx = (REAL) (pa[0] - pd[0]);
06119   bdx = (REAL) (pb[0] - pd[0]);
06120   cdx = (REAL) (pc[0] - pd[0]);
06121   ady = (REAL) (pa[1] - pd[1]);
06122   bdy = (REAL) (pb[1] - pd[1]);
06123   cdy = (REAL) (pc[1] - pd[1]);
06124   adheight = (REAL) (aheight - dheight);
06125   bdheight = (REAL) (bheight - dheight);
06126   cdheight = (REAL) (cheight - dheight);
06127 
06128   Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
06129   Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
06130   Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
06131   bc[3] = bc3;
06132   alen = scale_expansion_zeroelim(4, bc, adheight, adet);
06133 
06134   Two_Product(cdx, ady, cdxady1, cdxady0);
06135   Two_Product(adx, cdy, adxcdy1, adxcdy0);
06136   Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
06137   ca[3] = ca3;
06138   blen = scale_expansion_zeroelim(4, ca, bdheight, bdet);
06139 
06140   Two_Product(adx, bdy, adxbdy1, adxbdy0);
06141   Two_Product(bdx, ady, bdxady1, bdxady0);
06142   Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
06143   ab[3] = ab3;
06144   clen = scale_expansion_zeroelim(4, ab, cdheight, cdet);
06145 
06146   ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
06147   finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
06148 
06149   det = estimate(finlength, fin1);
06150   errbound = o3derrboundB * permanent;
06151   if ((det >= errbound) || (-det >= errbound)) {
06152     return det;
06153   }
06154 
06155   Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
06156   Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
06157   Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
06158   Two_Diff_Tail(pa[1], pd[1], ady, adytail);
06159   Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
06160   Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
06161   Two_Diff_Tail(aheight, dheight, adheight, adheighttail);
06162   Two_Diff_Tail(bheight, dheight, bdheight, bdheighttail);
06163   Two_Diff_Tail(cheight, dheight, cdheight, cdheighttail);
06164 
06165   if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0) &&
06166       (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0) &&
06167       (adheighttail == 0.0) &&
06168       (bdheighttail == 0.0) &&
06169       (cdheighttail == 0.0)) {
06170     return det;
06171   }
06172 
06173   errbound = o3derrboundC * permanent + resulterrbound * Absolute(det);
06174   det += (adheight * ((bdx * cdytail + cdy * bdxtail) -
06175                       (bdy * cdxtail + cdx * bdytail)) +
06176           adheighttail * (bdx * cdy - bdy * cdx)) +
06177          (bdheight * ((cdx * adytail + ady * cdxtail) -
06178                       (cdy * adxtail + adx * cdytail)) +
06179           bdheighttail * (cdx * ady - cdy * adx)) +
06180          (cdheight * ((adx * bdytail + bdy * adxtail) -
06181                       (ady * bdxtail + bdx * adytail)) +
06182           cdheighttail * (adx * bdy - ady * bdx));
06183   if ((det >= errbound) || (-det >= errbound)) {
06184     return det;
06185   }
06186 
06187   finnow = fin1;
06188   finother = fin2;
06189 
06190   if (adxtail == 0.0) {
06191     if (adytail == 0.0) {
06192       at_b[0] = 0.0;
06193       at_blen = 1;
06194       at_c[0] = 0.0;
06195       at_clen = 1;
06196     } else {
06197       negate = -adytail;
06198       Two_Product(negate, bdx, at_blarge, at_b[0]);
06199       at_b[1] = at_blarge;
06200       at_blen = 2;
06201       Two_Product(adytail, cdx, at_clarge, at_c[0]);
06202       at_c[1] = at_clarge;
06203       at_clen = 2;
06204     }
06205   } else {
06206     if (adytail == 0.0) {
06207       Two_Product(adxtail, bdy, at_blarge, at_b[0]);
06208       at_b[1] = at_blarge;
06209       at_blen = 2;
06210       negate = -adxtail;
06211       Two_Product(negate, cdy, at_clarge, at_c[0]);
06212       at_c[1] = at_clarge;
06213       at_clen = 2;
06214     } else {
06215       Two_Product(adxtail, bdy, adxt_bdy1, adxt_bdy0);
06216       Two_Product(adytail, bdx, adyt_bdx1, adyt_bdx0);
06217       Two_Two_Diff(adxt_bdy1, adxt_bdy0, adyt_bdx1, adyt_bdx0,
06218                    at_blarge, at_b[2], at_b[1], at_b[0]);
06219       at_b[3] = at_blarge;
06220       at_blen = 4;
06221       Two_Product(adytail, cdx, adyt_cdx1, adyt_cdx0);
06222       Two_Product(adxtail, cdy, adxt_cdy1, adxt_cdy0);
06223       Two_Two_Diff(adyt_cdx1, adyt_cdx0, adxt_cdy1, adxt_cdy0,
06224                    at_clarge, at_c[2], at_c[1], at_c[0]);
06225       at_c[3] = at_clarge;
06226       at_clen = 4;
06227     }
06228   }
06229   if (bdxtail == 0.0) {
06230     if (bdytail == 0.0) {
06231       bt_c[0] = 0.0;
06232       bt_clen = 1;
06233       bt_a[0] = 0.0;
06234       bt_alen = 1;
06235     } else {
06236       negate = -bdytail;
06237       Two_Product(negate, cdx, bt_clarge, bt_c[0]);
06238       bt_c[1] = bt_clarge;
06239       bt_clen = 2;
06240       Two_Product(bdytail, adx, bt_alarge, bt_a[0]);
06241       bt_a[1] = bt_alarge;
06242       bt_alen = 2;
06243     }
06244   } else {
06245     if (bdytail == 0.0) {
06246       Two_Product(bdxtail, cdy, bt_clarge, bt_c[0]);
06247       bt_c[1] = bt_clarge;
06248       bt_clen = 2;
06249       negate = -bdxtail;
06250       Two_Product(negate, ady, bt_alarge, bt_a[0]);
06251       bt_a[1] = bt_alarge;
06252       bt_alen = 2;
06253     } else {
06254       Two_Product(bdxtail, cdy, bdxt_cdy1, bdxt_cdy0);
06255       Two_Product(bdytail, cdx, bdyt_cdx1, bdyt_cdx0);
06256       Two_Two_Diff(bdxt_cdy1, bdxt_cdy0, bdyt_cdx1, bdyt_cdx0,
06257                    bt_clarge, bt_c[2], bt_c[1], bt_c[0]);
06258       bt_c[3] = bt_clarge;
06259       bt_clen = 4;
06260       Two_Product(bdytail, adx, bdyt_adx1, bdyt_adx0);
06261       Two_Product(bdxtail, ady, bdxt_ady1, bdxt_ady0);
06262       Two_Two_Diff(bdyt_adx1, bdyt_adx0, bdxt_ady1, bdxt_ady0,
06263                   bt_alarge, bt_a[2], bt_a[1], bt_a[0]);
06264       bt_a[3] = bt_alarge;
06265       bt_alen = 4;
06266     }
06267   }
06268   if (cdxtail == 0.0) {
06269     if (cdytail == 0.0) {
06270       ct_a[0] = 0.0;
06271       ct_alen = 1;
06272       ct_b[0] = 0.0;
06273       ct_blen = 1;
06274     } else {
06275       negate = -cdytail;
06276       Two_Product(negate, adx, ct_alarge, ct_a[0]);
06277       ct_a[1] = ct_alarge;
06278       ct_alen = 2;
06279       Two_Product(cdytail, bdx, ct_blarge, ct_b[0]);
06280       ct_b[1] = ct_blarge;
06281       ct_blen = 2;
06282     }
06283   } else {
06284     if (cdytail == 0.0) {
06285       Two_Product(cdxtail, ady, ct_alarge, ct_a[0]);
06286       ct_a[1] = ct_alarge;
06287       ct_alen = 2;
06288       negate = -cdxtail;
06289       Two_Product(negate, bdy, ct_blarge, ct_b[0]);
06290       ct_b[1] = ct_blarge;
06291       ct_blen = 2;
06292     } else {
06293       Two_Product(cdxtail, ady, cdxt_ady1, cdxt_ady0);
06294       Two_Product(cdytail, adx, cdyt_adx1, cdyt_adx0);
06295       Two_Two_Diff(cdxt_ady1, cdxt_ady0, cdyt_adx1, cdyt_adx0,
06296                    ct_alarge, ct_a[2], ct_a[1], ct_a[0]);
06297       ct_a[3] = ct_alarge;
06298       ct_alen = 4;
06299       Two_Product(cdytail, bdx, cdyt_bdx1, cdyt_bdx0);
06300       Two_Product(cdxtail, bdy, cdxt_bdy1, cdxt_bdy0);
06301       Two_Two_Diff(cdyt_bdx1, cdyt_bdx0, cdxt_bdy1, cdxt_bdy0,
06302                    ct_blarge, ct_b[2], ct_b[1], ct_b[0]);
06303       ct_b[3] = ct_blarge;
06304       ct_blen = 4;
06305     }
06306   }
06307 
06308   bctlen = fast_expansion_sum_zeroelim(bt_clen, bt_c, ct_blen, ct_b, bct);
06309   wlength = scale_expansion_zeroelim(bctlen, bct, adheight, w);
06310   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06311                                           finother);
06312   finswap = finnow; finnow = finother; finother = finswap;
06313 
06314   catlen = fast_expansion_sum_zeroelim(ct_alen, ct_a, at_clen, at_c, cat);
06315   wlength = scale_expansion_zeroelim(catlen, cat, bdheight, w);
06316   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06317                                           finother);
06318   finswap = finnow; finnow = finother; finother = finswap;
06319 
06320   abtlen = fast_expansion_sum_zeroelim(at_blen, at_b, bt_alen, bt_a, abt);
06321   wlength = scale_expansion_zeroelim(abtlen, abt, cdheight, w);
06322   finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06323                                           finother);
06324   finswap = finnow; finnow = finother; finother = finswap;
06325 
06326   if (adheighttail != 0.0) {
06327     vlength = scale_expansion_zeroelim(4, bc, adheighttail, v);
06328     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
06329                                             finother);
06330     finswap = finnow; finnow = finother; finother = finswap;
06331   }
06332   if (bdheighttail != 0.0) {
06333     vlength = scale_expansion_zeroelim(4, ca, bdheighttail, v);
06334     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
06335                                             finother);
06336     finswap = finnow; finnow = finother; finother = finswap;
06337   }
06338   if (cdheighttail != 0.0) {
06339     vlength = scale_expansion_zeroelim(4, ab, cdheighttail, v);
06340     finlength = fast_expansion_sum_zeroelim(finlength, finnow, vlength, v,
06341                                             finother);
06342     finswap = finnow; finnow = finother; finother = finswap;
06343   }
06344 
06345   if (adxtail != 0.0) {
06346     if (bdytail != 0.0) {
06347       Two_Product(adxtail, bdytail, adxt_bdyt1, adxt_bdyt0);
06348       Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheight, u3, u[2], u[1], u[0]);
06349       u[3] = u3;
06350       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06351                                               finother);
06352       finswap = finnow; finnow = finother; finother = finswap;
06353       if (cdheighttail != 0.0) {
06354         Two_One_Product(adxt_bdyt1, adxt_bdyt0, cdheighttail,
06355                         u3, u[2], u[1], u[0]);
06356         u[3] = u3;
06357         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06358                                                 finother);
06359         finswap = finnow; finnow = finother; finother = finswap;
06360       }
06361     }
06362     if (cdytail != 0.0) {
06363       negate = -adxtail;
06364       Two_Product(negate, cdytail, adxt_cdyt1, adxt_cdyt0);
06365       Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheight, u3, u[2], u[1], u[0]);
06366       u[3] = u3;
06367       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06368                                               finother);
06369       finswap = finnow; finnow = finother; finother = finswap;
06370       if (bdheighttail != 0.0) {
06371         Two_One_Product(adxt_cdyt1, adxt_cdyt0, bdheighttail,
06372                         u3, u[2], u[1], u[0]);
06373         u[3] = u3;
06374         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06375                                                 finother);
06376         finswap = finnow; finnow = finother; finother = finswap;
06377       }
06378     }
06379   }
06380   if (bdxtail != 0.0) {
06381     if (cdytail != 0.0) {
06382       Two_Product(bdxtail, cdytail, bdxt_cdyt1, bdxt_cdyt0);
06383       Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheight, u3, u[2], u[1], u[0]);
06384       u[3] = u3;
06385       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06386                                               finother);
06387       finswap = finnow; finnow = finother; finother = finswap;
06388       if (adheighttail != 0.0) {
06389         Two_One_Product(bdxt_cdyt1, bdxt_cdyt0, adheighttail,
06390                         u3, u[2], u[1], u[0]);
06391         u[3] = u3;
06392         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06393                                                 finother);
06394         finswap = finnow; finnow = finother; finother = finswap;
06395       }
06396     }
06397     if (adytail != 0.0) {
06398       negate = -bdxtail;
06399       Two_Product(negate, adytail, bdxt_adyt1, bdxt_adyt0);
06400       Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheight, u3, u[2], u[1], u[0]);
06401       u[3] = u3;
06402       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06403                                               finother);
06404       finswap = finnow; finnow = finother; finother = finswap;
06405       if (cdheighttail != 0.0) {
06406         Two_One_Product(bdxt_adyt1, bdxt_adyt0, cdheighttail,
06407                         u3, u[2], u[1], u[0]);
06408         u[3] = u3;
06409         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06410                                                 finother);
06411         finswap = finnow; finnow = finother; finother = finswap;
06412       }
06413     }
06414   }
06415   if (cdxtail != 0.0) {
06416     if (adytail != 0.0) {
06417       Two_Product(cdxtail, adytail, cdxt_adyt1, cdxt_adyt0);
06418       Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheight, u3, u[2], u[1], u[0]);
06419       u[3] = u3;
06420       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06421                                               finother);
06422       finswap = finnow; finnow = finother; finother = finswap;
06423       if (bdheighttail != 0.0) {
06424         Two_One_Product(cdxt_adyt1, cdxt_adyt0, bdheighttail,
06425                         u3, u[2], u[1], u[0]);
06426         u[3] = u3;
06427         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06428                                                 finother);
06429         finswap = finnow; finnow = finother; finother = finswap;
06430       }
06431     }
06432     if (bdytail != 0.0) {
06433       negate = -cdxtail;
06434       Two_Product(negate, bdytail, cdxt_bdyt1, cdxt_bdyt0);
06435       Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheight, u3, u[2], u[1], u[0]);
06436       u[3] = u3;
06437       finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06438                                               finother);
06439       finswap = finnow; finnow = finother; finother = finswap;
06440       if (adheighttail != 0.0) {
06441         Two_One_Product(cdxt_bdyt1, cdxt_bdyt0, adheighttail,
06442                         u3, u[2], u[1], u[0]);
06443         u[3] = u3;
06444         finlength = fast_expansion_sum_zeroelim(finlength, finnow, 4, u,
06445                                                 finother);
06446         finswap = finnow; finnow = finother; finother = finswap;
06447       }
06448     }
06449   }
06450 
06451   if (adheighttail != 0.0) {
06452     wlength = scale_expansion_zeroelim(bctlen, bct, adheighttail, w);
06453     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06454                                             finother);
06455     finswap = finnow; finnow = finother; finother = finswap;
06456   }
06457   if (bdheighttail != 0.0) {
06458     wlength = scale_expansion_zeroelim(catlen, cat, bdheighttail, w);
06459     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06460                                             finother);
06461     finswap = finnow; finnow = finother; finother = finswap;
06462   }
06463   if (cdheighttail != 0.0) {
06464     wlength = scale_expansion_zeroelim(abtlen, abt, cdheighttail, w);
06465     finlength = fast_expansion_sum_zeroelim(finlength, finnow, wlength, w,
06466                                             finother);
06467     finswap = finnow; finnow = finother; finother = finswap;
06468   }
06469 
06470   return finnow[finlength - 1];
06471 }
06472 
06473 #ifdef ANSI_DECLARATORS
06474 REAL orient3d(struct mesh *m, struct behavior *b,
06475               vertex pa, vertex pb, vertex pc, vertex pd,
06476               REAL aheight, REAL bheight, REAL cheight, REAL dheight)
06477 #else /* not ANSI_DECLARATORS */
06478 REAL orient3d(m, b, pa, pb, pc, pd, aheight, bheight, cheight, dheight)
06479 struct mesh *m;
06480 struct behavior *b;
06481 vertex pa;
06482 vertex pb;
06483 vertex pc;
06484 vertex pd;
06485 REAL aheight;
06486 REAL bheight;
06487 REAL cheight;
06488 REAL dheight;
06489 #endif /* not ANSI_DECLARATORS */
06490 
06491 {
06492   REAL adx, bdx, cdx, ady, bdy, cdy, adheight, bdheight, cdheight;
06493   REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
06494   REAL det;
06495   REAL permanent, errbound;
06496 
06497   m->orient3dcount++;
06498 
06499   adx = pa[0] - pd[0];
06500   bdx = pb[0] - pd[0];
06501   cdx = pc[0] - pd[0];
06502   ady = pa[1] - pd[1];
06503   bdy = pb[1] - pd[1];
06504   cdy = pc[1] - pd[1];
06505   adheight = aheight - dheight;
06506   bdheight = bheight - dheight;
06507   cdheight = cheight - dheight;
06508 
06509   bdxcdy = bdx * cdy;
06510   cdxbdy = cdx * bdy;
06511 
06512   cdxady = cdx * ady;
06513   adxcdy = adx * cdy;
06514 
06515   adxbdy = adx * bdy;
06516   bdxady = bdx * ady;
06517 
06518   det = adheight * (bdxcdy - cdxbdy)
06519       + bdheight * (cdxady - adxcdy)
06520       + cdheight * (adxbdy - bdxady);
06521 
06522   if (b->noexact) {
06523     return det;
06524   }
06525 
06526   permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * Absolute(adheight)
06527             + (Absolute(cdxady) + Absolute(adxcdy)) * Absolute(bdheight)
06528             + (Absolute(adxbdy) + Absolute(bdxady)) * Absolute(cdheight);
06529   errbound = o3derrboundA * permanent;
06530   if ((det > errbound) || (-det > errbound)) {
06531     return det;
06532   }
06533 
06534   return orient3dadapt(pa, pb, pc, pd, aheight, bheight, cheight, dheight,
06535                        permanent);
06536 }
06537 
06538 /*****************************************************************************/
06539 /*                                                                           */
06540 /*  nonregular()   Return a positive value if the point pd is incompatible   */
06541 /*                 with the circle or plane passing through pa, pb, and pc   */
06542 /*                 (meaning that pd is inside the circle or below the        */
06543 /*                 plane); a negative value if it is compatible; and zero if */
06544 /*                 the four points are cocircular/coplanar.  The points pa,  */
06545 /*                 pb, and pc must be in counterclockwise order, or the sign */
06546 /*                 of the result will be reversed.                           */
06547 /*                                                                           */
06548 /*  If the -w switch is used, the points are lifted onto the parabolic       */
06549 /*  lifting map, then they are dropped according to their weights, then the  */
06550 /*  3D orientation test is applied.  If the -W switch is used, the points'   */
06551 /*  heights are already provided, so the 3D orientation test is applied      */
06552 /*  directly.  If neither switch is used, the incircle test is applied.      */
06553 /*                                                                           */
06554 /*****************************************************************************/
06555 
06556 #ifdef ANSI_DECLARATORS
06557 REAL nonregular(struct mesh *m, struct behavior *b,
06558                 vertex pa, vertex pb, vertex pc, vertex pd)
06559 #else /* not ANSI_DECLARATORS */
06560 REAL nonregular(m, b, pa, pb, pc, pd)
06561 struct mesh *m;
06562 struct behavior *b;
06563 vertex pa;
06564 vertex pb;
06565 vertex pc;
06566 vertex pd;
06567 #endif /* not ANSI_DECLARATORS */
06568 
06569 {
06570   if (b->weighted == 0) {
06571     return incircle(m, b, pa, pb, pc, pd);
06572   } else if (b->weighted == 1) {
06573     return orient3d(m, b, pa, pb, pc, pd,
06574                     pa[0] * pa[0] + pa[1] * pa[1] - pa[2],
06575                     pb[0] * pb[0] + pb[1] * pb[1] - pb[2],
06576                     pc[0] * pc[0] + pc[1] * pc[1] - pc[2],
06577                     pd[0] * pd[0] + pd[1] * pd[1] - pd[2]);
06578   } else {
06579     return orient3d(m, b, pa, pb, pc, pd, pa[2], pb[2], pc[2], pd[2]);
06580   }
06581 }
06582 
06583 /*****************************************************************************/
06584 /*                                                                           */
06585 /*  findcircumcenter()   Find the circumcenter of a triangle.                */
06586 /*                                                                           */
06587 /*  The result is returned both in terms of x-y coordinates and xi-eta       */
06588 /*  (barycentric) coordinates.  The xi-eta coordinate system is defined in   */
06589 /*  terms of the triangle:  the origin of the triangle is the origin of the  */
06590 /*  coordinate system; the destination of the triangle is one unit along the */
06591 /*  xi axis; and the apex of the triangle is one unit along the eta axis.    */
06592 /*  This procedure also returns the square of the length of the triangle's   */
06593 /*  shortest edge.                                                           */
06594 /*                                                                           */
06595 /*****************************************************************************/
06596 
06597 #ifdef ANSI_DECLARATORS
06598 void findcircumcenter(struct mesh *m, struct behavior *b,
06599                       vertex torg, vertex tdest, vertex tapex,
06600                       vertex circumcenter, REAL *xi, REAL *eta, int offcenter)
06601 #else /* not ANSI_DECLARATORS */
06602 void findcircumcenter(m, b, torg, tdest, tapex, circumcenter, xi, eta,
06603                       offcenter)
06604 struct mesh *m;
06605 struct behavior *b;
06606 vertex torg;
06607 vertex tdest;
06608 vertex tapex;
06609 vertex circumcenter;
06610 REAL *xi;
06611 REAL *eta;
06612 int offcenter;
06613 #endif /* not ANSI_DECLARATORS */
06614 
06615 {
06616   REAL xdo, ydo, xao, yao;
06617   REAL dodist, aodist, dadist;
06618   REAL denominator;
06619   REAL dx, dy, dxoff, dyoff;
06620 
06621   m->circumcentercount++;
06622 
06623   /* Compute the circumcenter of the triangle. */
06624   xdo = tdest[0] - torg[0];
06625   ydo = tdest[1] - torg[1];
06626   xao = tapex[0] - torg[0];
06627   yao = tapex[1] - torg[1];
06628   dodist = xdo * xdo + ydo * ydo;
06629   aodist = xao * xao + yao * yao;
06630   dadist = (tdest[0] - tapex[0]) * (tdest[0] - tapex[0]) +
06631            (tdest[1] - tapex[1]) * (tdest[1] - tapex[1]);
06632   if (b->noexact) {
06633     denominator = 0.5 / (xdo * yao - xao * ydo);
06634   } else {
06635     /* Use the counterclockwise() routine to ensure a positive (and */
06636     /*   reasonably accurate) result, avoiding any possibility of   */
06637     /*   division by zero.                                          */
06638     denominator = 0.5 / counterclockwise(m, b, tdest, tapex, torg);
06639     /* Don't count the above as an orientation test. */
06640     m->counterclockcount--;
06641   }
06642   dx = (yao * dodist - ydo * aodist) * denominator;
06643   dy = (xdo * aodist - xao * dodist) * denominator;
06644 
06645   /* Find the (squared) length of the triangle's shortest edge.  This   */
06646   /*   serves as a conservative estimate of the insertion radius of the */
06647   /*   circumcenter's parent.  The estimate is used to ensure that      */
06648   /*   the algorithm terminates even if very small angles appear in     */
06649   /*   the input PSLG.                                                  */
06650   if ((dodist < aodist) && (dodist < dadist)) {
06651     if (offcenter && (b->offconstant > 0.0)) {
06652       /* Find the position of the off-center, as described by Alper Ungor. */
06653       dxoff = 0.5 * xdo - b->offconstant * ydo;
06654       dyoff = 0.5 * ydo + b->offconstant * xdo;
06655       /* If the off-center is closer to the origin than the */
06656       /*   circumcenter, use the off-center instead.        */
06657       if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
06658         dx = dxoff;
06659         dy = dyoff;
06660       }
06661     }
06662   } else if (aodist < dadist) {
06663     if (offcenter && (b->offconstant > 0.0)) {
06664       dxoff = 0.5 * xao + b->offconstant * yao;
06665       dyoff = 0.5 * yao - b->offconstant * xao;
06666       /* If the off-center is closer to the origin than the */
06667       /*   circumcenter, use the off-center instead.        */
06668       if (dxoff * dxoff + dyoff * dyoff < dx * dx + dy * dy) {
06669         dx = dxoff;
06670         dy = dyoff;
06671       }
06672     }
06673   } else {
06674     if (offcenter && (b->offconstant > 0.0)) {
06675       dxoff = 0.5 * (tapex[0] - tdest[0]) -
06676               b->offconstant * (tapex[1] - tdest[1]);
06677       dyoff = 0.5 * (tapex[1] - tdest[1]) +
06678               b->offconstant * (tapex[0] - tdest[0]);
06679       /* If the off-center is closer to the destination than the */
06680       /*   circumcenter, use the off-center instead.             */
06681       if (dxoff * dxoff + dyoff * dyoff <
06682           (dx - xdo) * (dx - xdo) + (dy - ydo) * (dy - ydo)) {
06683         dx = xdo + dxoff;
06684         dy = ydo + dyoff;
06685       }
06686     }
06687   }
06688 
06689   circumcenter[0] = torg[0] + dx;
06690   circumcenter[1] = torg[1] + dy;
06691 
06692   /* To interpolate vertex attributes for the new vertex inserted at */
06693   /*   the circumcenter, define a coordinate system with a xi-axis,  */
06694   /*   directed from the triangle's origin to its destination, and   */
06695   /*   an eta-axis, directed from its origin to its apex.            */
06696   /*   Calculate the xi and eta coordinates of the circumcenter.     */
06697   *xi = (yao * dx - xao * dy) * (2.0 * denominator);
06698   *eta = (xdo * dy - ydo * dx) * (2.0 * denominator);
06699 }
06700 
06703 /********* Geometric primitives end here                             *********/
06704 
06705 /*****************************************************************************/
06706 /*                                                                           */
06707 /*  triangleinit()   Initialize some variables.                              */
06708 /*                                                                           */
06709 /*****************************************************************************/
06710 
06711 #ifdef ANSI_DECLARATORS
06712 void triangleinit(struct mesh *m)
06713 #else /* not ANSI_DECLARATORS */
06714 void triangleinit(m)
06715 struct mesh *m;
06716 #endif /* not ANSI_DECLARATORS */
06717 
06718 {
06719   poolzero(&m->vertices);
06720   poolzero(&m->triangles);
06721   poolzero(&m->subsegs);
06722   poolzero(&m->viri);
06723   poolzero(&m->badsubsegs);
06724   poolzero(&m->badtriangles);
06725   poolzero(&m->flipstackers);
06726   poolzero(&m->splaynodes);
06727 
06728   m->recenttri.tri = (triangle *) NULL; /* No triangle has been visited yet. */
06729   m->undeads = 0;                       /* No eliminated input vertices yet. */
06730   m->samples = 1;         /* Point location should take at least one sample. */
06731   m->checksegments = 0;   /* There are no segments in the triangulation yet. */
06732   m->checkquality = 0;     /* The quality triangulation stage has not begun. */
06733   m->incirclecount = m->counterclockcount = m->orient3dcount = 0;
06734   m->hyperbolacount = m->circletopcount = m->circumcentercount = 0;
06735   randomseed = 1;
06736 
06737   exactinit();                     /* Initialize exact arithmetic constants. */
06738 }
06739 
06740 /*****************************************************************************/
06741 /*                                                                           */
06742 /*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
06743 /*                                                                           */
06744 /*  This is a simple linear congruential random number generator.  Hence, it */
06745 /*  is a bad random number generator, but good enough for most randomized    */
06746 /*  geometric algorithms.                                                    */
06747 /*                                                                           */
06748 /*****************************************************************************/
06749 
06750 #ifdef ANSI_DECLARATORS
06751 unsigned long randomnation(unsigned int choices)
06752 #else /* not ANSI_DECLARATORS */
06753 unsigned long randomnation(choices)
06754 unsigned int choices;
06755 #endif /* not ANSI_DECLARATORS */
06756 
06757 {
06758   randomseed = (randomseed * 1366l + 150889l) % 714025l;
06759   return randomseed / (714025l / choices + 1);
06760 }
06761 
06762 /********* Mesh quality testing routines begin here                  *********/
06766 /*****************************************************************************/
06767 /*                                                                           */
06768 /*  checkmesh()   Test the mesh for topological consistency.                 */
06769 /*                                                                           */
06770 /*****************************************************************************/
06771 
06772 #ifndef REDUCED
06773 
06774 #ifdef ANSI_DECLARATORS
06775 void checkmesh(struct mesh *m, struct behavior *b)
06776 #else /* not ANSI_DECLARATORS */
06777 void checkmesh(m, b)
06778 struct mesh *m;
06779 struct behavior *b;
06780 #endif /* not ANSI_DECLARATORS */
06781 
06782 {
06783   struct otri triangleloop;
06784   struct otri oppotri, oppooppotri;
06785   vertex triorg, tridest, triapex;
06786   vertex oppoorg, oppodest;
06787   int horrors;
06788   int saveexact;
06789   triangle ptr;                         /* Temporary variable used by sym(). */
06790 
06791   /* Temporarily turn on exact arithmetic if it's off. */
06792   saveexact = b->noexact;
06793   b->noexact = 0;
06794   if (!b->quiet) {
06795     printf("  Checking consistency of mesh...\n");
06796   }
06797   horrors = 0;
06798   /* Run through the list of triangles, checking each one. */
06799   traversalinit(&m->triangles);
06800   triangleloop.tri = triangletraverse(m);
06801   while (triangleloop.tri != (triangle *) NULL) {
06802     /* Check all three edges of the triangle. */
06803     for (triangleloop.orient = 0; triangleloop.orient < 3;
06804          triangleloop.orient++) {
06805       org(triangleloop, triorg);
06806       dest(triangleloop, tridest);
06807       if (triangleloop.orient == 0) {       /* Only test for inversion once. */
06808         /* Test if the triangle is flat or inverted. */
06809         apex(triangleloop, triapex);
06810         if (counterclockwise(m, b, triorg, tridest, triapex) <= 0.0) {
06811           printf("  !! !! Inverted ");
06812           printtriangle(m, b, &triangleloop);
06813           horrors++;
06814         }
06815       }
06816       /* Find the neighboring triangle on this edge. */
06817       sym(triangleloop, oppotri);
06818       if (oppotri.tri != m->dummytri) {
06819         /* Check that the triangle's neighbor knows it's a neighbor. */
06820         sym(oppotri, oppooppotri);
06821         if ((triangleloop.tri != oppooppotri.tri)
06822             || (triangleloop.orient != oppooppotri.orient)) {
06823           printf("  !! !! Asymmetric triangle-triangle bond:\n");
06824           if (triangleloop.tri == oppooppotri.tri) {
06825             printf("   (Right triangle, wrong orientation)\n");
06826           }
06827           printf("    First ");
06828           printtriangle(m, b, &triangleloop);
06829           printf("    Second (nonreciprocating) ");
06830           printtriangle(m, b, &oppotri);
06831           horrors++;
06832         }
06833         /* Check that both triangles agree on the identities */
06834         /*   of their shared vertices.                       */
06835         org(oppotri, oppoorg);
06836         dest(oppotri, oppodest);
06837         if ((triorg != oppodest) || (tridest != oppoorg)) {
06838           printf("  !! !! Mismatched edge coordinates between two triangles:\n"
06839                  );
06840           printf("    First mismatched ");
06841           printtriangle(m, b, &triangleloop);
06842           printf("    Second mismatched ");
06843           printtriangle(m, b, &oppotri);
06844           horrors++;
06845         }
06846       }
06847     }
06848     triangleloop.tri = triangletraverse(m);
06849   }
06850   if (horrors == 0) {
06851     if (!b->quiet) {
06852       printf("  In my studied opinion, the mesh appears to be consistent.\n");
06853     }
06854   } else if (horrors == 1) {
06855     printf("  !! !! !! !! Precisely one festering wound discovered.\n");
06856   } else {
06857     printf("  !! !! !! !! %d abominations witnessed.\n", horrors);
06858   }
06859   /* Restore the status of exact arithmetic. */
06860   b->noexact = saveexact;
06861 }
06862 
06863 #endif /* not REDUCED */
06864 
06865 /*****************************************************************************/
06866 /*                                                                           */
06867 /*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
06868 /*                                                                           */
06869 /*****************************************************************************/
06870 
06871 #ifndef REDUCED
06872 
06873 #ifdef ANSI_DECLARATORS
06874 void checkdelaunay(struct mesh *m, struct behavior *b)
06875 #else /* not ANSI_DECLARATORS */
06876 void checkdelaunay(m, b)
06877 struct mesh *m;
06878 struct behavior *b;
06879 #endif /* not ANSI_DECLARATORS */
06880 
06881 {
06882   struct otri triangleloop;
06883   struct otri oppotri;
06884   struct osub opposubseg;
06885   vertex triorg, tridest, triapex;
06886   vertex oppoapex;
06887   int shouldbedelaunay;
06888   int horrors;
06889   int saveexact;
06890   triangle ptr;                         /* Temporary variable used by sym(). */
06891   subseg sptr;                      /* Temporary variable used by tspivot(). */
06892 
06893   /* Temporarily turn on exact arithmetic if it's off. */
06894   saveexact = b->noexact;
06895   b->noexact = 0;
06896   if (!b->quiet) {
06897     printf("  Checking Delaunay property of mesh...\n");
06898   }
06899   horrors = 0;
06900   /* Run through the list of triangles, checking each one. */
06901   traversalinit(&m->triangles);
06902   triangleloop.tri = triangletraverse(m);
06903   while (triangleloop.tri != (triangle *) NULL) {
06904     /* Check all three edges of the triangle. */
06905     for (triangleloop.orient = 0; triangleloop.orient < 3;
06906          triangleloop.orient++) {
06907       org(triangleloop, triorg);
06908       dest(triangleloop, tridest);
06909       apex(triangleloop, triapex);
06910       sym(triangleloop, oppotri);
06911       apex(oppotri, oppoapex);
06912       /* Only test that the edge is locally Delaunay if there is an   */
06913       /*   adjoining triangle whose pointer is larger (to ensure that */
06914       /*   each pair isn't tested twice).                             */
06915       shouldbedelaunay = (oppotri.tri != m->dummytri) &&
06916             !deadtri(oppotri.tri) && (triangleloop.tri < oppotri.tri) &&
06917             (triorg != m->infvertex1) && (triorg != m->infvertex2) &&
06918             (triorg != m->infvertex3) &&
06919             (tridest != m->infvertex1) && (tridest != m->infvertex2) &&
06920             (tridest != m->infvertex3) &&
06921             (triapex != m->infvertex1) && (triapex != m->infvertex2) &&
06922             (triapex != m->infvertex3) &&
06923             (oppoapex != m->infvertex1) && (oppoapex != m->infvertex2) &&
06924             (oppoapex != m->infvertex3);
06925       if (m->checksegments && shouldbedelaunay) {
06926         /* If a subsegment separates the triangles, then the edge is */
06927         /*   constrained, so no local Delaunay test should be done.  */
06928         tspivot(triangleloop, opposubseg);
06929         if (opposubseg.ss != m->dummysub){
06930           shouldbedelaunay = 0;
06931         }
06932       }
06933       if (shouldbedelaunay) {
06934         if (nonregular(m, b, triorg, tridest, triapex, oppoapex) > 0.0) {
06935           if (!b->weighted) {
06936             printf("  !! !! Non-Delaunay pair of triangles:\n");
06937             printf("    First non-Delaunay ");
06938             printtriangle(m, b, &triangleloop);
06939             printf("    Second non-Delaunay ");
06940           } else {
06941             printf("  !! !! Non-regular pair of triangles:\n");
06942             printf("    First non-regular ");
06943             printtriangle(m, b, &triangleloop);
06944             printf("    Second non-regular ");
06945           }
06946           printtriangle(m, b, &oppotri);
06947           horrors++;
06948         }
06949       }
06950     }
06951     triangleloop.tri = triangletraverse(m);
06952   }
06953   if (horrors == 0) {
06954     if (!b->quiet) {
06955       printf(
06956   "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
06957     }
06958   } else if (horrors == 1) {
06959     printf(
06960          "  !! !! !! !! Precisely one terrifying transgression identified.\n");
06961   } else {
06962     printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
06963   }
06964   /* Restore the status of exact arithmetic. */
06965   b->noexact = saveexact;
06966 }
06967 
06968 #endif /* not REDUCED */
06969 
06970 /*****************************************************************************/
06971 /*                                                                           */
06972 /*  enqueuebadtriang()   Add a bad triangle data structure to the end of a   */
06973 /*                       queue.                                              */
06974 /*                                                                           */
06975 /*  The queue is actually a set of 4096 queues.  I use multiple queues to    */
06976 /*  give priority to smaller angles.  I originally implemented a heap, but   */
06977 /*  the queues are faster by a larger margin than I'd suspected.             */
06978 /*                                                                           */
06979 /*****************************************************************************/
06980 
06981 #ifndef CDT_ONLY
06982 
06983 #ifdef ANSI_DECLARATORS
06984 void enqueuebadtriang(struct mesh *m, struct behavior *b,
06985                       struct badtriang *badtri)
06986 #else /* not ANSI_DECLARATORS */
06987 void enqueuebadtriang(m, b, badtri)
06988 struct mesh *m;
06989 struct behavior *b;
06990 struct badtriang *badtri;
06991 #endif /* not ANSI_DECLARATORS */
06992 
06993 {
06994   REAL length, multiplier;
06995   int exponent, expincrement;
06996   int queuenumber;
06997   int posexponent;
06998   int i;
06999 
07000   if (b->verbose > 2) {
07001     printf("  Queueing bad triangle:\n");
07002     printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07003            badtri->triangorg[0], badtri->triangorg[1],
07004            badtri->triangdest[0], badtri->triangdest[1],
07005            badtri->triangapex[0], badtri->triangapex[1]);
07006   }
07007 
07008   /* Determine the appropriate queue to put the bad triangle into.    */
07009   /*   Recall that the key is the square of its shortest edge length. */
07010   if (badtri->key >= 1.0) {
07011     length = badtri->key;
07012     posexponent = 1;
07013   } else {
07014     /* `badtri->key' is 2.0 to a negative exponent, so we'll record that */
07015     /*   fact and use the reciprocal of `badtri->key', which is > 1.0.   */
07016     length = 1.0 / badtri->key;
07017     posexponent = 0;
07018   }
07019   /* `length' is approximately 2.0 to what exponent?  The following code */
07020   /*   determines the answer in time logarithmic in the exponent.        */
07021   exponent = 0;
07022   while (length > 2.0) {
07023     /* Find an approximation by repeated squaring of two. */
07024     expincrement = 1;
07025     multiplier = 0.5;
07026     while (length * multiplier * multiplier > 1.0) {
07027       expincrement *= 2;
07028       multiplier *= multiplier;
07029     }
07030     /* Reduce the value of `length', then iterate if necessary. */
07031     exponent += expincrement;
07032     length *= multiplier;
07033   }
07034   /* `length' is approximately squareroot(2.0) to what exponent? */
07035   exponent = 2 * exponent + (length > SQUAREROOTTWO);
07036   /* `exponent' is now in the range 0...2047 for IEEE double precision.   */
07037   /*   Choose a queue in the range 0...4095.  The shortest edges have the */
07038   /*   highest priority (queue 4095).                                     */
07039   if (posexponent) {
07040     queuenumber = 2047 - exponent;
07041   } else {
07042     queuenumber = 2048 + exponent;
07043   }
07044 
07045   /* Are we inserting into an empty queue? */
07046   if (m->queuefront[queuenumber] == (struct badtriang *) NULL) {
07047     /* Yes, we are inserting into an empty queue.     */
07048     /*   Will this become the highest-priority queue? */
07049     if (queuenumber > m->firstnonemptyq) {
07050       /* Yes, this is the highest-priority queue. */
07051       m->nextnonemptyq[queuenumber] = m->firstnonemptyq;
07052       m->firstnonemptyq = queuenumber;
07053     } else {
07054       /* No, this is not the highest-priority queue. */
07055       /*   Find the queue with next higher priority. */
07056       i = queuenumber + 1;
07057       while (m->queuefront[i] == (struct badtriang *) NULL) {
07058         i++;
07059       }
07060       /* Mark the newly nonempty queue as following a higher-priority queue. */
07061       m->nextnonemptyq[queuenumber] = m->nextnonemptyq[i];
07062       m->nextnonemptyq[i] = queuenumber;
07063     }
07064     /* Put the bad triangle at the beginning of the (empty) queue. */
07065     m->queuefront[queuenumber] = badtri;
07066   } else {
07067     /* Add the bad triangle to the end of an already nonempty queue. */
07068     m->queuetail[queuenumber]->nexttriang = badtri;
07069   }
07070   /* Maintain a pointer to the last triangle of the queue. */
07071   m->queuetail[queuenumber] = badtri;
07072   /* Newly enqueued bad triangle has no successor in the queue. */
07073   badtri->nexttriang = (struct badtriang *) NULL;
07074 }
07075 
07076 #endif /* not CDT_ONLY */
07077 
07078 /*****************************************************************************/
07079 /*                                                                           */
07080 /*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
07081 /*                                                                           */
07082 /*  Allocates a badtriang data structure for the triangle, then passes it to */
07083 /*  enqueuebadtriang().                                                      */
07084 /*                                                                           */
07085 /*****************************************************************************/
07086 
07087 #ifndef CDT_ONLY
07088 
07089 #ifdef ANSI_DECLARATORS
07090 void enqueuebadtri(struct mesh *m, struct behavior *b, struct otri *enqtri,
07091                    REAL minedge, vertex enqapex, vertex enqorg, vertex enqdest)
07092 #else /* not ANSI_DECLARATORS */
07093 void enqueuebadtri(m, b, enqtri, minedge, enqapex, enqorg, enqdest)
07094 struct mesh *m;
07095 struct behavior *b;
07096 struct otri *enqtri;
07097 REAL minedge;
07098 vertex enqapex;
07099 vertex enqorg;
07100 vertex enqdest;
07101 #endif /* not ANSI_DECLARATORS */
07102 
07103 {
07104   struct badtriang *newbad;
07105 
07106   /* Allocate space for the bad triangle. */
07107   newbad = (struct badtriang *) poolalloc(&m->badtriangles);
07108   newbad->poortri = encode(*enqtri);
07109   newbad->key = minedge;
07110   newbad->triangapex = enqapex;
07111   newbad->triangorg = enqorg;
07112   newbad->triangdest = enqdest;
07113   enqueuebadtriang(m, b, newbad);
07114 }
07115 
07116 #endif /* not CDT_ONLY */
07117 
07118 /*****************************************************************************/
07119 /*                                                                           */
07120 /*  dequeuebadtriang()   Remove a triangle from the front of the queue.      */
07121 /*                                                                           */
07122 /*****************************************************************************/
07123 
07124 #ifndef CDT_ONLY
07125 
07126 #ifdef ANSI_DECLARATORS
07127 struct badtriang *dequeuebadtriang(struct mesh *m)
07128 #else /* not ANSI_DECLARATORS */
07129 struct badtriang *dequeuebadtriang(m)
07130 struct mesh *m;
07131 #endif /* not ANSI_DECLARATORS */
07132 
07133 {
07134   struct badtriang *result;
07135 
07136   /* If no queues are nonempty, return NULL. */
07137   if (m->firstnonemptyq < 0) {
07138     return (struct badtriang *) NULL;
07139   }
07140   /* Find the first triangle of the highest-priority queue. */
07141   result = m->queuefront[m->firstnonemptyq];
07142   /* Remove the triangle from the queue. */
07143   m->queuefront[m->firstnonemptyq] = result->nexttriang;
07144   /* If this queue is now empty, note the new highest-priority */
07145   /*   nonempty queue.                                         */
07146   if (result == m->queuetail[m->firstnonemptyq]) {
07147     m->firstnonemptyq = m->nextnonemptyq[m->firstnonemptyq];
07148   }
07149   return result;
07150 }
07151 
07152 #endif /* not CDT_ONLY */
07153 
07154 /*****************************************************************************/
07155 /*                                                                           */
07156 /*  checkseg4encroach()   Check a subsegment to see if it is encroached; add */
07157 /*                        it to the list if it is.                           */
07158 /*                                                                           */
07159 /*  A subsegment is encroached if there is a vertex in its diametral lens.   */
07160 /*  For Ruppert's algorithm (-D switch), the "diametral lens" is the         */
07161 /*  diametral circle.  For Chew's algorithm (default), the diametral lens is */
07162 /*  just big enough to enclose two isosceles triangles whose bases are the   */
07163 /*  subsegment.  Each of the two isosceles triangles has two angles equal    */
07164 /*  to `b->minangle'.                                                        */
07165 /*                                                                           */
07166 /*  Chew's algorithm does not require diametral lenses at all--but they save */
07167 /*  time.  Any vertex inside a subsegment's diametral lens implies that the  */
07168 /*  triangle adjoining the subsegment will be too skinny, so it's only a     */
07169 /*  matter of time before the encroaching vertex is deleted by Chew's        */
07170 /*  algorithm.  It's faster to simply not insert the doomed vertex in the    */
07171 /*  first place, which is why I use diametral lenses with Chew's algorithm.  */
07172 /*                                                                           */
07173 /*  Returns a nonzero value if the subsegment is encroached.                 */
07174 /*                                                                           */
07175 /*****************************************************************************/
07176 
07177 #ifndef CDT_ONLY
07178 
07179 #ifdef ANSI_DECLARATORS
07180 int checkseg4encroach(struct mesh *m, struct behavior *b,
07181                       struct osub *testsubseg)
07182 #else /* not ANSI_DECLARATORS */
07183 int checkseg4encroach(m, b, testsubseg)
07184 struct mesh *m;
07185 struct behavior *b;
07186 struct osub *testsubseg;
07187 #endif /* not ANSI_DECLARATORS */
07188 
07189 {
07190   struct otri neighbortri;
07191   struct osub testsym;
07192   struct badsubseg *encroachedseg;
07193   REAL dotproduct;
07194   int encroached;
07195   int sides;
07196   vertex eorg, edest, eapex;
07197   triangle ptr;                     /* Temporary variable used by stpivot(). */
07198 
07199   encroached = 0;
07200   sides = 0;
07201 
07202   sorg(*testsubseg, eorg);
07203   sdest(*testsubseg, edest);
07204   /* Check one neighbor of the subsegment. */
07205   stpivot(*testsubseg, neighbortri);
07206   /* Does the neighbor exist, or is this a boundary edge? */
07207   if (neighbortri.tri != m->dummytri) {
07208     sides++;
07209     /* Find a vertex opposite this subsegment. */
07210     apex(neighbortri, eapex);
07211     /* Check whether the apex is in the diametral lens of the subsegment */
07212     /*   (the diametral circle if `conformdel' is set).  A dot product   */
07213     /*   of two sides of the triangle is used to check whether the angle */
07214     /*   at the apex is greater than (180 - 2 `minangle') degrees (for   */
07215     /*   lenses; 90 degrees for diametral circles).                      */
07216     dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
07217                  (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
07218     if (dotproduct < 0.0) {
07219       if (b->conformdel ||
07220           (dotproduct * dotproduct >=
07221            (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
07222            ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
07223             (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
07224            ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
07225             (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
07226         encroached = 1;
07227       }
07228     }
07229   }
07230   /* Check the other neighbor of the subsegment. */
07231   ssym(*testsubseg, testsym);
07232   stpivot(testsym, neighbortri);
07233   /* Does the neighbor exist, or is this a boundary edge? */
07234   if (neighbortri.tri != m->dummytri) {
07235     sides++;
07236     /* Find the other vertex opposite this subsegment. */
07237     apex(neighbortri, eapex);
07238     /* Check whether the apex is in the diametral lens of the subsegment */
07239     /*   (or the diametral circle, if `conformdel' is set).              */
07240     dotproduct = (eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
07241                  (eorg[1] - eapex[1]) * (edest[1] - eapex[1]);
07242     if (dotproduct < 0.0) {
07243       if (b->conformdel ||
07244           (dotproduct * dotproduct >=
07245            (2.0 * b->goodangle - 1.0) * (2.0 * b->goodangle - 1.0) *
07246            ((eorg[0] - eapex[0]) * (eorg[0] - eapex[0]) +
07247             (eorg[1] - eapex[1]) * (eorg[1] - eapex[1])) *
07248            ((edest[0] - eapex[0]) * (edest[0] - eapex[0]) +
07249             (edest[1] - eapex[1]) * (edest[1] - eapex[1])))) {
07250         encroached += 2;
07251       }
07252     }
07253   }
07254 
07255   if (encroached && (!b->nobisect || ((b->nobisect == 1) && (sides == 2)))) {
07256     if (b->verbose > 2) {
07257       printf(
07258         "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
07259         eorg[0], eorg[1], edest[0], edest[1]);
07260     }
07261     /* Add the subsegment to the list of encroached subsegments. */
07262     /*   Be sure to get the orientation right.                   */
07263     encroachedseg = (struct badsubseg *) poolalloc(&m->badsubsegs);
07264     if (encroached == 1) {
07265       encroachedseg->encsubseg = sencode(*testsubseg);
07266       encroachedseg->subsegorg = eorg;
07267       encroachedseg->subsegdest = edest;
07268     } else {
07269       encroachedseg->encsubseg = sencode(testsym);
07270       encroachedseg->subsegorg = edest;
07271       encroachedseg->subsegdest = eorg;
07272     }
07273   }
07274 
07275   return encroached;
07276 }
07277 
07278 #endif /* not CDT_ONLY */
07279 
07280 /*****************************************************************************/
07281 /*                                                                           */
07282 /*  testtriangle()   Test a triangle for quality and size.                   */
07283 /*                                                                           */
07284 /*  Tests a triangle to see if it satisfies the minimum angle condition and  */
07285 /*  the maximum area condition.  Triangles that aren't up to spec are added  */
07286 /*  to the bad triangle queue.                                               */
07287 /*                                                                           */
07288 /*****************************************************************************/
07289 
07290 #ifndef CDT_ONLY
07291 
07292 #ifdef ANSI_DECLARATORS
07293 void testtriangle(struct mesh *m, struct behavior *b, struct otri *testtri)
07294 #else /* not ANSI_DECLARATORS */
07295 void testtriangle(m, b, testtri)
07296 struct mesh *m;
07297 struct behavior *b;
07298 struct otri *testtri;
07299 #endif /* not ANSI_DECLARATORS */
07300 
07301 {
07302   struct otri tri1, tri2;
07303   struct osub testsub;
07304   vertex torg, tdest, tapex;
07305   vertex base1, base2;
07306   vertex org1, dest1, org2, dest2;
07307   vertex joinvertex;
07308   REAL dxod, dyod, dxda, dyda, dxao, dyao;
07309   REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
07310   REAL apexlen, orglen, destlen, minedge;
07311   REAL angle;
07312   REAL area;
07313   REAL dist1, dist2;
07314   subseg sptr;                      /* Temporary variable used by tspivot(). */
07315   triangle ptr;           /* Temporary variable used by oprev() and dnext(). */
07316 
07317   org(*testtri, torg);
07318   dest(*testtri, tdest);
07319   apex(*testtri, tapex);
07320   dxod = torg[0] - tdest[0];
07321   dyod = torg[1] - tdest[1];
07322   dxda = tdest[0] - tapex[0];
07323   dyda = tdest[1] - tapex[1];
07324   dxao = tapex[0] - torg[0];
07325   dyao = tapex[1] - torg[1];
07326   dxod2 = dxod * dxod;
07327   dyod2 = dyod * dyod;
07328   dxda2 = dxda * dxda;
07329   dyda2 = dyda * dyda;
07330   dxao2 = dxao * dxao;
07331   dyao2 = dyao * dyao;
07332   /* Find the lengths of the triangle's three edges. */
07333   apexlen = dxod2 + dyod2;
07334   orglen = dxda2 + dyda2;
07335   destlen = dxao2 + dyao2;
07336 
07337   if ((apexlen < orglen) && (apexlen < destlen)) {
07338     /* The edge opposite the apex is shortest. */
07339     minedge = apexlen;
07340     /* Find the square of the cosine of the angle at the apex. */
07341     angle = dxda * dxao + dyda * dyao;
07342     angle = angle * angle / (orglen * destlen);
07343     base1 = torg;
07344     base2 = tdest;
07345     otricopy(*testtri, tri1);
07346   } else if (orglen < destlen) {
07347     /* The edge opposite the origin is shortest. */
07348     minedge = orglen;
07349     /* Find the square of the cosine of the angle at the origin. */
07350     angle = dxod * dxao + dyod * dyao;
07351     angle = angle * angle / (apexlen * destlen);
07352     base1 = tdest;
07353     base2 = tapex;
07354     lnext(*testtri, tri1);
07355   } else {
07356     /* The edge opposite the destination is shortest. */
07357     minedge = destlen;
07358     /* Find the square of the cosine of the angle at the destination. */
07359     angle = dxod * dxda + dyod * dyda;
07360     angle = angle * angle / (apexlen * orglen);
07361     base1 = tapex;
07362     base2 = torg;
07363     lprev(*testtri, tri1);
07364   }
07365 
07366   if (b->vararea || b->fixedarea || b->usertest) {
07367     /* Check whether the area is larger than permitted. */
07368     area = 0.5 * (dxod * dyda - dyod * dxda);
07369     if (b->fixedarea && (area > b->maxarea)) {
07370       /* Add this triangle to the list of bad triangles. */
07371       enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
07372       return;
07373     }
07374 
07375     /* Nonpositive area constraints are treated as unconstrained. */
07376     if ((b->vararea) && (area > areabound(*testtri)) &&
07377         (areabound(*testtri) > 0.0)) {
07378       /* Add this triangle to the list of bad triangles. */
07379       enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
07380       return;
07381     }
07382 
07383     if (b->usertest) {
07384       /* Check whether the user thinks this triangle is too large. */
07385       if (triunsuitable(torg, tdest, tapex, area)) {
07386         enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
07387         return;
07388       }
07389     }
07390   }
07391 
07392   /* Check whether the angle is smaller than permitted. */
07393   if (angle > b->goodangle) {
07394     /* Use the rules of Miller, Pav, and Walkington to decide that certain */
07395     /*   triangles should not be split, even if they have bad angles.      */
07396     /*   A skinny triangle is not split if its shortest edge subtends a    */
07397     /*   small input angle, and both endpoints of the edge lie on a        */
07398     /*   concentric circular shell.  For convenience, I make a small       */
07399     /*   adjustment to that rule:  I check if the endpoints of the edge    */
07400     /*   both lie in segment interiors, equidistant from the apex where    */
07401     /*   the two segments meet.                                            */
07402     /* First, check if both points lie in segment interiors.               */
07403     if ((vertextype(base1) == SEGMENTVERTEX) &&
07404         (vertextype(base2) == SEGMENTVERTEX)) {
07405       /* Check if both points lie in a common segment.  If they do, the */
07406       /*   skinny triangle is enqueued to be split as usual.            */
07407       tspivot(tri1, testsub);
07408       if (testsub.ss == m->dummysub) {
07409         /* No common segment.  Find a subsegment that contains `torg'. */
07410         otricopy(tri1, tri2);
07411         do {
07412           oprevself(tri1);
07413           tspivot(tri1, testsub);
07414         } while (testsub.ss == m->dummysub);
07415         /* Find the endpoints of the containing segment. */
07416         segorg(testsub, org1);
07417         segdest(testsub, dest1);
07418         /* Find a subsegment that contains `tdest'. */
07419         do {
07420           dnextself(tri2);
07421           tspivot(tri2, testsub);
07422         } while (testsub.ss == m->dummysub);
07423         /* Find the endpoints of the containing segment. */
07424         segorg(testsub, org2);
07425         segdest(testsub, dest2);
07426         /* Check if the two containing segments have an endpoint in common. */
07427         joinvertex = (vertex) NULL;
07428         if ((dest1[0] == org2[0]) && (dest1[1] == org2[1])) {
07429           joinvertex = dest1;
07430         } else if ((org1[0] == dest2[0]) && (org1[1] == dest2[1])) {
07431           joinvertex = org1;
07432         }
07433         if (joinvertex != (vertex) NULL) {
07434           /* Compute the distance from the common endpoint (of the two  */
07435           /*   segments) to each of the endpoints of the shortest edge. */
07436           dist1 = ((base1[0] - joinvertex[0]) * (base1[0] - joinvertex[0]) +
07437                    (base1[1] - joinvertex[1]) * (base1[1] - joinvertex[1]));
07438           dist2 = ((base2[0] - joinvertex[0]) * (base2[0] - joinvertex[0]) +
07439                    (base2[1] - joinvertex[1]) * (base2[1] - joinvertex[1]));
07440           /* If the two distances are equal, don't split the triangle. */
07441           if ((dist1 < 1.001 * dist2) && (dist1 > 0.999 * dist2)) {
07442             /* Return now to avoid enqueueing the bad triangle. */
07443             return;
07444           }
07445         }
07446       }
07447     }
07448 
07449     /* Add this triangle to the list of bad triangles. */
07450     enqueuebadtri(m, b, testtri, minedge, tapex, torg, tdest);
07451   }
07452 }
07453 
07454 #endif /* not CDT_ONLY */
07455 
07458 /********* Mesh quality testing routines end here                    *********/
07459 
07460 /********* Point location routines begin here                        *********/
07464 /*****************************************************************************/
07465 /*                                                                           */
07466 /*  makevertexmap()   Construct a mapping from vertices to triangles to      */
07467 /*                    improve the speed of point location for segment        */
07468 /*                    insertion.                                             */
07469 /*                                                                           */
07470 /*  Traverses all the triangles, and provides each corner of each triangle   */
07471 /*  with a pointer to that triangle.  Of course, pointers will be            */
07472 /*  overwritten by other pointers because (almost) each vertex is a corner   */
07473 /*  of several triangles, but in the end every vertex will point to some     */
07474 /*  triangle that contains it.                                               */
07475 /*                                                                           */
07476 /*****************************************************************************/
07477 
07478 #ifdef ANSI_DECLARATORS
07479 void makevertexmap(struct mesh *m, struct behavior *b)
07480 #else /* not ANSI_DECLARATORS */
07481 void makevertexmap(m, b)
07482 struct mesh *m;
07483 struct behavior *b;
07484 #endif /* not ANSI_DECLARATORS */
07485 
07486 {
07487   struct otri triangleloop;
07488   vertex triorg;
07489 
07490   if (b->verbose) {
07491     printf("    Constructing mapping from vertices to triangles.\n");
07492   }
07493   traversalinit(&m->triangles);
07494   triangleloop.tri = triangletraverse(m);
07495   while (triangleloop.tri != (triangle *) NULL) {
07496     /* Check all three vertices of the triangle. */
07497     for (triangleloop.orient = 0; triangleloop.orient < 3;
07498          triangleloop.orient++) {
07499       org(triangleloop, triorg);
07500       setvertex2tri(triorg, encode(triangleloop));
07501     }
07502     triangleloop.tri = triangletraverse(m);
07503   }
07504 }
07505 
07506 /*****************************************************************************/
07507 /*                                                                           */
07508 /*  preciselocate()   Find a triangle or edge containing a given point.      */
07509 /*                                                                           */
07510 /*  Begins its search from `searchtri'.  It is important that `searchtri'    */
07511 /*  be a handle with the property that `searchpoint' is strictly to the left */
07512 /*  of the edge denoted by `searchtri', or is collinear with that edge and   */
07513 /*  does not intersect that edge.  (In particular, `searchpoint' should not  */
07514 /*  be the origin or destination of that edge.)                              */
07515 /*                                                                           */
07516 /*  These conditions are imposed because preciselocate() is normally used in */
07517 /*  one of two situations:                                                   */
07518 /*                                                                           */
07519 /*  (1)  To try to find the location to insert a new point.  Normally, we    */
07520 /*       know an edge that the point is strictly to the left of.  In the     */
07521 /*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
07522 /*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
07523 /*       that edge is the shortest edge of the triangle whose circumcenter   */
07524 /*       is being inserted.                                                  */
07525 /*                                                                           */
07526 /*  (2)  To try to find an existing point.  In this case, any edge on the    */
07527 /*       convex hull is a good starting edge.  You must screen out the       */
07528 /*       possibility that the vertex sought is an endpoint of the starting   */
07529 /*       edge before you call preciselocate().                               */
07530 /*                                                                           */
07531 /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
07532 /*                                                                           */
07533 /*  This implementation differs from that given by Guibas and Stolfi.  It    */
07534 /*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
07535 /*  is on the other side of the line containing that edge.  After entering   */
07536 /*  a triangle, there are two edges by which one can leave that triangle.    */
07537 /*  If both edges are valid (`searchpoint' is on the other side of both      */
07538 /*  edges), one of the two is chosen by drawing a line perpendicular to      */
07539 /*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
07540 /*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
07541 /*  falls on, an exit edge is chosen.                                        */
07542 /*                                                                           */
07543 /*  This implementation is empirically faster than the Guibas and Stolfi     */
07544 /*  point location routine (which I originally used), which tends to spiral  */
07545 /*  in toward its target.                                                    */
07546 /*                                                                           */
07547 /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
07548 /*  is a handle whose origin is the existing vertex.                         */
07549 /*                                                                           */
07550 /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
07551 /*  handle whose primary edge is the edge on which the point lies.           */
07552 /*                                                                           */
07553 /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
07554 /*  `searchtri' is a handle on the triangle that contains the point.         */
07555 /*                                                                           */
07556 /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
07557 /*  handle whose primary edge the point is to the right of.  This might      */
07558 /*  occur when the circumcenter of a triangle falls just slightly outside    */
07559 /*  the mesh due to floating-point roundoff error.  It also occurs when      */
07560 /*  seeking a hole or region point that a foolish user has placed outside    */
07561 /*  the mesh.                                                                */
07562 /*                                                                           */
07563 /*  If `stopatsubsegment' is nonzero, the search will stop if it tries to    */
07564 /*  walk through a subsegment, and will return OUTSIDE.                      */
07565 /*                                                                           */
07566 /*  WARNING:  This routine is designed for convex triangulations, and will   */
07567 /*  not generally work after the holes and concavities have been carved.     */
07568 /*  However, it can still be used to find the circumcenter of a triangle, as */
07569 /*  long as the search is begun from the triangle in question.               */
07570 /*                                                                           */
07571 /*****************************************************************************/
07572 
07573 #ifdef ANSI_DECLARATORS
07574 enum locateresult preciselocate(struct mesh *m, struct behavior *b,
07575                                 vertex searchpoint, struct otri *searchtri,
07576                                 int stopatsubsegment)
07577 #else /* not ANSI_DECLARATORS */
07578 enum locateresult preciselocate(m, b, searchpoint, searchtri, stopatsubsegment)
07579 struct mesh *m;
07580 struct behavior *b;
07581 vertex searchpoint;
07582 struct otri *searchtri;
07583 int stopatsubsegment;
07584 #endif /* not ANSI_DECLARATORS */
07585 
07586 {
07587   struct otri backtracktri;
07588   struct osub checkedge;
07589   vertex forg, fdest, fapex;
07590   REAL orgorient, destorient;
07591   int moveleft;
07592   triangle ptr;                         /* Temporary variable used by sym(). */
07593   subseg sptr;                      /* Temporary variable used by tspivot(). */
07594 
07595   if (b->verbose > 2) {
07596     printf("  Searching for point (%.12g, %.12g).\n",
07597            searchpoint[0], searchpoint[1]);
07598   }
07599   /* Where are we? */
07600   org(*searchtri, forg);
07601   dest(*searchtri, fdest);
07602   apex(*searchtri, fapex);
07603   while (1) {
07604     if (b->verbose > 2) {
07605       printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
07606              forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
07607     }
07608     /* Check whether the apex is the point we seek. */
07609     if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
07610       lprevself(*searchtri);
07611       return ONVERTEX;
07612     }
07613     /* Does the point lie on the other side of the line defined by the */
07614     /*   triangle edge opposite the triangle's destination?            */
07615     destorient = counterclockwise(m, b, forg, fapex, searchpoint);
07616     /* Does the point lie on the other side of the line defined by the */
07617     /*   triangle edge opposite the triangle's origin?                 */
07618     orgorient = counterclockwise(m, b, fapex, fdest, searchpoint);
07619     if (destorient > 0.0) {
07620       if (orgorient > 0.0) {
07621         /* Move left if the inner product of (fapex - searchpoint) and  */
07622         /*   (fdest - forg) is positive.  This is equivalent to drawing */
07623         /*   a line perpendicular to the line (forg, fdest) and passing */
07624         /*   through `fapex', and determining which side of this line   */
07625         /*   `searchpoint' falls on.                                    */
07626         moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
07627                    (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
07628       } else {
07629         moveleft = 1;
07630       }
07631     } else {
07632       if (orgorient > 0.0) {
07633         moveleft = 0;
07634       } else {
07635         /* The point we seek must be on the boundary of or inside this */
07636         /*   triangle.                                                 */
07637         if (destorient == 0.0) {
07638           lprevself(*searchtri);
07639           return ONEDGE;
07640         }
07641         if (orgorient == 0.0) {
07642           lnextself(*searchtri);
07643           return ONEDGE;
07644         }
07645         return INTRIANGLE;
07646       }
07647     }
07648 
07649     /* Move to another triangle.  Leave a trace `backtracktri' in case */
07650     /*   floating-point roundoff or some such bogey causes us to walk  */
07651     /*   off a boundary of the triangulation.                          */
07652     if (moveleft) {
07653       lprev(*searchtri, backtracktri);
07654       fdest = fapex;
07655     } else {
07656       lnext(*searchtri, backtracktri);
07657       forg = fapex;
07658     }
07659     sym(backtracktri, *searchtri);
07660 
07661     if (m->checksegments && stopatsubsegment) {
07662       /* Check for walking through a subsegment. */
07663       tspivot(backtracktri, checkedge);
07664       if (checkedge.ss != m->dummysub) {
07665         /* Go back to the last triangle. */
07666         otricopy(backtracktri, *searchtri);
07667         return OUTSIDE;
07668       }
07669     }
07670     /* Check for walking right out of the triangulation. */
07671     if (searchtri->tri == m->dummytri) {
07672       /* Go back to the last triangle. */
07673       otricopy(backtracktri, *searchtri);
07674       return OUTSIDE;
07675     }
07676 
07677     apex(*searchtri, fapex);
07678   }
07679 }
07680 
07681 /*****************************************************************************/
07682 /*                                                                           */
07683 /*  locate()   Find a triangle or edge containing a given point.             */
07684 /*                                                                           */
07685 /*  Searching begins from one of:  the input `searchtri', a recently         */
07686 /*  encountered triangle `recenttri', or from a triangle chosen from a       */
07687 /*  random sample.  The choice is made by determining which triangle's       */
07688 /*  origin is closest to the point we are searching for.  Normally,          */
07689 /*  `searchtri' should be a handle on the convex hull of the triangulation.  */
07690 /*                                                                           */
07691 /*  Details on the random sampling method can be found in the Mucke, Saias,  */
07692 /*  and Zhu paper cited in the header of this code.                          */
07693 /*                                                                           */
07694 /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
07695 /*                                                                           */
07696 /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
07697 /*  is a handle whose origin is the existing vertex.                         */
07698 /*                                                                           */
07699 /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
07700 /*  handle whose primary edge is the edge on which the point lies.           */
07701 /*                                                                           */
07702 /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
07703 /*  `searchtri' is a handle on the triangle that contains the point.         */
07704 /*                                                                           */
07705 /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
07706 /*  handle whose primary edge the point is to the right of.  This might      */
07707 /*  occur when the circumcenter of a triangle falls just slightly outside    */
07708 /*  the mesh due to floating-point roundoff error.  It also occurs when      */
07709 /*  seeking a hole or region point that a foolish user has placed outside    */
07710 /*  the mesh.                                                                */
07711 /*                                                                           */
07712 /*  WARNING:  This routine is designed for convex triangulations, and will   */
07713 /*  not generally work after the holes and concavities have been carved.     */
07714 /*                                                                           */
07715 /*****************************************************************************/
07716 
07717 #ifdef ANSI_DECLARATORS
07718 enum locateresult locate(struct mesh *m, struct behavior *b,
07719                          vertex searchpoint, struct otri *searchtri)
07720 #else /* not ANSI_DECLARATORS */
07721 enum locateresult locate(m, b, searchpoint, searchtri)
07722 struct mesh *m;
07723 struct behavior *b;
07724 vertex searchpoint;
07725 struct otri *searchtri;
07726 #endif /* not ANSI_DECLARATORS */
07727 
07728 {
07729   VOID **sampleblock;
07730   char *firsttri;
07731   struct otri sampletri;
07732   vertex torg, tdest;
07733   unsigned long alignptr;
07734   REAL searchdist, dist;
07735   REAL ahead;
07736   long samplesperblock, totalsamplesleft, samplesleft;
07737   long population, totalpopulation;
07738   triangle ptr;                         /* Temporary variable used by sym(). */
07739 
07740   if (b->verbose > 2) {
07741     printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
07742            searchpoint[0], searchpoint[1]);
07743   }
07744   /* Record the distance from the suggested starting triangle to the */
07745   /*   point we seek.                                                */
07746   org(*searchtri, torg);
07747   searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
07748                (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
07749   if (b->verbose > 2) {
07750     printf("    Boundary triangle has origin (%.12g, %.12g).\n",
07751            torg[0], torg[1]);
07752   }
07753 
07754   /* If a recently encountered triangle has been recorded and has not been */
07755   /*   deallocated, test it as a good starting point.                      */
07756   if (m->recenttri.tri != (triangle *) NULL) {
07757     if (!deadtri(m->recenttri.tri)) {
07758       org(m->recenttri, torg);
07759       if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
07760         otricopy(m->recenttri, *searchtri);
07761         return ONVERTEX;
07762       }
07763       dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
07764              (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
07765       if (dist < searchdist) {
07766         otricopy(m->recenttri, *searchtri);
07767         searchdist = dist;
07768         if (b->verbose > 2) {
07769           printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
07770                  torg[0], torg[1]);
07771         }
07772       }
07773     }
07774   }
07775 
07776   /* The number of random samples taken is proportional to the cube root of */
07777   /*   the number of triangles in the mesh.  The next bit of code assumes   */
07778   /*   that the number of triangles increases monotonically (or at least    */
07779   /*   doesn't decrease enough to matter).                                  */
07780   while (SAMPLEFACTOR * m->samples * m->samples * m->samples <
07781          m->triangles.items) {
07782     m->samples++;
07783   }
07784 
07785   /* We'll draw ceiling(samples * TRIPERBLOCK / maxitems) random samples  */
07786   /*   from each block of triangles (except the first)--until we meet the */
07787   /*   sample quota.  The ceiling means that blocks at the end might be   */
07788   /*   neglected, but I don't care.                                       */
07789   samplesperblock = (m->samples * TRIPERBLOCK - 1) / m->triangles.maxitems + 1;
07790   /* We'll draw ceiling(samples * itemsfirstblock / maxitems) random samples */
07791   /*   from the first block of triangles.                                    */
07792   samplesleft = (m->samples * m->triangles.itemsfirstblock - 1) /
07793                 m->triangles.maxitems + 1;
07794   totalsamplesleft = m->samples;
07795   population = m->triangles.itemsfirstblock;
07796   totalpopulation = m->triangles.maxitems;
07797   sampleblock = m->triangles.firstblock;
07798   sampletri.orient = 0;
07799   while (totalsamplesleft > 0) {
07800     /* If we're in the last block, `population' needs to be corrected. */
07801     if (population > totalpopulation) {
07802       population = totalpopulation;
07803     }
07804     /* Find a pointer to the first triangle in the block. */
07805     alignptr = (unsigned long) (sampleblock + 1);
07806     firsttri = (char *) (alignptr +
07807                          (unsigned long) m->triangles.alignbytes -
07808                          (alignptr %
07809                           (unsigned long) m->triangles.alignbytes));
07810 
07811     /* Choose `samplesleft' randomly sampled triangles in this block. */
07812     do {
07813       sampletri.tri = (triangle *) (firsttri +
07814                                     (randomnation((unsigned int) population) *
07815                                      m->triangles.itembytes));
07816       if (!deadtri(sampletri.tri)) {
07817         org(sampletri, torg);
07818         dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0]) +
07819                (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
07820         if (dist < searchdist) {
07821           otricopy(sampletri, *searchtri);
07822           searchdist = dist;
07823           if (b->verbose > 2) {
07824             printf("    Choosing triangle with origin (%.12g, %.12g).\n",
07825                    torg[0], torg[1]);
07826           }
07827         }
07828       }
07829 
07830       samplesleft--;
07831       totalsamplesleft--;
07832     } while ((samplesleft > 0) && (totalsamplesleft > 0));
07833 
07834     if (totalsamplesleft > 0) {
07835       sampleblock = (VOID **) *sampleblock;
07836       samplesleft = samplesperblock;
07837       totalpopulation -= population;
07838       population = TRIPERBLOCK;
07839     }
07840   }
07841 
07842   /* Where are we? */
07843   org(*searchtri, torg);
07844   dest(*searchtri, tdest);
07845   /* Check the starting triangle's vertices. */
07846   if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
07847     return ONVERTEX;
07848   }
07849   if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
07850     lnextself(*searchtri);
07851     return ONVERTEX;
07852   }
07853   /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
07854   ahead = counterclockwise(m, b, torg, tdest, searchpoint);
07855   if (ahead < 0.0) {
07856     /* Turn around so that `searchpoint' is to the left of the */
07857     /*   edge specified by `searchtri'.                        */
07858     symself(*searchtri);
07859   } else if (ahead == 0.0) {
07860     /* Check if `searchpoint' is between `torg' and `tdest'. */
07861     if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0])) &&
07862         ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
07863       return ONEDGE;
07864     }
07865   }
07866   return preciselocate(m, b, searchpoint, searchtri, 0);
07867 }
07868 
07871 /********* Point location routines end here                          *********/
07872 
07873 /********* Mesh transformation routines begin here                   *********/
07877 /*****************************************************************************/
07878 /*                                                                           */
07879 /*  insertsubseg()   Create a new subsegment and insert it between two       */
07880 /*                   triangles.                                              */
07881 /*                                                                           */
07882 /*  The new subsegment is inserted at the edge described by the handle       */
07883 /*  `tri'.  Its vertices are properly initialized.  The marker `subsegmark'  */
07884 /*  is applied to the subsegment and, if appropriate, its vertices.          */
07885 /*                                                                           */
07886 /*****************************************************************************/
07887 
07888 #ifdef ANSI_DECLARATORS
07889 void insertsubseg(struct mesh *m, struct behavior *b, struct otri *tri,
07890                   int subsegmark)
07891 #else /* not ANSI_DECLARATORS */
07892 void insertsubseg(m, b, tri, subsegmark)
07893 struct mesh *m;
07894 struct behavior *b;
07895 struct otri *tri;             /* Edge at which to insert the new subsegment. */
07896 int subsegmark;                            /* Marker for the new subsegment. */
07897 #endif /* not ANSI_DECLARATORS */
07898 
07899 {
07900   struct otri oppotri;
07901   struct osub newsubseg;
07902   vertex triorg, tridest;
07903   triangle ptr;                         /* Temporary variable used by sym(). */
07904   subseg sptr;                      /* Temporary variable used by tspivot(). */
07905 
07906   org(*tri, triorg);
07907   dest(*tri, tridest);
07908   /* Mark vertices if possible. */
07909   if (vertexmark(triorg) == 0) {
07910     setvertexmark(triorg, subsegmark);
07911   }
07912   if (vertexmark(tridest) == 0) {
07913     setvertexmark(tridest, subsegmark);
07914   }
07915   /* Check if there's already a subsegment here. */
07916   tspivot(*tri, newsubseg);
07917   if (newsubseg.ss == m->dummysub) {
07918     /* Make new subsegment and initialize its vertices. */
07919     makesubseg(m, &newsubseg);
07920     setsorg(newsubseg, tridest);
07921     setsdest(newsubseg, triorg);
07922     setsegorg(newsubseg, tridest);
07923     setsegdest(newsubseg, triorg);
07924     /* Bond new subsegment to the two triangles it is sandwiched between. */
07925     /*   Note that the facing triangle `oppotri' might be equal to        */
07926     /*   `dummytri' (outer space), but the new subsegment is bonded to it */
07927     /*   all the same.                                                    */
07928     tsbond(*tri, newsubseg);
07929     sym(*tri, oppotri);
07930     ssymself(newsubseg);
07931     tsbond(oppotri, newsubseg);
07932     setmark(newsubseg, subsegmark);
07933     if (b->verbose > 2) {
07934       printf("  Inserting new ");
07935       printsubseg(m, b, &newsubseg);
07936     }
07937   } else {
07938     if (mark(newsubseg) == 0) {
07939       setmark(newsubseg, subsegmark);
07940     }
07941   }
07942 }
07943 
07944 /*****************************************************************************/
07945 /*                                                                           */
07946 /*  Terminology                                                              */
07947 /*                                                                           */
07948 /*  A "local transformation" replaces a small set of triangles with another  */
07949 /*  set of triangles.  This may or may not involve inserting or deleting a   */
07950 /*  vertex.                                                                  */
07951 /*                                                                           */
07952 /*  The term "casing" is used to describe the set of triangles that are      */
07953 /*  attached to the triangles being transformed, but are not transformed     */
07954 /*  themselves.  Think of the casing as a fixed hollow structure inside      */
07955 /*  which all the action happens.  A "casing" is only defined relative to    */
07956 /*  a single transformation; each occurrence of a transformation will        */
07957 /*  involve a different casing.                                              */
07958 /*                                                                           */
07959 /*****************************************************************************/
07960 
07961 /*****************************************************************************/
07962 /*                                                                           */
07963 /*  flip()   Transform two triangles to two different triangles by flipping  */
07964 /*           an edge counterclockwise within a quadrilateral.                */
07965 /*                                                                           */
07966 /*  Imagine the original triangles, abc and bad, oriented so that the        */
07967 /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
07968 /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
07969 /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
07970 /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
07971 /*                                                                           */
07972 /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
07973 /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
07974 /*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
07975 /*  may have held the original triangles are still valid, although not       */
07976 /*  directed as they were before.                                            */
07977 /*                                                                           */
07978 /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
07979 /*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
07980 /*  (Hence, the two triangles have rotated counterclockwise.)                */
07981 /*                                                                           */
07982 /*  WARNING:  This transformation is geometrically valid only if the         */
07983 /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
07984 /*  valid only if there is not a subsegment between the triangles abc and    */
07985 /*  bad.  This routine does not check either of these preconditions, and     */
07986 /*  it is the responsibility of the calling routine to ensure that they are  */
07987 /*  met.  If they are not, the streets shall be filled with wailing and      */
07988 /*  gnashing of teeth.                                                       */
07989 /*                                                                           */
07990 /*****************************************************************************/
07991 
07992 #ifdef ANSI_DECLARATORS
07993 void flip(struct mesh *m, struct behavior *b, struct otri *flipedge)
07994 #else /* not ANSI_DECLARATORS */
07995 void flip(m, b, flipedge)
07996 struct mesh *m;
07997 struct behavior *b;
07998 struct otri *flipedge;                    /* Handle for the triangle abc. */
07999 #endif /* not ANSI_DECLARATORS */
08000 
08001 {
08002   struct otri botleft, botright;
08003   struct otri topleft, topright;
08004   struct otri top;
08005   struct otri botlcasing, botrcasing;
08006   struct otri toplcasing, toprcasing;
08007   struct osub botlsubseg, botrsubseg;
08008   struct osub toplsubseg, toprsubseg;
08009   vertex leftvertex, rightvertex, botvertex;
08010   vertex farvertex;
08011   triangle ptr;                         /* Temporary variable used by sym(). */
08012   subseg sptr;                      /* Temporary variable used by tspivot(). */
08013 
08014   /* Identify the vertices of the quadrilateral. */
08015   org(*flipedge, rightvertex);
08016   dest(*flipedge, leftvertex);
08017   apex(*flipedge, botvertex);
08018   sym(*flipedge, top);
08019 #ifdef SELF_CHECK
08020   if (top.tri == m->dummytri) {
08021     printf("Internal error in flip():  Attempt to flip on boundary.\n");
08022     lnextself(*flipedge);
08023     return;
08024   }
08025   if (m->checksegments) {
08026     tspivot(*flipedge, toplsubseg);
08027     if (toplsubseg.ss != m->dummysub) {
08028       printf("Internal error in flip():  Attempt to flip a segment.\n");
08029       lnextself(*flipedge);
08030       return;
08031     }
08032   }
08033 #endif /* SELF_CHECK */
08034   apex(top, farvertex);
08035 
08036   /* Identify the casing of the quadrilateral. */
08037   lprev(top, topleft);
08038   sym(topleft, toplcasing);
08039   lnext(top, topright);
08040   sym(topright, toprcasing);
08041   lnext(*flipedge, botleft);
08042   sym(botleft, botlcasing);
08043   lprev(*flipedge, botright);
08044   sym(botright, botrcasing);
08045   /* Rotate the quadrilateral one-quarter turn counterclockwise. */
08046   bond(topleft, botlcasing);
08047   bond(botleft, botrcasing);
08048   bond(botright, toprcasing);
08049   bond(topright, toplcasing);
08050 
08051   if (m->checksegments) {
08052     /* Check for subsegments and rebond them to the quadrilateral. */
08053     tspivot(topleft, toplsubseg);
08054     tspivot(botleft, botlsubseg);
08055     tspivot(botright, botrsubseg);
08056     tspivot(topright, toprsubseg);
08057     if (toplsubseg.ss == m->dummysub) {
08058       tsdissolve(topright);
08059     } else {
08060       tsbond(topright, toplsubseg);
08061     }
08062     if (botlsubseg.ss == m->dummysub) {
08063       tsdissolve(topleft);
08064     } else {
08065       tsbond(topleft, botlsubseg);
08066     }
08067     if (botrsubseg.ss == m->dummysub) {
08068       tsdissolve(botleft);
08069     } else {
08070       tsbond(botleft, botrsubseg);
08071     }
08072     if (toprsubseg.ss == m->dummysub) {
08073       tsdissolve(botright);
08074     } else {
08075       tsbond(botright, toprsubseg);
08076     }
08077   }
08078 
08079   /* New vertex assignments for the rotated quadrilateral. */
08080   setorg(*flipedge, farvertex);
08081   setdest(*flipedge, botvertex);
08082   setapex(*flipedge, rightvertex);
08083   setorg(top, botvertex);
08084   setdest(top, farvertex);
08085   setapex(top, leftvertex);
08086   if (b->verbose > 2) {
08087     printf("  Edge flip results in left ");
08088     printtriangle(m, b, &top);
08089     printf("  and right ");
08090     printtriangle(m, b, flipedge);
08091   }
08092 }
08093 
08094 /*****************************************************************************/
08095 /*                                                                           */
08096 /*  unflip()   Transform two triangles to two different triangles by         */
08097 /*             flipping an edge clockwise within a quadrilateral.  Reverses  */
08098 /*             the flip() operation so that the data structures representing */
08099 /*             the triangles are back where they were before the flip().     */
08100 /*                                                                           */
08101 /*  Imagine the original triangles, abc and bad, oriented so that the        */
08102 /*  shared edge ab lies in a horizontal plane, with the vertex b on the left */
08103 /*  and the vertex a on the right.  The vertex c lies below the edge, and    */
08104 /*  the vertex d lies above the edge.  The `flipedge' handle holds the edge  */
08105 /*  ab of triangle abc, and is directed left, from vertex a to vertex b.     */
08106 /*                                                                           */
08107 /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
08108 /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
08109 /*  they are reused for cdb and dca, respectively.  Hence, any handles that  */
08110 /*  may have held the original triangles are still valid, although not       */
08111 /*  directed as they were before.                                            */
08112 /*                                                                           */
08113 /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
08114 /*  cd of triangle cdb, and is directed up, from vertex c to vertex d.       */
08115 /*  (Hence, the two triangles have rotated clockwise.)                       */
08116 /*                                                                           */
08117 /*  WARNING:  This transformation is geometrically valid only if the         */
08118 /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
08119 /*  valid only if there is not a subsegment between the triangles abc and    */
08120 /*  bad.  This routine does not check either of these preconditions, and     */
08121 /*  it is the responsibility of the calling routine to ensure that they are  */
08122 /*  met.  If they are not, the streets shall be filled with wailing and      */
08123 /*  gnashing of teeth.                                                       */
08124 /*                                                                           */
08125 /*****************************************************************************/
08126 
08127 #ifdef ANSI_DECLARATORS
08128 void unflip(struct mesh *m, struct behavior *b, struct otri *flipedge)
08129 #else /* not ANSI_DECLARATORS */
08130 void unflip(m, b, flipedge)
08131 struct mesh *m;
08132 struct behavior *b;
08133 struct otri *flipedge;                    /* Handle for the triangle abc. */
08134 #endif /* not ANSI_DECLARATORS */
08135 
08136 {
08137   struct otri botleft, botright;
08138   struct otri topleft, topright;
08139   struct otri top;
08140   struct otri botlcasing, botrcasing;
08141   struct otri toplcasing, toprcasing;
08142   struct osub botlsubseg, botrsubseg;
08143   struct osub toplsubseg, toprsubseg;
08144   vertex leftvertex, rightvertex, botvertex;
08145   vertex farvertex;
08146   triangle ptr;                         /* Temporary variable used by sym(). */
08147   subseg sptr;                      /* Temporary variable used by tspivot(). */
08148 
08149   /* Identify the vertices of the quadrilateral. */
08150   org(*flipedge, rightvertex);
08151   dest(*flipedge, leftvertex);
08152   apex(*flipedge, botvertex);
08153   sym(*flipedge, top);
08154 #ifdef SELF_CHECK
08155   if (top.tri == m->dummytri) {
08156     printf("Internal error in unflip():  Attempt to flip on boundary.\n");
08157     lnextself(*flipedge);
08158     return;
08159   }
08160   if (m->checksegments) {
08161     tspivot(*flipedge, toplsubseg);
08162     if (toplsubseg.ss != m->dummysub) {
08163       printf("Internal error in unflip():  Attempt to flip a subsegment.\n");
08164       lnextself(*flipedge);
08165       return;
08166     }
08167   }
08168 #endif /* SELF_CHECK */
08169   apex(top, farvertex);
08170 
08171   /* Identify the casing of the quadrilateral. */
08172   lprev(top, topleft);
08173   sym(topleft, toplcasing);
08174   lnext(top, topright);
08175   sym(topright, toprcasing);
08176   lnext(*flipedge, botleft);
08177   sym(botleft, botlcasing);
08178   lprev(*flipedge, botright);
08179   sym(botright, botrcasing);
08180   /* Rotate the quadrilateral one-quarter turn clockwise. */
08181   bond(topleft, toprcasing);
08182   bond(botleft, toplcasing);
08183   bond(botright, botlcasing);
08184   bond(topright, botrcasing);
08185 
08186   if (m->checksegments) {
08187     /* Check for subsegments and rebond them to the quadrilateral. */
08188     tspivot(topleft, toplsubseg);
08189     tspivot(botleft, botlsubseg);
08190     tspivot(botright, botrsubseg);
08191     tspivot(topright, toprsubseg);
08192     if (toplsubseg.ss == m->dummysub) {
08193       tsdissolve(botleft);
08194     } else {
08195       tsbond(botleft, toplsubseg);
08196     }
08197     if (botlsubseg.ss == m->dummysub) {
08198       tsdissolve(botright);
08199     } else {
08200       tsbond(botright, botlsubseg);
08201     }
08202     if (botrsubseg.ss == m->dummysub) {
08203       tsdissolve(topright);
08204     } else {
08205       tsbond(topright, botrsubseg);
08206     }
08207     if (toprsubseg.ss == m->dummysub) {
08208       tsdissolve(topleft);
08209     } else {
08210       tsbond(topleft, toprsubseg);
08211     }
08212   }
08213 
08214   /* New vertex assignments for the rotated quadrilateral. */
08215   setorg(*flipedge, botvertex);
08216   setdest(*flipedge, farvertex);
08217   setapex(*flipedge, leftvertex);
08218   setorg(top, farvertex);
08219   setdest(top, botvertex);
08220   setapex(top, rightvertex);
08221   if (b->verbose > 2) {
08222     printf("  Edge unflip results in left ");
08223     printtriangle(m, b, flipedge);
08224     printf("  and right ");
08225     printtriangle(m, b, &top);
08226   }
08227 }
08228 
08229 /*****************************************************************************/
08230 /*                                                                           */
08231 /*  insertvertex()   Insert a vertex into a Delaunay triangulation,          */
08232 /*                   performing flips as necessary to maintain the Delaunay  */
08233 /*                   property.                                               */
08234 /*                                                                           */
08235 /*  The point `insertvertex' is located.  If `searchtri.tri' is not NULL,    */
08236 /*  the search for the containing triangle begins from `searchtri'.  If      */
08237 /*  `searchtri.tri' is NULL, a full point location procedure is called.      */
08238 /*  If `insertvertex' is found inside a triangle, the triangle is split into */
08239 /*  three; if `insertvertex' lies on an edge, the edge is split in two,      */
08240 /*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
08241 /*  used to restore the Delaunay property.  If `insertvertex' lies on an     */
08242 /*  existing vertex, no action is taken, and the value DUPLICATEVERTEX is    */
08243 /*  returned.  On return, `searchtri' is set to a handle whose origin is the */
08244 /*  existing vertex.                                                         */
08245 /*                                                                           */
08246 /*  Normally, the parameter `splitseg' is set to NULL, implying that no      */
08247 /*  subsegment should be split.  In this case, if `insertvertex' is found to */
08248 /*  lie on a segment, no action is taken, and the value VIOLATINGVERTEX is   */
08249 /*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
08250 /*  is the violated subsegment.                                              */
08251 /*                                                                           */
08252 /*  If the calling routine wishes to split a subsegment by inserting a       */
08253 /*  vertex in it, the parameter `splitseg' should be that subsegment.  In    */
08254 /*  this case, `searchtri' MUST be the triangle handle reached by pivoting   */
08255 /*  from that subsegment; no point location is done.                         */
08256 /*                                                                           */
08257 /*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
08258 /*  there should be checks for the creation of encroached subsegments or bad */
08259 /*  quality triangles.  If a newly inserted vertex encroaches upon           */
08260 /*  subsegments, these subsegments are added to the list of subsegments to   */
08261 /*  be split if `segmentflaws' is set.  If bad triangles are created, these  */
08262 /*  are added to the queue if `triflaws' is set.                             */
08263 /*                                                                           */
08264 /*  If a duplicate vertex or violated segment does not prevent the vertex    */
08265 /*  from being inserted, the return value will be ENCROACHINGVERTEX if the   */
08266 /*  vertex encroaches upon a subsegment (and checking is enabled), or        */
08267 /*  SUCCESSFULVERTEX otherwise.  In either case, `searchtri' is set to a     */
08268 /*  handle whose origin is the newly inserted vertex.                        */
08269 /*                                                                           */
08270 /*  insertvertex() does not use flip() for reasons of speed; some            */
08271 /*  information can be reused from edge flip to edge flip, like the          */
08272 /*  locations of subsegments.                                                */
08273 /*                                                                           */
08274 /*****************************************************************************/
08275 
08276 #ifdef ANSI_DECLARATORS
08277 enum insertvertexresult insertvertex(struct mesh *m, struct behavior *b,
08278                                      vertex newvertex, struct otri *searchtri,
08279                                      struct osub *splitseg,
08280                                      int segmentflaws, int triflaws)
08281 #else /* not ANSI_DECLARATORS */
08282 enum insertvertexresult insertvertex(m, b, newvertex, searchtri, splitseg,
08283                                      segmentflaws, triflaws)
08284 struct mesh *m;
08285 struct behavior *b;
08286 vertex newvertex;
08287 struct otri *searchtri;
08288 struct osub *splitseg;
08289 int segmentflaws;
08290 int triflaws;
08291 #endif /* not ANSI_DECLARATORS */
08292 
08293 {
08294   struct otri horiz;
08295   struct otri top;
08296   struct otri botleft, botright;
08297   struct otri topleft, topright;
08298   struct otri newbotleft, newbotright;
08299   struct otri newtopright;
08300   struct otri botlcasing, botrcasing;
08301   struct otri toplcasing={NULL, 0}, toprcasing={NULL, 0};
08302   struct otri testtri;
08303   struct osub botlsubseg, botrsubseg;
08304   struct osub toplsubseg, toprsubseg;
08305   struct osub brokensubseg;
08306   struct osub checksubseg;
08307   struct osub rightsubseg;
08308   struct osub newsubseg;
08309   struct badsubseg *encroached;
08310   struct flipstacker *newflip;
08311   vertex first;
08312   vertex leftvertex, rightvertex, botvertex, topvertex, farvertex;
08313   vertex segmentorg, segmentdest;
08314   REAL attrib;
08315   REAL area;
08316   enum insertvertexresult success;
08317   enum locateresult intersect;
08318   int doflip;
08319   int mirrorflag;
08320   int enq;
08321   int i;
08322   triangle ptr;                         /* Temporary variable used by sym(). */
08323   subseg sptr;         /* Temporary variable used by spivot() and tspivot(). */
08324 
08325   if (b->verbose > 1) {
08326     printf("  Inserting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
08327   }
08328 
08329   if (splitseg == (struct osub *) NULL) {
08330     /* Find the location of the vertex to be inserted.  Check if a good */
08331     /*   starting triangle has already been provided by the caller.     */
08332     if (searchtri->tri == m->dummytri) {
08333       /* Find a boundary triangle. */
08334       horiz.tri = m->dummytri;
08335       horiz.orient = 0;
08336       symself(horiz);
08337       /* Search for a triangle containing `newvertex'. */
08338       intersect = locate(m, b, newvertex, &horiz);
08339     } else {
08340       /* Start searching from the triangle provided by the caller. */
08341       otricopy(*searchtri, horiz);
08342       intersect = preciselocate(m, b, newvertex, &horiz, 1);
08343     }
08344   } else {
08345     /* The calling routine provides the subsegment in which */
08346     /*   the vertex is inserted.                             */
08347     otricopy(*searchtri, horiz);
08348     intersect = ONEDGE;
08349   }
08350 
08351   if (intersect == ONVERTEX) {
08352     /* There's already a vertex there.  Return in `searchtri' a triangle */
08353     /*   whose origin is the existing vertex.                            */
08354     otricopy(horiz, *searchtri);
08355     otricopy(horiz, m->recenttri);
08356     return DUPLICATEVERTEX;
08357   }
08358   if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
08359     /* The vertex falls on an edge or boundary. */
08360     if (m->checksegments && (splitseg == (struct osub *) NULL)) {
08361       /* Check whether the vertex falls on a subsegment. */
08362       tspivot(horiz, brokensubseg);
08363       if (brokensubseg.ss != m->dummysub) {
08364         /* The vertex falls on a subsegment, and hence will not be inserted. */
08365         if (segmentflaws) {
08366           enq = b->nobisect != 2;
08367           if (enq && (b->nobisect == 1)) {
08368             /* This subsegment may be split only if it is an */
08369             /*   internal boundary.                          */
08370             sym(horiz, testtri);
08371             enq = testtri.tri != m->dummytri;
08372           }
08373           if (enq) {
08374             /* Add the subsegment to the list of encroached subsegments. */
08375             encroached = (struct badsubseg *) poolalloc(&m->badsubsegs);
08376             encroached->encsubseg = sencode(brokensubseg);
08377             sorg(brokensubseg, encroached->subsegorg);
08378             sdest(brokensubseg, encroached->subsegdest);
08379             if (b->verbose > 2) {
08380               printf(
08381           "  Queueing encroached subsegment (%.12g, %.12g) (%.12g, %.12g).\n",
08382                      encroached->subsegorg[0], encroached->subsegorg[1],
08383                      encroached->subsegdest[0], encroached->subsegdest[1]);
08384             }
08385           }
08386         }
08387         /* Return a handle whose primary edge contains the vertex, */
08388         /*   which has not been inserted.                          */
08389         otricopy(horiz, *searchtri);
08390         otricopy(horiz, m->recenttri);
08391         return VIOLATINGVERTEX;
08392       }
08393     }
08394 
08395     /* Insert the vertex on an edge, dividing one triangle into two (if */
08396     /*   the edge lies on a boundary) or two triangles into four.       */
08397     lprev(horiz, botright);
08398     sym(botright, botrcasing);
08399     sym(horiz, topright);
08400     /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
08401     mirrorflag = topright.tri != m->dummytri;
08402     if (mirrorflag) {
08403       lnextself(topright);
08404       sym(topright, toprcasing);
08405       maketriangle(m, b, &newtopright);
08406     } else {
08407       /* Splitting a boundary edge increases the number of boundary edges. */
08408       m->hullsize++;
08409     }
08410     maketriangle(m, b, &newbotright);
08411 
08412     /* Set the vertices of changed and new triangles. */
08413     org(horiz, rightvertex);
08414     dest(horiz, leftvertex);
08415     apex(horiz, botvertex);
08416     setorg(newbotright, botvertex);
08417     setdest(newbotright, rightvertex);
08418     setapex(newbotright, newvertex);
08419     setorg(horiz, newvertex);
08420     for (i = 0; i < m->eextras; i++) {
08421       /* Set the element attributes of a new triangle. */
08422       setelemattribute(newbotright, i, elemattribute(botright, i));
08423     }
08424     if (b->vararea) {
08425       /* Set the area constraint of a new triangle. */
08426       setareabound(newbotright, areabound(botright));
08427     }
08428     if (mirrorflag) {
08429       dest(topright, topvertex);
08430       setorg(newtopright, rightvertex);
08431       setdest(newtopright, topvertex);
08432       setapex(newtopright, newvertex);
08433       setorg(topright, newvertex);
08434       for (i = 0; i < m->eextras; i++) {
08435         /* Set the element attributes of another new triangle. */
08436         setelemattribute(newtopright, i, elemattribute(topright, i));
08437       }
08438       if (b->vararea) {
08439         /* Set the area constraint of another new triangle. */
08440         setareabound(newtopright, areabound(topright));
08441       }
08442     }
08443 
08444     /* There may be subsegments that need to be bonded */
08445     /*   to the new triangle(s).                       */
08446     if (m->checksegments) {
08447       tspivot(botright, botrsubseg);
08448       if (botrsubseg.ss != m->dummysub) {
08449         tsdissolve(botright);
08450         tsbond(newbotright, botrsubseg);
08451       }
08452       if (mirrorflag) {
08453         tspivot(topright, toprsubseg);
08454         if (toprsubseg.ss != m->dummysub) {
08455           tsdissolve(topright);
08456           tsbond(newtopright, toprsubseg);
08457         }
08458       }
08459     }
08460 
08461     /* Bond the new triangle(s) to the surrounding triangles. */
08462     bond(newbotright, botrcasing);
08463     lprevself(newbotright);
08464     bond(newbotright, botright);
08465     lprevself(newbotright);
08466     if (mirrorflag) {
08467       bond(newtopright, toprcasing);
08468       lnextself(newtopright);
08469       bond(newtopright, topright);
08470       lnextself(newtopright);
08471       bond(newtopright, newbotright);
08472     }
08473 
08474     if (splitseg != (struct osub *) NULL) {
08475       /* Split the subsegment into two. */
08476       setsdest(*splitseg, newvertex);
08477       segorg(*splitseg, segmentorg);
08478       segdest(*splitseg, segmentdest);
08479       ssymself(*splitseg);
08480       spivot(*splitseg, rightsubseg);
08481       insertsubseg(m, b, &newbotright, mark(*splitseg));
08482       tspivot(newbotright, newsubseg);
08483       setsegorg(newsubseg, segmentorg);
08484       setsegdest(newsubseg, segmentdest);
08485       sbond(*splitseg, newsubseg);
08486       ssymself(newsubseg);
08487       sbond(newsubseg, rightsubseg);
08488       ssymself(*splitseg);
08489       /* Transfer the subsegment's boundary marker to the vertex */
08490       /*   if required.                                          */
08491       if (vertexmark(newvertex) == 0) {
08492         setvertexmark(newvertex, mark(*splitseg));
08493       }
08494     }
08495 
08496     if (m->checkquality) {
08497       poolrestart(&m->flipstackers);
08498       m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
08499       m->lastflip->flippedtri = encode(horiz);
08500       m->lastflip->prevflip = (struct flipstacker *) &insertvertex;
08501     }
08502 
08503 #ifdef SELF_CHECK
08504     if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
08505       printf("Internal error in insertvertex():\n");
08506       printf(
08507             "  Clockwise triangle prior to edge vertex insertion (bottom).\n");
08508     }
08509     if (mirrorflag) {
08510       if (counterclockwise(m, b, leftvertex, rightvertex, topvertex) < 0.0) {
08511         printf("Internal error in insertvertex():\n");
08512         printf("  Clockwise triangle prior to edge vertex insertion (top).\n");
08513       }
08514       if (counterclockwise(m, b, rightvertex, topvertex, newvertex) < 0.0) {
08515         printf("Internal error in insertvertex():\n");
08516         printf(
08517             "  Clockwise triangle after edge vertex insertion (top right).\n");
08518       }
08519       if (counterclockwise(m, b, topvertex, leftvertex, newvertex) < 0.0) {
08520         printf("Internal error in insertvertex():\n");
08521         printf(
08522             "  Clockwise triangle after edge vertex insertion (top left).\n");
08523       }
08524     }
08525     if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
08526       printf("Internal error in insertvertex():\n");
08527       printf(
08528           "  Clockwise triangle after edge vertex insertion (bottom left).\n");
08529     }
08530     if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
08531       printf("Internal error in insertvertex():\n");
08532       printf(
08533         "  Clockwise triangle after edge vertex insertion (bottom right).\n");
08534     }
08535 #endif /* SELF_CHECK */
08536     if (b->verbose > 2) {
08537       printf("  Updating bottom left ");
08538       printtriangle(m, b, &botright);
08539       if (mirrorflag) {
08540         printf("  Updating top left ");
08541         printtriangle(m, b, &topright);
08542         printf("  Creating top right ");
08543         printtriangle(m, b, &newtopright);
08544       }
08545       printf("  Creating bottom right ");
08546       printtriangle(m, b, &newbotright);
08547     }
08548 
08549     /* Position `horiz' on the first edge to check for */
08550     /*   the Delaunay property.                        */
08551     lnextself(horiz);
08552   } else {
08553     /* Insert the vertex in a triangle, splitting it into three. */
08554     lnext(horiz, botleft);
08555     lprev(horiz, botright);
08556     sym(botleft, botlcasing);
08557     sym(botright, botrcasing);
08558     maketriangle(m, b, &newbotleft);
08559     maketriangle(m, b, &newbotright);
08560 
08561     /* Set the vertices of changed and new triangles. */
08562     org(horiz, rightvertex);
08563     dest(horiz, leftvertex);
08564     apex(horiz, botvertex);
08565     setorg(newbotleft, leftvertex);
08566     setdest(newbotleft, botvertex);
08567     setapex(newbotleft, newvertex);
08568     setorg(newbotright, botvertex);
08569     setdest(newbotright, rightvertex);
08570     setapex(newbotright, newvertex);
08571     setapex(horiz, newvertex);
08572     for (i = 0; i < m->eextras; i++) {
08573       /* Set the element attributes of the new triangles. */
08574       attrib = elemattribute(horiz, i);
08575       setelemattribute(newbotleft, i, attrib);
08576       setelemattribute(newbotright, i, attrib);
08577     }
08578     if (b->vararea) {
08579       /* Set the area constraint of the new triangles. */
08580       area = areabound(horiz);
08581       setareabound(newbotleft, area);
08582       setareabound(newbotright, area);
08583     }
08584 
08585     /* There may be subsegments that need to be bonded */
08586     /*   to the new triangles.                         */
08587     if (m->checksegments) {
08588       tspivot(botleft, botlsubseg);
08589       if (botlsubseg.ss != m->dummysub) {
08590         tsdissolve(botleft);
08591         tsbond(newbotleft, botlsubseg);
08592       }
08593       tspivot(botright, botrsubseg);
08594       if (botrsubseg.ss != m->dummysub) {
08595         tsdissolve(botright);
08596         tsbond(newbotright, botrsubseg);
08597       }
08598     }
08599 
08600     /* Bond the new triangles to the surrounding triangles. */
08601     bond(newbotleft, botlcasing);
08602     bond(newbotright, botrcasing);
08603     lnextself(newbotleft);
08604     lprevself(newbotright);
08605     bond(newbotleft, newbotright);
08606     lnextself(newbotleft);
08607     bond(botleft, newbotleft);
08608     lprevself(newbotright);
08609     bond(botright, newbotright);
08610 
08611     if (m->checkquality) {
08612       poolrestart(&m->flipstackers);
08613       m->lastflip = (struct flipstacker *) poolalloc(&m->flipstackers);
08614       m->lastflip->flippedtri = encode(horiz);
08615       m->lastflip->prevflip = (struct flipstacker *) NULL;
08616     }
08617 
08618 #ifdef SELF_CHECK
08619     if (counterclockwise(m, b, rightvertex, leftvertex, botvertex) < 0.0) {
08620       printf("Internal error in insertvertex():\n");
08621       printf("  Clockwise triangle prior to vertex insertion.\n");
08622     }
08623     if (counterclockwise(m, b, rightvertex, leftvertex, newvertex) < 0.0) {
08624       printf("Internal error in insertvertex():\n");
08625       printf("  Clockwise triangle after vertex insertion (top).\n");
08626     }
08627     if (counterclockwise(m, b, leftvertex, botvertex, newvertex) < 0.0) {
08628       printf("Internal error in insertvertex():\n");
08629       printf("  Clockwise triangle after vertex insertion (left).\n");
08630     }
08631     if (counterclockwise(m, b, botvertex, rightvertex, newvertex) < 0.0) {
08632       printf("Internal error in insertvertex():\n");
08633       printf("  Clockwise triangle after vertex insertion (right).\n");
08634     }
08635 #endif /* SELF_CHECK */
08636     if (b->verbose > 2) {
08637       printf("  Updating top ");
08638       printtriangle(m, b, &horiz);
08639       printf("  Creating left ");
08640       printtriangle(m, b, &newbotleft);
08641       printf("  Creating right ");
08642       printtriangle(m, b, &newbotright);
08643     }
08644   }
08645 
08646   /* The insertion is successful by default, unless an encroached */
08647   /*   subsegment is found.                                       */
08648   success = SUCCESSFULVERTEX;
08649   /* Circle around the newly inserted vertex, checking each edge opposite */
08650   /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
08651   /*   `horiz' is always the edge being checked.  `first' marks where to  */
08652   /*   stop circling.                                                     */
08653   org(horiz, first);
08654   rightvertex = first;
08655   dest(horiz, leftvertex);
08656   /* Circle until finished. */
08657   while (1) {
08658     /* By default, the edge will be flipped. */
08659     doflip = 1;
08660 
08661     if (m->checksegments) {
08662       /* Check for a subsegment, which cannot be flipped. */
08663       tspivot(horiz, checksubseg);
08664       if (checksubseg.ss != m->dummysub) {
08665         /* The edge is a subsegment and cannot be flipped. */
08666         doflip = 0;
08667 #ifndef CDT_ONLY
08668         if (segmentflaws) {
08669           /* Does the new vertex encroach upon this subsegment? */
08670           if (checkseg4encroach(m, b, &checksubseg)) {
08671             success = ENCROACHINGVERTEX;
08672           }
08673         }
08674 #endif /* not CDT_ONLY */
08675       }
08676     }
08677 
08678     if (doflip) {
08679       /* Check if the edge is a boundary edge. */
08680       sym(horiz, top);
08681       if (top.tri == m->dummytri) {
08682         /* The edge is a boundary edge and cannot be flipped. */
08683         doflip = 0;
08684       } else {
08685         /* Find the vertex on the other side of the edge. */
08686         apex(top, farvertex);
08687         /* In the incremental Delaunay triangulation algorithm, any of      */
08688         /*   `leftvertex', `rightvertex', and `farvertex' could be vertices */
08689         /*   of the triangular bounding box.  These vertices must be        */
08690         /*   treated as if they are infinitely distant, even though their   */
08691         /*   "coordinates" are not.                                         */
08692         if ((leftvertex == m->infvertex1) || (leftvertex == m->infvertex2) ||
08693             (leftvertex == m->infvertex3)) {
08694           /* `leftvertex' is infinitely distant.  Check the convexity of  */
08695           /*   the boundary of the triangulation.  'farvertex' might be   */
08696           /*   infinite as well, but trust me, this same condition should */
08697           /*   be applied.                                                */
08698           doflip = counterclockwise(m, b, newvertex, rightvertex, farvertex)
08699                    > 0.0;
08700         } else if ((rightvertex == m->infvertex1) ||
08701                    (rightvertex == m->infvertex2) ||
08702                    (rightvertex == m->infvertex3)) {
08703           /* `rightvertex' is infinitely distant.  Check the convexity of */
08704           /*   the boundary of the triangulation.  'farvertex' might be   */
08705           /*   infinite as well, but trust me, this same condition should */
08706           /*   be applied.                                                */
08707           doflip = counterclockwise(m, b, farvertex, leftvertex, newvertex)
08708                    > 0.0;
08709         } else if ((farvertex == m->infvertex1) ||
08710                    (farvertex == m->infvertex2) ||
08711                    (farvertex == m->infvertex3)) {
08712           /* `farvertex' is infinitely distant and cannot be inside */
08713           /*   the circumcircle of the triangle `horiz'.            */
08714           doflip = 0;
08715         } else {
08716           /* Test whether the edge is locally Delaunay. */
08717           doflip = incircle(m, b, leftvertex, newvertex, rightvertex,
08718                             farvertex) > 0.0;
08719         }
08720         if (doflip) {
08721           /* We made it!  Flip the edge `horiz' by rotating its containing */
08722           /*   quadrilateral (the two triangles adjacent to `horiz').      */
08723           /* Identify the casing of the quadrilateral. */
08724           lprev(top, topleft);
08725           sym(topleft, toplcasing);
08726           lnext(top, topright);
08727           sym(topright, toprcasing);
08728           lnext(horiz, botleft);
08729           sym(botleft, botlcasing);
08730           lprev(horiz, botright);
08731           sym(botright, botrcasing);
08732           /* Rotate the quadrilateral one-quarter turn counterclockwise. */
08733           bond(topleft, botlcasing);
08734           bond(botleft, botrcasing);
08735           bond(botright, toprcasing);
08736           bond(topright, toplcasing);
08737           if (m->checksegments) {
08738             /* Check for subsegments and rebond them to the quadrilateral. */
08739             tspivot(topleft, toplsubseg);
08740             tspivot(botleft, botlsubseg);
08741             tspivot(botright, botrsubseg);
08742             tspivot(topright, toprsubseg);
08743             if (toplsubseg.ss == m->dummysub) {
08744               tsdissolve(topright);
08745             } else {
08746               tsbond(topright, toplsubseg);
08747             }
08748             if (botlsubseg.ss == m->dummysub) {
08749               tsdissolve(topleft);
08750             } else {
08751               tsbond(topleft, botlsubseg);
08752             }
08753             if (botrsubseg.ss == m->dummysub) {
08754               tsdissolve(botleft);
08755             } else {
08756               tsbond(botleft, botrsubseg);
08757             }
08758             if (toprsubseg.ss == m->dummysub) {
08759               tsdissolve(botright);
08760             } else {
08761               tsbond(botright, toprsubseg);
08762             }
08763           }
08764           /* New vertex assignments for the rotated quadrilateral. */
08765           setorg(horiz, farvertex);
08766           setdest(horiz, newvertex);
08767           setapex(horiz, rightvertex);
08768           setorg(top, newvertex);
08769           setdest(top, farvertex);
08770           setapex(top, leftvertex);
08771           for (i = 0; i < m->eextras; i++) {
08772             /* Take the average of the two triangles' attributes. */
08773             attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
08774             setelemattribute(top, i, attrib);
08775             setelemattribute(horiz, i, attrib);
08776           }
08777           if (b->vararea) {
08778             if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
08779               area = -1.0;
08780             } else {
08781               /* Take the average of the two triangles' area constraints.    */
08782               /*   This prevents small area constraints from migrating a     */
08783               /*   long, long way from their original location due to flips. */
08784               area = 0.5 * (areabound(top) + areabound(horiz));
08785             }
08786             setareabound(top, area);
08787             setareabound(horiz, area);
08788           }
08789 
08790           if (m->checkquality) {
08791             newflip = (struct flipstacker *) poolalloc(&m->flipstackers);
08792             newflip->flippedtri = encode(horiz);
08793             newflip->prevflip = m->lastflip;
08794             m->lastflip = newflip;
08795           }
08796 
08797 #ifdef SELF_CHECK
08798           if (newvertex != (vertex) NULL) {
08799             if (counterclockwise(m, b, leftvertex, newvertex, rightvertex) <
08800                 0.0) {
08801               printf("Internal error in insertvertex():\n");
08802               printf("  Clockwise triangle prior to edge flip (bottom).\n");
08803             }
08804             /* The following test has been removed because constrainededge() */
08805             /*   sometimes generates inverted triangles that insertvertex()  */
08806             /*   removes.                                                    */
08807 /*
08808             if (counterclockwise(m, b, rightvertex, farvertex, leftvertex) <
08809                 0.0) {
08810               printf("Internal error in insertvertex():\n");
08811               printf("  Clockwise triangle prior to edge flip (top).\n");
08812             }
08813 */
08814             if (counterclockwise(m, b, farvertex, leftvertex, newvertex) <
08815                 0.0) {
08816               printf("Internal error in insertvertex():\n");
08817               printf("  Clockwise triangle after edge flip (left).\n");
08818             }
08819             if (counterclockwise(m, b, newvertex, rightvertex, farvertex) <
08820                 0.0) {
08821               printf("Internal error in insertvertex():\n");
08822               printf("  Clockwise triangle after edge flip (right).\n");
08823             }
08824           }
08825 #endif /* SELF_CHECK */
08826           if (b->verbose > 2) {
08827             printf("  Edge flip results in left ");
08828             lnextself(topleft);
08829             printtriangle(m, b, &topleft);
08830             printf("  and right ");
08831             printtriangle(m, b, &horiz);
08832           }
08833           /* On the next iterations, consider the two edges that were  */
08834           /*   exposed (this is, are now visible to the newly inserted */
08835           /*   vertex) by the edge flip.                               */
08836           lprevself(horiz);
08837           leftvertex = farvertex;
08838         }
08839       }
08840     }
08841     if (!doflip) {
08842       /* The handle `horiz' is accepted as locally Delaunay. */
08843 #ifndef CDT_ONLY
08844       if (triflaws) {
08845         /* Check the triangle `horiz' for quality. */
08846         testtriangle(m, b, &horiz);
08847       }
08848 #endif /* not CDT_ONLY */
08849       /* Look for the next edge around the newly inserted vertex. */
08850       lnextself(horiz);
08851       sym(horiz, testtri);
08852       /* Check for finishing a complete revolution about the new vertex, or */
08853       /*   falling outside  of the triangulation.  The latter will happen   */
08854       /*   when a vertex is inserted at a boundary.                         */
08855       if ((leftvertex == first) || (testtri.tri == m->dummytri)) {
08856         /* We're done.  Return a triangle whose origin is the new vertex. */
08857         lnext(horiz, *searchtri);
08858         lnext(horiz, m->recenttri);
08859         return success;
08860       }
08861       /* Finish finding the next edge around the newly inserted vertex. */
08862       lnext(testtri, horiz);
08863       rightvertex = leftvertex;
08864       dest(horiz, leftvertex);
08865     }
08866   }
08867 }
08868 
08869 /*****************************************************************************/
08870 /*                                                                           */
08871 /*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
08872 /*                         has a certain "nice" shape.  This includes the    */
08873 /*                         polygons that result from deletion of a vertex or */
08874 /*                         insertion of a segment.                           */
08875 /*                                                                           */
08876 /*  This is a conceptually difficult routine.  The starting assumption is    */
08877 /*  that we have a polygon with n sides.  n - 1 of these sides are currently */
08878 /*  represented as edges in the mesh.  One side, called the "base", need not */
08879 /*  be.                                                                      */
08880 /*                                                                           */
08881 /*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
08882 /*  triangles that share a common origin.  For each of these triangles, the  */
08883 /*  edge opposite the origin is one of the sides of the polygon.  The        */
08884 /*  primary edge of each triangle is the edge directed from the origin to    */
08885 /*  the destination; note that this is not the same edge that is a side of   */
08886 /*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
08887 /*  From there, the triangles follow in counterclockwise order about the     */
08888 /*  polygon, until `lastedge', the primary edge of the last triangle.        */
08889 /*  `firstedge' and `lastedge' are probably connected to other triangles     */
08890 /*  beyond the extremes of the fan, but their identity is not important, as  */
08891 /*  long as the fan remains connected to them.                               */
08892 /*                                                                           */
08893 /*  Imagine the polygon oriented so that its base is at the bottom.  This    */
08894 /*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
08895 /*  The right vertex of the base is the destination of `firstedge', and the  */
08896 /*  left vertex of the base is the apex of `lastedge'.                       */
08897 /*                                                                           */
08898 /*  The challenge now is to find the right sequence of edge flips to         */
08899 /*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
08900 /*  edge flip effectively removes one triangle from the fan, committing it   */
08901 /*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
08902 /*  is set, the final flip will be performed, resulting in a fan of one      */
08903 /*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
08904 /*  performed, resulting in a fan of two triangles, and an unfinished        */
08905 /*  triangular polygon that is not yet filled out with a single triangle.    */
08906 /*  On completion of the routine, `lastedge' is the last remaining triangle, */
08907 /*  or the leftmost of the last two.                                         */
08908 /*                                                                           */
08909 /*  Although the flips are performed in the order described above, the       */
08910 /*  decisions about what flips to perform are made in precisely the reverse  */
08911 /*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
08912 /*  uses up to two recursive calls to triangulate the "subproblems"          */
08913 /*  (polygons with fewer edges), and then performs an edge flip.             */
08914 /*                                                                           */
08915 /*  The "decision" it makes is which vertex of the polygon should be         */
08916 /*  connected to the base.  This decision is made by testing every possible  */
08917 /*  vertex.  Once the best vertex is found, the two edges that connect this  */
08918 /*  vertex to the base become the bases for two smaller polygons.  These     */
08919 /*  are triangulated recursively.  Unfortunately, this approach can take     */
08920 /*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
08921 /*  rarely a big deal for vertex deletion, where n is rarely larger than     */
08922 /*  ten, but it could be a big deal for segment insertion, especially if     */
08923 /*  there's a lot of long segments that each cut many triangles.  I ought to */
08924 /*  code a faster algorithm some day.                                        */
08925 /*                                                                           */
08926 /*  The `edgecount' parameter is the number of sides of the polygon,         */
08927 /*  including its base.  `triflaws' is a flag that determines whether the    */
08928 /*  new triangles should be tested for quality, and enqueued if they are     */
08929 /*  bad.                                                                     */
08930 /*                                                                           */
08931 /*****************************************************************************/
08932 
08933 #ifdef ANSI_DECLARATORS
08934 void triangulatepolygon(struct mesh *m, struct behavior *b,
08935                         struct otri *firstedge, struct otri *lastedge,
08936                         int edgecount, int doflip, int triflaws)
08937 #else /* not ANSI_DECLARATORS */
08938 void triangulatepolygon(m, b, firstedge, lastedge, edgecount, doflip, triflaws)
08939 struct mesh *m;
08940 struct behavior *b;
08941 struct otri *firstedge;
08942 struct otri *lastedge;
08943 int edgecount;
08944 int doflip;
08945 int triflaws;
08946 #endif /* not ANSI_DECLARATORS */
08947 
08948 {
08949   struct otri testtri;
08950   struct otri besttri;
08951   struct otri tempedge;
08952   vertex leftbasevertex, rightbasevertex;
08953   vertex testvertex;
08954   vertex bestvertex;
08955   int bestnumber;
08956   int i;
08957   triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
08958 
08959   /* Identify the base vertices. */
08960   apex(*lastedge, leftbasevertex);
08961   dest(*firstedge, rightbasevertex);
08962   if (b->verbose > 2) {
08963     printf("  Triangulating interior polygon at edge\n");
08964     printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasevertex[0],
08965            leftbasevertex[1], rightbasevertex[0], rightbasevertex[1]);
08966   }
08967   /* Find the best vertex to connect the base to. */
08968   onext(*firstedge, besttri);
08969   dest(besttri, bestvertex);
08970   otricopy(besttri, testtri);
08971   bestnumber = 1;
08972   for (i = 2; i <= edgecount - 2; i++) {
08973     onextself(testtri);
08974     dest(testtri, testvertex);
08975     /* Is this a better vertex? */
08976     if (incircle(m, b, leftbasevertex, rightbasevertex, bestvertex,
08977                  testvertex) > 0.0) {
08978       otricopy(testtri, besttri);
08979       bestvertex = testvertex;
08980       bestnumber = i;
08981     }
08982   }
08983   if (b->verbose > 2) {
08984     printf("    Connecting edge to (%.12g, %.12g)\n", bestvertex[0],
08985            bestvertex[1]);
08986   }
08987   if (bestnumber > 1) {
08988     /* Recursively triangulate the smaller polygon on the right. */
08989     oprev(besttri, tempedge);
08990     triangulatepolygon(m, b, firstedge, &tempedge, bestnumber + 1, 1,
08991                        triflaws);
08992   }
08993   if (bestnumber < edgecount - 2) {
08994     /* Recursively triangulate the smaller polygon on the left. */
08995     sym(besttri, tempedge);
08996     triangulatepolygon(m, b, &besttri, lastedge, edgecount - bestnumber, 1,
08997                        triflaws);
08998     /* Find `besttri' again; it may have been lost to edge flips. */
08999     sym(tempedge, besttri);
09000   }
09001   if (doflip) {
09002     /* Do one final edge flip. */
09003     flip(m, b, &besttri);
09004 #ifndef CDT_ONLY
09005     if (triflaws) {
09006       /* Check the quality of the newly committed triangle. */
09007       sym(besttri, testtri);
09008       testtriangle(m, b, &testtri);
09009     }
09010 #endif /* not CDT_ONLY */
09011   }
09012   /* Return the base triangle. */
09013   otricopy(besttri, *lastedge);
09014 }
09015 
09016 /*****************************************************************************/
09017 /*                                                                           */
09018 /*  deletevertex()   Delete a vertex from a Delaunay triangulation, ensuring */
09019 /*                   that the triangulation remains Delaunay.                */
09020 /*                                                                           */
09021 /*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
09022 /*  to this vertex is a polygon, for which the Delaunay triangulation is     */
09023 /*  found.  Two triangles are removed from the mesh.                         */
09024 /*                                                                           */
09025 /*  Only interior vertices that do not lie on segments or boundaries may be  */
09026 /*  deleted.                                                                 */
09027 /*                                                                           */
09028 /*****************************************************************************/
09029 
09030 #ifndef CDT_ONLY
09031 
09032 #ifdef ANSI_DECLARATORS
09033 void deletevertex(struct mesh *m, struct behavior *b, struct otri *deltri)
09034 #else /* not ANSI_DECLARATORS */
09035 void deletevertex(m, b, deltri)
09036 struct mesh *m;
09037 struct behavior *b;
09038 struct otri *deltri;
09039 #endif /* not ANSI_DECLARATORS */
09040 
09041 {
09042   struct otri countingtri;
09043   struct otri firstedge, lastedge;
09044   struct otri deltriright;
09045   struct otri lefttri, righttri;
09046   struct otri leftcasing, rightcasing;
09047   struct osub leftsubseg, rightsubseg;
09048   vertex delvertex;
09049   vertex neworg;
09050   int edgecount;
09051   triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
09052   subseg sptr;                      /* Temporary variable used by tspivot(). */
09053 
09054   org(*deltri, delvertex);
09055   if (b->verbose > 1) {
09056     printf("  Deleting (%.12g, %.12g).\n", delvertex[0], delvertex[1]);
09057   }
09058   vertexdealloc(m, delvertex);
09059 
09060   /* Count the degree of the vertex being deleted. */
09061   onext(*deltri, countingtri);
09062   edgecount = 1;
09063   while (!otriequal(*deltri, countingtri)) {
09064 #ifdef SELF_CHECK
09065     if (countingtri.tri == m->dummytri) {
09066       printf("Internal error in deletevertex():\n");
09067       printf("  Attempt to delete boundary vertex.\n");
09068       internalerror();
09069     }
09070 #endif /* SELF_CHECK */
09071     edgecount++;
09072     onextself(countingtri);
09073   }
09074 
09075 #ifdef SELF_CHECK
09076   if (edgecount < 3) {
09077     printf("Internal error in deletevertex():\n  Vertex has degree %d.\n",
09078            edgecount);
09079     internalerror();
09080   }
09081 #endif /* SELF_CHECK */
09082   if (edgecount > 3) {
09083     /* Triangulate the polygon defined by the union of all triangles */
09084     /*   adjacent to the vertex being deleted.  Check the quality of */
09085     /*   the resulting triangles.                                    */
09086     onext(*deltri, firstedge);
09087     oprev(*deltri, lastedge);
09088     triangulatepolygon(m, b, &firstedge, &lastedge, edgecount, 0,
09089                        !b->nobisect);
09090   }
09091   /* Splice out two triangles. */
09092   lprev(*deltri, deltriright);
09093   dnext(*deltri, lefttri);
09094   sym(lefttri, leftcasing);
09095   oprev(deltriright, righttri);
09096   sym(righttri, rightcasing);
09097   bond(*deltri, leftcasing);
09098   bond(deltriright, rightcasing);
09099   tspivot(lefttri, leftsubseg);
09100   if (leftsubseg.ss != m->dummysub) {
09101     tsbond(*deltri, leftsubseg);
09102   }
09103   tspivot(righttri, rightsubseg);
09104   if (rightsubseg.ss != m->dummysub) {
09105     tsbond(deltriright, rightsubseg);
09106   }
09107 
09108   /* Set the new origin of `deltri' and check its quality. */
09109   org(lefttri, neworg);
09110   setorg(*deltri, neworg);
09111   if (!b->nobisect) {
09112     testtriangle(m, b, deltri);
09113   }
09114 
09115   /* Delete the two spliced-out triangles. */
09116   triangledealloc(m, lefttri.tri);
09117   triangledealloc(m, righttri.tri);
09118 }
09119 
09120 #endif /* not CDT_ONLY */
09121 
09122 /*****************************************************************************/
09123 /*                                                                           */
09124 /*  undovertex()   Undo the most recent vertex insertion.                    */
09125 /*                                                                           */
09126 /*  Walks through the list of transformations (flips and a vertex insertion) */
09127 /*  in the reverse of the order in which they were done, and undoes them.    */
09128 /*  The inserted vertex is removed from the triangulation and deallocated.   */
09129 /*  Two triangles (possibly just one) are also deallocated.                  */
09130 /*                                                                           */
09131 /*****************************************************************************/
09132 
09133 #ifndef CDT_ONLY
09134 
09135 #ifdef ANSI_DECLARATORS
09136 void undovertex(struct mesh *m, struct behavior *b)
09137 #else /* not ANSI_DECLARATORS */
09138 void undovertex(m, b)
09139 struct mesh *m;
09140 struct behavior *b;
09141 #endif /* not ANSI_DECLARATORS */
09142 
09143 {
09144   struct otri fliptri;
09145   struct otri botleft, botright, topright;
09146   struct otri botlcasing, botrcasing, toprcasing;
09147   struct otri gluetri;
09148   struct osub botlsubseg, botrsubseg, toprsubseg;
09149   vertex botvertex, rightvertex;
09150   triangle ptr;                         /* Temporary variable used by sym(). */
09151   subseg sptr;                      /* Temporary variable used by tspivot(). */
09152 
09153   /* Walk through the list of transformations (flips and a vertex insertion) */
09154   /*   in the reverse of the order in which they were done, and undo them.   */
09155   while (m->lastflip != (struct flipstacker *) NULL) {
09156     /* Find a triangle involved in the last unreversed transformation. */
09157     decode(m->lastflip->flippedtri, fliptri);
09158 
09159     /* We are reversing one of three transformations:  a trisection of one */
09160     /*   triangle into three (by inserting a vertex in the triangle), a    */
09161     /*   bisection of two triangles into four (by inserting a vertex in an */
09162     /*   edge), or an edge flip.                                           */
09163     if (m->lastflip->prevflip == (struct flipstacker *) NULL) {
09164       /* Restore a triangle that was split into three triangles, */
09165       /*   so it is again one triangle.                          */
09166       dprev(fliptri, botleft);
09167       lnextself(botleft);
09168       onext(fliptri, botright);
09169       lprevself(botright);
09170       sym(botleft, botlcasing);
09171       sym(botright, botrcasing);
09172       dest(botleft, botvertex);
09173 
09174       setapex(fliptri, botvertex);
09175       lnextself(fliptri);
09176       bond(fliptri, botlcasing);
09177       tspivot(botleft, botlsubseg);
09178       tsbond(fliptri, botlsubseg);
09179       lnextself(fliptri);
09180       bond(fliptri, botrcasing);
09181       tspivot(botright, botrsubseg);
09182       tsbond(fliptri, botrsubseg);
09183 
09184       /* Delete the two spliced-out triangles. */
09185       triangledealloc(m, botleft.tri);
09186       triangledealloc(m, botright.tri);
09187     } else if (m->lastflip->prevflip == (struct flipstacker *) &insertvertex) {
09188       /* Restore two triangles that were split into four triangles, */
09189       /*   so they are again two triangles.                         */
09190       lprev(fliptri, gluetri);
09191       sym(gluetri, botright);
09192       lnextself(botright);
09193       sym(botright, botrcasing);
09194       dest(botright, rightvertex);
09195 
09196       setorg(fliptri, rightvertex);
09197       bond(gluetri, botrcasing);
09198       tspivot(botright, botrsubseg);
09199       tsbond(gluetri, botrsubseg);
09200 
09201       /* Delete the spliced-out triangle. */
09202       triangledealloc(m, botright.tri);
09203 
09204       sym(fliptri, gluetri);
09205       if (gluetri.tri != m->dummytri) {
09206         lnextself(gluetri);
09207         dnext(gluetri, topright);
09208         sym(topright, toprcasing);
09209 
09210         setorg(gluetri, rightvertex);
09211         bond(gluetri, toprcasing);
09212         tspivot(topright, toprsubseg);
09213         tsbond(gluetri, toprsubseg);
09214 
09215         /* Delete the spliced-out triangle. */
09216         triangledealloc(m, topright.tri);
09217       }
09218 
09219       /* This is the end of the list, sneakily encoded. */
09220       m->lastflip->prevflip = (struct flipstacker *) NULL;
09221     } else {
09222       /* Undo an edge flip. */
09223       unflip(m, b, &fliptri);
09224     }
09225 
09226     /* Go on and process the next transformation. */
09227     m->lastflip = m->lastflip->prevflip;
09228   }
09229 }
09230 
09231 #endif /* not CDT_ONLY */
09232 
09235 /********* Mesh transformation routines end here                     *********/
09236 
09237 /********* Divide-and-conquer Delaunay triangulation begins here     *********/
09241 /*****************************************************************************/
09242 /*                                                                           */
09243 /*  The divide-and-conquer bounding box                                      */
09244 /*                                                                           */
09245 /*  I originally implemented the divide-and-conquer and incremental Delaunay */
09246 /*  triangulations using the edge-based data structure presented by Guibas   */
09247 /*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
09248 /*  speed.  However, I had to think of a few extra tricks to maintain the    */
09249 /*  elegance of the original algorithms.                                     */
09250 /*                                                                           */
09251 /*  The "bounding box" used by my variant of the divide-and-conquer          */
09252 /*  algorithm uses one triangle for each edge of the convex hull of the      */
09253 /*  triangulation.  These bounding triangles all share a common apical       */
09254 /*  vertex, which is represented by NULL and which represents nothing.       */
09255 /*  The bounding triangles are linked in a circular fan about this NULL      */
09256 /*  vertex, and the edges on the convex hull of the triangulation appear     */
09257 /*  opposite the NULL vertex.  You might find it easiest to imagine that     */
09258 /*  the NULL vertex is a point in 3D space behind the center of the          */
09259 /*  triangulation, and that the bounding triangles form a sort of cone.      */
09260 /*                                                                           */
09261 /*  This bounding box makes it easy to represent degenerate cases.  For      */
09262 /*  instance, the triangulation of two vertices is a single edge.  This edge */
09263 /*  is represented by two bounding box triangles, one on each "side" of the  */
09264 /*  edge.  These triangles are also linked together in a fan about the NULL  */
09265 /*  vertex.                                                                  */
09266 /*                                                                           */
09267 /*  The bounding box also makes it easy to traverse the convex hull, as the  */
09268 /*  divide-and-conquer algorithm needs to do.                                */
09269 /*                                                                           */
09270 /*****************************************************************************/
09271 
09272 /*****************************************************************************/
09273 /*                                                                           */
09274 /*  vertexsort()   Sort an array of vertices by x-coordinate, using the      */
09275 /*                 y-coordinate as a secondary key.                          */
09276 /*                                                                           */
09277 /*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
09278 /*  the usual quicksort mistakes.                                            */
09279 /*                                                                           */
09280 /*****************************************************************************/
09281 
09282 #ifdef ANSI_DECLARATORS
09283 void vertexsort(vertex *sortarray, int arraysize)
09284 #else /* not ANSI_DECLARATORS */
09285 void vertexsort(sortarray, arraysize)
09286 vertex *sortarray;
09287 int arraysize;
09288 #endif /* not ANSI_DECLARATORS */
09289 
09290 {
09291   int left, right;
09292   int pivot;
09293   REAL pivotx, pivoty;
09294   vertex temp;
09295 
09296   if (arraysize == 2) {
09297     /* Recursive base case. */
09298     if ((sortarray[0][0] > sortarray[1][0]) ||
09299         ((sortarray[0][0] == sortarray[1][0]) &&
09300          (sortarray[0][1] > sortarray[1][1]))) {
09301       temp = sortarray[1];
09302       sortarray[1] = sortarray[0];
09303       sortarray[0] = temp;
09304     }
09305     return;
09306   }
09307   /* Choose a random pivot to split the array. */
09308   pivot = (int) randomnation((unsigned int) arraysize);
09309   pivotx = sortarray[pivot][0];
09310   pivoty = sortarray[pivot][1];
09311   /* Split the array. */
09312   left = -1;
09313   right = arraysize;
09314   while (left < right) {
09315     /* Search for a vertex whose x-coordinate is too large for the left. */
09316     do {
09317       left++;
09318     } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
09319                                  ((sortarray[left][0] == pivotx) &&
09320                                   (sortarray[left][1] < pivoty))));
09321     /* Search for a vertex whose x-coordinate is too small for the right. */
09322     do {
09323       right--;
09324     } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
09325                                  ((sortarray[right][0] == pivotx) &&
09326                                   (sortarray[right][1] > pivoty))));
09327     if (left < right) {
09328       /* Swap the left and right vertices. */
09329       temp = sortarray[left];
09330       sortarray[left] = sortarray[right];
09331       sortarray[right] = temp;
09332     }
09333   }
09334   if (left > 1) {
09335     /* Recursively sort the left subset. */
09336     vertexsort(sortarray, left);
09337   }
09338   if (right < arraysize - 2) {
09339     /* Recursively sort the right subset. */
09340     vertexsort(&sortarray[right + 1], arraysize - right - 1);
09341   }
09342 }
09343 
09344 /*****************************************************************************/
09345 /*                                                                           */
09346 /*  vertexmedian()   An order statistic algorithm, almost.  Shuffles an      */
09347 /*                   array of vertices so that the first `median' vertices   */
09348 /*                   occur lexicographically before the remaining vertices.  */
09349 /*                                                                           */
09350 /*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
09351 /*  if axis == 1.  Very similar to the vertexsort() procedure, but runs in   */
09352 /*  randomized linear time.                                                  */
09353 /*                                                                           */
09354 /*****************************************************************************/
09355 
09356 #ifdef ANSI_DECLARATORS
09357 void vertexmedian(vertex *sortarray, int arraysize, int median, int axis)
09358 #else /* not ANSI_DECLARATORS */
09359 void vertexmedian(sortarray, arraysize, median, axis)
09360 vertex *sortarray;
09361 int arraysize;
09362 int median;
09363 int axis;
09364 #endif /* not ANSI_DECLARATORS */
09365 
09366 {
09367   int left, right;
09368   int pivot;
09369   REAL pivot1, pivot2;
09370   vertex temp;
09371 
09372   if (arraysize == 2) {
09373     /* Recursive base case. */
09374     if ((sortarray[0][axis] > sortarray[1][axis]) ||
09375         ((sortarray[0][axis] == sortarray[1][axis]) &&
09376          (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
09377       temp = sortarray[1];
09378       sortarray[1] = sortarray[0];
09379       sortarray[0] = temp;
09380     }
09381     return;
09382   }
09383   /* Choose a random pivot to split the array. */
09384   pivot = (int) randomnation((unsigned int) arraysize);
09385   pivot1 = sortarray[pivot][axis];
09386   pivot2 = sortarray[pivot][1 - axis];
09387   /* Split the array. */
09388   left = -1;
09389   right = arraysize;
09390   while (left < right) {
09391     /* Search for a vertex whose x-coordinate is too large for the left. */
09392     do {
09393       left++;
09394     } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
09395                                  ((sortarray[left][axis] == pivot1) &&
09396                                   (sortarray[left][1 - axis] < pivot2))));
09397     /* Search for a vertex whose x-coordinate is too small for the right. */
09398     do {
09399       right--;
09400     } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
09401                                  ((sortarray[right][axis] == pivot1) &&
09402                                   (sortarray[right][1 - axis] > pivot2))));
09403     if (left < right) {
09404       /* Swap the left and right vertices. */
09405       temp = sortarray[left];
09406       sortarray[left] = sortarray[right];
09407       sortarray[right] = temp;
09408     }
09409   }
09410   /* Unlike in vertexsort(), at most one of the following */
09411   /*   conditionals is true.                             */
09412   if (left > median) {
09413     /* Recursively shuffle the left subset. */
09414     vertexmedian(sortarray, left, median, axis);
09415   }
09416   if (right < median - 1) {
09417     /* Recursively shuffle the right subset. */
09418     vertexmedian(&sortarray[right + 1], arraysize - right - 1,
09419                  median - right - 1, axis);
09420   }
09421 }
09422 
09423 /*****************************************************************************/
09424 /*                                                                           */
09425 /*  alternateaxes()   Sorts the vertices as appropriate for the divide-and-  */
09426 /*                    conquer algorithm with alternating cuts.               */
09427 /*                                                                           */
09428 /*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
09429 /*  For the base case, subsets containing only two or three vertices are     */
09430 /*  always sorted by x-coordinate.                                           */
09431 /*                                                                           */
09432 /*****************************************************************************/
09433 
09434 #ifdef ANSI_DECLARATORS
09435 void alternateaxes(vertex *sortarray, int arraysize, int axis)
09436 #else /* not ANSI_DECLARATORS */
09437 void alternateaxes(sortarray, arraysize, axis)
09438 vertex *sortarray;
09439 int arraysize;
09440 int axis;
09441 #endif /* not ANSI_DECLARATORS */
09442 
09443 {
09444   int divider;
09445 
09446   divider = arraysize >> 1;
09447   if (arraysize <= 3) {
09448     /* Recursive base case:  subsets of two or three vertices will be    */
09449     /*   handled specially, and should always be sorted by x-coordinate. */
09450     axis = 0;
09451   }
09452   /* Partition with a horizontal or vertical cut. */
09453   vertexmedian(sortarray, arraysize, divider, axis);
09454   /* Recursively partition the subsets with a cross cut. */
09455   if (arraysize - divider >= 2) {
09456     if (divider >= 2) {
09457       alternateaxes(sortarray, divider, 1 - axis);
09458     }
09459     alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
09460   }
09461 }
09462 
09463 /*****************************************************************************/
09464 /*                                                                           */
09465 /*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
09466 /*                 single Delaunay triangulation.                            */
09467 /*                                                                           */
09468 /*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
09469 /*  a triangle-based, rather than edge-based, data structure.                */
09470 /*                                                                           */
09471 /*  The algorithm walks up the gap between the two triangulations, knitting  */
09472 /*  them together.  As they are merged, some of their bounding triangles     */
09473 /*  are converted into real triangles of the triangulation.  The procedure   */
09474 /*  pulls each hull's bounding triangles apart, then knits them together     */
09475 /*  like the teeth of two gears.  The Delaunay property determines, at each  */
09476 /*  step, whether the next "tooth" is a bounding triangle of the left hull   */
09477 /*  or the right.  When a bounding triangle becomes real, its apex is        */
09478 /*  changed from NULL to a real vertex.                                      */
09479 /*                                                                           */
09480 /*  Only two new triangles need to be allocated.  These become new bounding  */
09481 /*  triangles at the top and bottom of the seam.  They are used to connect   */
09482 /*  the remaining bounding triangles (those that have not been converted     */
09483 /*  into real triangles) into a single fan.                                  */
09484 /*                                                                           */
09485 /*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
09486 /*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
09487 /*  the destination of `innerleft' is the rightmost vertex of the            */
09488 /*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
09489 /*  triangles of the right triangulation.  The origin of `innerright' and    */
09490 /*  destination of `farright' are the leftmost and rightmost vertices.       */
09491 /*                                                                           */
09492 /*  On completion, the origin of `farleft' is the leftmost vertex of the     */
09493 /*  merged triangulation, and the destination of `farright' is the rightmost */
09494 /*  vertex.                                                                  */
09495 /*                                                                           */
09496 /*****************************************************************************/
09497 
09498 #ifdef ANSI_DECLARATORS
09499 void mergehulls(struct mesh *m, struct behavior *b, struct otri *farleft,
09500                 struct otri *innerleft, struct otri *innerright,
09501                 struct otri *farright, int axis)
09502 #else /* not ANSI_DECLARATORS */
09503 void mergehulls(m, b, farleft, innerleft, innerright, farright, axis)
09504 struct mesh *m;
09505 struct behavior *b;
09506 struct otri *farleft;
09507 struct otri *innerleft;
09508 struct otri *innerright;
09509 struct otri *farright;
09510 int axis;
09511 #endif /* not ANSI_DECLARATORS */
09512 
09513 {
09514   struct otri leftcand, rightcand;
09515   struct otri baseedge;
09516   struct otri nextedge;
09517   struct otri sidecasing, topcasing, outercasing;
09518   struct otri checkedge;
09519   vertex innerleftdest;
09520   vertex innerrightorg;
09521   vertex innerleftapex, innerrightapex;
09522   vertex farleftpt, farrightpt;
09523   vertex farleftapex, farrightapex;
09524   vertex lowerleft, lowerright;
09525   vertex upperleft, upperright;
09526   vertex nextapex;
09527   vertex checkvertex;
09528   int changemade;
09529   int badedge;
09530   int leftfinished, rightfinished;
09531   triangle ptr;                         /* Temporary variable used by sym(). */
09532 
09533   dest(*innerleft, innerleftdest);
09534   apex(*innerleft, innerleftapex);
09535   org(*innerright, innerrightorg);
09536   apex(*innerright, innerrightapex);
09537   /* Special treatment for horizontal cuts. */
09538   if (b->dwyer && (axis == 1)) {
09539     org(*farleft, farleftpt);
09540     apex(*farleft, farleftapex);
09541     dest(*farright, farrightpt);
09542     apex(*farright, farrightapex);
09543     /* The pointers to the extremal vertices are shifted to point to the */
09544     /*   topmost and bottommost vertex of each hull, rather than the     */
09545     /*   leftmost and rightmost vertices.                                */
09546     while (farleftapex[1] < farleftpt[1]) {
09547       lnextself(*farleft);
09548       symself(*farleft);
09549       farleftpt = farleftapex;
09550       apex(*farleft, farleftapex);
09551     }
09552     sym(*innerleft, checkedge);
09553     apex(checkedge, checkvertex);
09554     while (checkvertex[1] > innerleftdest[1]) {
09555       lnext(checkedge, *innerleft);
09556       innerleftapex = innerleftdest;
09557       innerleftdest = checkvertex;
09558       sym(*innerleft, checkedge);
09559       apex(checkedge, checkvertex);
09560     }
09561     while (innerrightapex[1] < innerrightorg[1]) {
09562       lnextself(*innerright);
09563       symself(*innerright);
09564       innerrightorg = innerrightapex;
09565       apex(*innerright, innerrightapex);
09566     }
09567     sym(*farright, checkedge);
09568     apex(checkedge, checkvertex);
09569     while (checkvertex[1] > farrightpt[1]) {
09570       lnext(checkedge, *farright);
09571       farrightapex = farrightpt;
09572       farrightpt = checkvertex;
09573       sym(*farright, checkedge);
09574       apex(checkedge, checkvertex);
09575     }
09576   }
09577   /* Find a line tangent to and below both hulls. */
09578   do {
09579     changemade = 0;
09580     /* Make innerleftdest the "bottommost" vertex of the left hull. */
09581     if (counterclockwise(m, b, innerleftdest, innerleftapex, innerrightorg) >
09582         0.0) {
09583       lprevself(*innerleft);
09584       symself(*innerleft);
09585       innerleftdest = innerleftapex;
09586       apex(*innerleft, innerleftapex);
09587       changemade = 1;
09588     }
09589     /* Make innerrightorg the "bottommost" vertex of the right hull. */
09590     if (counterclockwise(m, b, innerrightapex, innerrightorg, innerleftdest) >
09591         0.0) {
09592       lnextself(*innerright);
09593       symself(*innerright);
09594       innerrightorg = innerrightapex;
09595       apex(*innerright, innerrightapex);
09596       changemade = 1;
09597     }
09598   } while (changemade);
09599   /* Find the two candidates to be the next "gear tooth." */
09600   sym(*innerleft, leftcand);
09601   sym(*innerright, rightcand);
09602   /* Create the bottom new bounding triangle. */
09603   maketriangle(m, b, &baseedge);
09604   /* Connect it to the bounding boxes of the left and right triangulations. */
09605   bond(baseedge, *innerleft);
09606   lnextself(baseedge);
09607   bond(baseedge, *innerright);
09608   lnextself(baseedge);
09609   setorg(baseedge, innerrightorg);
09610   setdest(baseedge, innerleftdest);
09611   /* Apex is intentionally left NULL. */
09612   if (b->verbose > 2) {
09613     printf("  Creating base bounding ");
09614     printtriangle(m, b, &baseedge);
09615   }
09616   /* Fix the extreme triangles if necessary. */
09617   org(*farleft, farleftpt);
09618   if (innerleftdest == farleftpt) {
09619     lnext(baseedge, *farleft);
09620   }
09621   dest(*farright, farrightpt);
09622   if (innerrightorg == farrightpt) {
09623     lprev(baseedge, *farright);
09624   }
09625   /* The vertices of the current knitting edge. */
09626   lowerleft = innerleftdest;
09627   lowerright = innerrightorg;
09628   /* The candidate vertices for knitting. */
09629   apex(leftcand, upperleft);
09630   apex(rightcand, upperright);
09631   /* Walk up the gap between the two triangulations, knitting them together. */
09632   while (1) {
09633     /* Have we reached the top?  (This isn't quite the right question,       */
09634     /*   because even though the left triangulation might seem finished now, */
09635     /*   moving up on the right triangulation might reveal a new vertex of   */
09636     /*   the left triangulation.  And vice-versa.)                           */
09637     leftfinished = counterclockwise(m, b, upperleft, lowerleft, lowerright) <=
09638                    0.0;
09639     rightfinished = counterclockwise(m, b, upperright, lowerleft, lowerright)
09640                  <= 0.0;
09641     if (leftfinished && rightfinished) {
09642       /* Create the top new bounding triangle. */
09643       maketriangle(m, b, &nextedge);
09644       setorg(nextedge, lowerleft);
09645       setdest(nextedge, lowerright);
09646       /* Apex is intentionally left NULL. */
09647       /* Connect it to the bounding boxes of the two triangulations. */
09648       bond(nextedge, baseedge);
09649       lnextself(nextedge);
09650       bond(nextedge, rightcand);
09651       lnextself(nextedge);
09652       bond(nextedge, leftcand);
09653       if (b->verbose > 2) {
09654         printf("  Creating top bounding ");
09655         printtriangle(m, b, &nextedge);
09656       }
09657       /* Special treatment for horizontal cuts. */
09658       if (b->dwyer && (axis == 1)) {
09659         org(*farleft, farleftpt);
09660         apex(*farleft, farleftapex);
09661         dest(*farright, farrightpt);
09662         apex(*farright, farrightapex);
09663         sym(*farleft, checkedge);
09664         apex(checkedge, checkvertex);
09665         /* The pointers to the extremal vertices are restored to the  */
09666         /*   leftmost and rightmost vertices (rather than topmost and */
09667         /*   bottommost).                                             */
09668         while (checkvertex[0] < farleftpt[0]) {
09669           lprev(checkedge, *farleft);
09670           farleftapex = farleftpt;
09671           farleftpt = checkvertex;
09672           sym(*farleft, checkedge);
09673           apex(checkedge, checkvertex);
09674         }
09675         while (farrightapex[0] > farrightpt[0]) {
09676           lprevself(*farright);
09677           symself(*farright);
09678           farrightpt = farrightapex;
09679           apex(*farright, farrightapex);
09680         }
09681       }
09682       return;
09683     }
09684     /* Consider eliminating edges from the left triangulation. */
09685     if (!leftfinished) {
09686       /* What vertex would be exposed if an edge were deleted? */
09687       lprev(leftcand, nextedge);
09688       symself(nextedge);
09689       apex(nextedge, nextapex);
09690       /* If nextapex is NULL, then no vertex would be exposed; the */
09691       /*   triangulation would have been eaten right through.      */
09692       if (nextapex != (vertex) NULL) {
09693         /* Check whether the edge is Delaunay. */
09694         badedge = incircle(m, b, lowerleft, lowerright, upperleft, nextapex) >
09695                   0.0;
09696         while (badedge) {
09697           /* Eliminate the edge with an edge flip.  As a result, the    */
09698           /*   left triangulation will have one more boundary triangle. */
09699           lnextself(nextedge);
09700           sym(nextedge, topcasing);
09701           lnextself(nextedge);
09702           sym(nextedge, sidecasing);
09703           bond(nextedge, topcasing);
09704           bond(leftcand, sidecasing);
09705           lnextself(leftcand);
09706           sym(leftcand, outercasing);
09707           lprevself(nextedge);
09708           bond(nextedge, outercasing);
09709           /* Correct the vertices to reflect the edge flip. */
09710           setorg(leftcand, lowerleft);
09711           setdest(leftcand, NULL);
09712           setapex(leftcand, nextapex);
09713           setorg(nextedge, NULL);
09714           setdest(nextedge, upperleft);
09715           setapex(nextedge, nextapex);
09716           /* Consider the newly exposed vertex. */
09717           upperleft = nextapex;
09718           /* What vertex would be exposed if another edge were deleted? */
09719           otricopy(sidecasing, nextedge);
09720           apex(nextedge, nextapex);
09721           if (nextapex != (vertex) NULL) {
09722             /* Check whether the edge is Delaunay. */
09723             badedge = incircle(m, b, lowerleft, lowerright, upperleft,
09724                                nextapex) > 0.0;
09725           } else {
09726             /* Avoid eating right through the triangulation. */
09727             badedge = 0;
09728           }
09729         }
09730       }
09731     }
09732     /* Consider eliminating edges from the right triangulation. */
09733     if (!rightfinished) {
09734       /* What vertex would be exposed if an edge were deleted? */
09735       lnext(rightcand, nextedge);
09736       symself(nextedge);
09737       apex(nextedge, nextapex);
09738       /* If nextapex is NULL, then no vertex would be exposed; the */
09739       /*   triangulation would have been eaten right through.      */
09740       if (nextapex != (vertex) NULL) {
09741         /* Check whether the edge is Delaunay. */
09742         badedge = incircle(m, b, lowerleft, lowerright, upperright, nextapex) >
09743                   0.0;
09744         while (badedge) {
09745           /* Eliminate the edge with an edge flip.  As a result, the     */
09746           /*   right triangulation will have one more boundary triangle. */
09747           lprevself(nextedge);
09748           sym(nextedge, topcasing);
09749           lprevself(nextedge);
09750           sym(nextedge, sidecasing);
09751           bond(nextedge, topcasing);
09752           bond(rightcand, sidecasing);
09753           lprevself(rightcand);
09754           sym(rightcand, outercasing);
09755           lnextself(nextedge);
09756           bond(nextedge, outercasing);
09757           /* Correct the vertices to reflect the edge flip. */
09758           setorg(rightcand, NULL);
09759           setdest(rightcand, lowerright);
09760           setapex(rightcand, nextapex);
09761           setorg(nextedge, upperright);
09762           setdest(nextedge, NULL);
09763           setapex(nextedge, nextapex);
09764           /* Consider the newly exposed vertex. */
09765           upperright = nextapex;
09766           /* What vertex would be exposed if another edge were deleted? */
09767           otricopy(sidecasing, nextedge);
09768           apex(nextedge, nextapex);
09769           if (nextapex != (vertex) NULL) {
09770             /* Check whether the edge is Delaunay. */
09771             badedge = incircle(m, b, lowerleft, lowerright, upperright,
09772                                nextapex) > 0.0;
09773           } else {
09774             /* Avoid eating right through the triangulation. */
09775             badedge = 0;
09776           }
09777         }
09778       }
09779     }
09780     if (leftfinished || (!rightfinished &&
09781            (incircle(m, b, upperleft, lowerleft, lowerright, upperright) >
09782             0.0))) {
09783       /* Knit the triangulations, adding an edge from `lowerleft' */
09784       /*   to `upperright'.                                       */
09785       bond(baseedge, rightcand);
09786       lprev(rightcand, baseedge);
09787       setdest(baseedge, lowerleft);
09788       lowerright = upperright;
09789       sym(baseedge, rightcand);
09790       apex(rightcand, upperright);
09791     } else {
09792       /* Knit the triangulations, adding an edge from `upperleft' */
09793       /*   to `lowerright'.                                       */
09794       bond(baseedge, leftcand);
09795       lnext(leftcand, baseedge);
09796       setorg(baseedge, lowerright);
09797       lowerleft = upperleft;
09798       sym(baseedge, leftcand);
09799       apex(leftcand, upperleft);
09800     }
09801     if (b->verbose > 2) {
09802       printf("  Connecting ");
09803       printtriangle(m, b, &baseedge);
09804     }
09805   }
09806 }
09807 
09808 /*****************************************************************************/
09809 /*                                                                           */
09810 /*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
09811 /*                     divide-and-conquer method.                            */
09812 /*                                                                           */
09813 /*  Recursively breaks down the problem into smaller pieces, which are       */
09814 /*  knitted together by mergehulls().  The base cases (problems of two or    */
09815 /*  three vertices) are handled specially here.                              */
09816 /*                                                                           */
09817 /*  On completion, `farleft' and `farright' are bounding triangles such that */
09818 /*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
09819 /*  choosing the highest leftmost vertex), and the destination of            */
09820 /*  `farright' is the rightmost vertex (breaking ties by choosing the        */
09821 /*  lowest rightmost vertex).                                                */
09822 /*                                                                           */
09823 /*****************************************************************************/
09824 
09825 #ifdef ANSI_DECLARATORS
09826 void divconqrecurse(struct mesh *m, struct behavior *b, vertex *sortarray,
09827                     int vertices, int axis,
09828                     struct otri *farleft, struct otri *farright)
09829 #else /* not ANSI_DECLARATORS */
09830 void divconqrecurse(m, b, sortarray, vertices, axis, farleft, farright)
09831 struct mesh *m;
09832 struct behavior *b;
09833 vertex *sortarray;
09834 int vertices;
09835 int axis;
09836 struct otri *farleft;
09837 struct otri *farright;
09838 #endif /* not ANSI_DECLARATORS */
09839 
09840 {
09841   struct otri midtri, tri1, tri2, tri3;
09842   struct otri innerleft, innerright;
09843   REAL area;
09844   int divider;
09845 
09846   if (b->verbose > 2) {
09847     printf("  Triangulating %d vertices.\n", vertices);
09848   }
09849   if (vertices == 2) {
09850     /* The triangulation of two vertices is an edge.  An edge is */
09851     /*   represented by two bounding triangles.                  */
09852     maketriangle(m, b, farleft);
09853     setorg(*farleft, sortarray[0]);
09854     setdest(*farleft, sortarray[1]);
09855     /* The apex is intentionally left NULL. */
09856     maketriangle(m, b, farright);
09857     setorg(*farright, sortarray[1]);
09858     setdest(*farright, sortarray[0]);
09859     /* The apex is intentionally left NULL. */
09860     bond(*farleft, *farright);
09861     lprevself(*farleft);
09862     lnextself(*farright);
09863     bond(*farleft, *farright);
09864     lprevself(*farleft);
09865     lnextself(*farright);
09866     bond(*farleft, *farright);
09867     if (b->verbose > 2) {
09868       printf("  Creating ");
09869       printtriangle(m, b, farleft);
09870       printf("  Creating ");
09871       printtriangle(m, b, farright);
09872     }
09873     /* Ensure that the origin of `farleft' is sortarray[0]. */
09874     lprev(*farright, *farleft);
09875     return;
09876   } else if (vertices == 3) {
09877     /* The triangulation of three vertices is either a triangle (with */
09878     /*   three bounding triangles) or two edges (with four bounding   */
09879     /*   triangles).  In either case, four triangles are created.     */
09880     maketriangle(m, b, &midtri);
09881     maketriangle(m, b, &tri1);
09882     maketriangle(m, b, &tri2);
09883     maketriangle(m, b, &tri3);
09884     area = counterclockwise(m, b, sortarray[0], sortarray[1], sortarray[2]);
09885     if (area == 0.0) {
09886       /* Three collinear vertices; the triangulation is two edges. */
09887       setorg(midtri, sortarray[0]);
09888       setdest(midtri, sortarray[1]);
09889       setorg(tri1, sortarray[1]);
09890       setdest(tri1, sortarray[0]);
09891       setorg(tri2, sortarray[2]);
09892       setdest(tri2, sortarray[1]);
09893       setorg(tri3, sortarray[1]);
09894       setdest(tri3, sortarray[2]);
09895       /* All apices are intentionally left NULL. */
09896       bond(midtri, tri1);
09897       bond(tri2, tri3);
09898       lnextself(midtri);
09899       lprevself(tri1);
09900       lnextself(tri2);
09901       lprevself(tri3);
09902       bond(midtri, tri3);
09903       bond(tri1, tri2);
09904       lnextself(midtri);
09905       lprevself(tri1);
09906       lnextself(tri2);
09907       lprevself(tri3);
09908       bond(midtri, tri1);
09909       bond(tri2, tri3);
09910       /* Ensure that the origin of `farleft' is sortarray[0]. */
09911       otricopy(tri1, *farleft);
09912       /* Ensure that the destination of `farright' is sortarray[2]. */
09913       otricopy(tri2, *farright);
09914     } else {
09915       /* The three vertices are not collinear; the triangulation is one */
09916       /*   triangle, namely `midtri'.                                   */
09917       setorg(midtri, sortarray[0]);
09918       setdest(tri1, sortarray[0]);
09919       setorg(tri3, sortarray[0]);
09920       /* Apices of tri1, tri2, and tri3 are left NULL. */
09921       if (area > 0.0) {
09922         /* The vertices are in counterclockwise order. */
09923         setdest(midtri, sortarray[1]);
09924         setorg(tri1, sortarray[1]);
09925         setdest(tri2, sortarray[1]);
09926         setapex(midtri, sortarray[2]);
09927         setorg(tri2, sortarray[2]);
09928         setdest(tri3, sortarray[2]);
09929       } else {
09930         /* The vertices are in clockwise order. */
09931         setdest(midtri, sortarray[2]);
09932         setorg(tri1, sortarray[2]);
09933         setdest(tri2, sortarray[2]);
09934         setapex(midtri, sortarray[1]);
09935         setorg(tri2, sortarray[1]);
09936         setdest(tri3, sortarray[1]);
09937       }
09938       /* The topology does not depend on how the vertices are ordered. */
09939       bond(midtri, tri1);
09940       lnextself(midtri);
09941       bond(midtri, tri2);
09942       lnextself(midtri);
09943       bond(midtri, tri3);
09944       lprevself(tri1);
09945       lnextself(tri2);
09946       bond(tri1, tri2);
09947       lprevself(tri1);
09948       lprevself(tri3);
09949       bond(tri1, tri3);
09950       lnextself(tri2);
09951       lprevself(tri3);
09952       bond(tri2, tri3);
09953       /* Ensure that the origin of `farleft' is sortarray[0]. */
09954       otricopy(tri1, *farleft);
09955       /* Ensure that the destination of `farright' is sortarray[2]. */
09956       if (area > 0.0) {
09957         otricopy(tri2, *farright);
09958       } else {
09959         lnext(*farleft, *farright);
09960       }
09961     }
09962     if (b->verbose > 2) {
09963       printf("  Creating ");
09964       printtriangle(m, b, &midtri);
09965       printf("  Creating ");
09966       printtriangle(m, b, &tri1);
09967       printf("  Creating ");
09968       printtriangle(m, b, &tri2);
09969       printf("  Creating ");
09970       printtriangle(m, b, &tri3);
09971     }
09972     return;
09973   } else {
09974     /* Split the vertices in half. */
09975     divider = vertices >> 1;
09976     /* Recursively triangulate each half. */
09977     divconqrecurse(m, b, sortarray, divider, 1 - axis, farleft, &innerleft);
09978     divconqrecurse(m, b, &sortarray[divider], vertices - divider, 1 - axis,
09979                    &innerright, farright);
09980     if (b->verbose > 1) {
09981       printf("  Joining triangulations with %d and %d vertices.\n", divider,
09982              vertices - divider);
09983     }
09984     /* Merge the two triangulations into one. */
09985     mergehulls(m, b, farleft, &innerleft, &innerright, farright, axis);
09986   }
09987 }
09988 
09989 #ifdef ANSI_DECLARATORS
09990 long removeghosts(struct mesh *m, struct behavior *b, struct otri *startghost)
09991 #else /* not ANSI_DECLARATORS */
09992 long removeghosts(m, b, startghost)
09993 struct mesh *m;
09994 struct behavior *b;
09995 struct otri *startghost;
09996 #endif /* not ANSI_DECLARATORS */
09997 
09998 {
09999   struct otri searchedge;
10000   struct otri dissolveedge;
10001   struct otri deadtriangle;
10002   vertex markorg;
10003   long hullsize;
10004   triangle ptr;                         /* Temporary variable used by sym(). */
10005 
10006   if (b->verbose) {
10007     printf("  Removing ghost triangles.\n");
10008   }
10009   /* Find an edge on the convex hull to start point location from. */
10010   lprev(*startghost, searchedge);
10011   symself(searchedge);
10012   m->dummytri[0] = encode(searchedge);
10013   /* Remove the bounding box and count the convex hull edges. */
10014   otricopy(*startghost, dissolveedge);
10015   hullsize = 0;
10016   do {
10017     hullsize++;
10018     lnext(dissolveedge, deadtriangle);
10019     lprevself(dissolveedge);
10020     symself(dissolveedge);
10021     /* If no PSLG is involved, set the boundary markers of all the vertices */
10022     /*   on the convex hull.  If a PSLG is used, this step is done later.   */
10023     if (!b->poly) {
10024       /* Watch out for the case where all the input vertices are collinear. */
10025       if (dissolveedge.tri != m->dummytri) {
10026         org(dissolveedge, markorg);
10027         if (vertexmark(markorg) == 0) {
10028           setvertexmark(markorg, 1);
10029         }
10030       }
10031     }
10032     /* Remove a bounding triangle from a convex hull triangle. */
10033     dissolve(dissolveedge);
10034     /* Find the next bounding triangle. */
10035     sym(deadtriangle, dissolveedge);
10036     /* Delete the bounding triangle. */
10037     triangledealloc(m, deadtriangle.tri);
10038   } while (!otriequal(dissolveedge, *startghost));
10039   return hullsize;
10040 }
10041 
10042 /*****************************************************************************/
10043 /*                                                                           */
10044 /*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
10045 /*                      conquer method.                                      */
10046 /*                                                                           */
10047 /*  Sorts the vertices, calls a recursive procedure to triangulate them, and */
10048 /*  removes the bounding box, setting boundary markers as appropriate.       */
10049 /*                                                                           */
10050 /*****************************************************************************/
10051 
10052 #ifdef ANSI_DECLARATORS
10053 long divconqdelaunay(struct mesh *m, struct behavior *b)
10054 #else /* not ANSI_DECLARATORS */
10055 long divconqdelaunay(m, b)
10056 struct mesh *m;
10057 struct behavior *b;
10058 #endif /* not ANSI_DECLARATORS */
10059 
10060 {
10061   vertex *sortarray;
10062   struct otri hullleft, hullright;
10063   int divider;
10064   int i, j;
10065 
10066   if (b->verbose) {
10067     printf("  Sorting vertices.\n");
10068   }
10069 
10070   /* Allocate an array of pointers to vertices for sorting. */
10071   sortarray = (vertex *) trimalloc(m->invertices * (int) sizeof(vertex));
10072   traversalinit(&m->vertices);
10073   for (i = 0; i < m->invertices; i++) {
10074     sortarray[i] = vertextraverse(m);
10075   }
10076   /* Sort the vertices. */
10077   vertexsort(sortarray, m->invertices);
10078   /* Discard duplicate vertices, which can really mess up the algorithm. */
10079   i = 0;
10080   for (j = 1; j < m->invertices; j++) {
10081     if ((sortarray[i][0] == sortarray[j][0])
10082         && (sortarray[i][1] == sortarray[j][1])) {
10083       if (!b->quiet) {
10084         printf(
10085 "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
10086                sortarray[j][0], sortarray[j][1]);
10087       }
10088       setvertextype(sortarray[j], UNDEADVERTEX);
10089       m->undeads++;
10090     } else {
10091       i++;
10092       sortarray[i] = sortarray[j];
10093     }
10094   }
10095   i++;
10096   if (b->dwyer) {
10097     /* Re-sort the array of vertices to accommodate alternating cuts. */
10098     divider = i >> 1;
10099     if (i - divider >= 2) {
10100       if (divider >= 2) {
10101         alternateaxes(sortarray, divider, 1);
10102       }
10103       alternateaxes(&sortarray[divider], i - divider, 1);
10104     }
10105   }
10106 
10107   if (b->verbose) {
10108     printf("  Forming triangulation.\n");
10109   }
10110 
10111   /* Form the Delaunay triangulation. */
10112   divconqrecurse(m, b, sortarray, i, 0, &hullleft, &hullright);
10113   trifree((VOID *) sortarray);
10114 
10115   return removeghosts(m, b, &hullleft);
10116 }
10117 
10120 /********* Divide-and-conquer Delaunay triangulation ends here       *********/
10121 
10122 /********* Incremental Delaunay triangulation begins here            *********/
10126 /*****************************************************************************/
10127 /*                                                                           */
10128 /*  boundingbox()   Form an "infinite" bounding triangle to insert vertices  */
10129 /*                  into.                                                    */
10130 /*                                                                           */
10131 /*  The vertices at "infinity" are assigned finite coordinates, which are    */
10132 /*  used by the point location routines, but (mostly) ignored by the         */
10133 /*  Delaunay edge flip routines.                                             */
10134 /*                                                                           */
10135 /*****************************************************************************/
10136 
10137 #ifndef REDUCED
10138 
10139 #ifdef ANSI_DECLARATORS
10140 void boundingbox(struct mesh *m, struct behavior *b)
10141 #else /* not ANSI_DECLARATORS */
10142 void boundingbox(m, b)
10143 struct mesh *m;
10144 struct behavior *b;
10145 #endif /* not ANSI_DECLARATORS */
10146 
10147 {
10148   struct otri inftri;          /* Handle for the triangular bounding box. */
10149   REAL width;
10150 
10151   if (b->verbose) {
10152     printf("  Creating triangular bounding box.\n");
10153   }
10154   /* Find the width (or height, whichever is larger) of the triangulation. */
10155   width = m->xmax - m->xmin;
10156   if (m->ymax - m->ymin > width) {
10157     width = m->ymax - m->ymin;
10158   }
10159   if (width == 0.0) {
10160     width = 1.0;
10161   }
10162   /* Create the vertices of the bounding box. */
10163   m->infvertex1 = (vertex) trimalloc(m->vertices.itembytes);
10164   m->infvertex2 = (vertex) trimalloc(m->vertices.itembytes);
10165   m->infvertex3 = (vertex) trimalloc(m->vertices.itembytes);
10166   m->infvertex1[0] = m->xmin - 50.0 * width;
10167   m->infvertex1[1] = m->ymin - 40.0 * width;
10168   m->infvertex2[0] = m->xmax + 50.0 * width;
10169   m->infvertex2[1] = m->ymin - 40.0 * width;
10170   m->infvertex3[0] = 0.5 * (m->xmin + m->xmax);
10171   m->infvertex3[1] = m->ymax + 60.0 * width;
10172 
10173   /* Create the bounding box. */
10174   maketriangle(m, b, &inftri);
10175   setorg(inftri, m->infvertex1);
10176   setdest(inftri, m->infvertex2);
10177   setapex(inftri, m->infvertex3);
10178   /* Link dummytri to the bounding box so we can always find an */
10179   /*   edge to begin searching (point location) from.           */
10180   m->dummytri[0] = (triangle) inftri.tri;
10181   if (b->verbose > 2) {
10182     printf("  Creating ");
10183     printtriangle(m, b, &inftri);
10184   }
10185 }
10186 
10187 #endif /* not REDUCED */
10188 
10189 /*****************************************************************************/
10190 /*                                                                           */
10191 /*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
10192 /*                markers as appropriate.                                    */
10193 /*                                                                           */
10194 /*  The triangular bounding box has three boundary triangles (one for each   */
10195 /*  side of the bounding box), and a bunch of triangles fanning out from     */
10196 /*  the three bounding box vertices (one triangle for each edge of the       */
10197 /*  convex hull of the inner mesh).  This routine removes these triangles.   */
10198 /*                                                                           */
10199 /*  Returns the number of edges on the convex hull of the triangulation.     */
10200 /*                                                                           */
10201 /*****************************************************************************/
10202 
10203 #ifndef REDUCED
10204 
10205 #ifdef ANSI_DECLARATORS
10206 long removebox(struct mesh *m, struct behavior *b)
10207 #else /* not ANSI_DECLARATORS */
10208 long removebox(m, b)
10209 struct mesh *m;
10210 struct behavior *b;
10211 #endif /* not ANSI_DECLARATORS */
10212 
10213 {
10214   struct otri deadtriangle;
10215   struct otri searchedge;
10216   struct otri checkedge;
10217   struct otri nextedge, finaledge, dissolveedge;
10218   vertex markorg;
10219   long hullsize;
10220   triangle ptr;                         /* Temporary variable used by sym(). */
10221 
10222   if (b->verbose) {
10223     printf("  Removing triangular bounding box.\n");
10224   }
10225   /* Find a boundary triangle. */
10226   nextedge.tri = m->dummytri;
10227   nextedge.orient = 0;
10228   symself(nextedge);
10229   /* Mark a place to stop. */
10230   lprev(nextedge, finaledge);
10231   lnextself(nextedge);
10232   symself(nextedge);
10233   /* Find a triangle (on the boundary of the vertex set) that isn't */
10234   /*   a bounding box triangle.                                     */
10235   lprev(nextedge, searchedge);
10236   symself(searchedge);
10237   /* Check whether nextedge is another boundary triangle */
10238   /*   adjacent to the first one.                        */
10239   lnext(nextedge, checkedge);
10240   symself(checkedge);
10241   if (checkedge.tri == m->dummytri) {
10242     /* Go on to the next triangle.  There are only three boundary   */
10243     /*   triangles, and this next triangle cannot be the third one, */
10244     /*   so it's safe to stop here.                                 */
10245     lprevself(searchedge);
10246     symself(searchedge);
10247   }
10248   /* Find a new boundary edge to search from, as the current search */
10249   /*   edge lies on a bounding box triangle and will be deleted.    */
10250   m->dummytri[0] = encode(searchedge);
10251   hullsize = -2l;
10252   while (!otriequal(nextedge, finaledge)) {
10253     hullsize++;
10254     lprev(nextedge, dissolveedge);
10255     symself(dissolveedge);
10256     /* If not using a PSLG, the vertices should be marked now. */
10257     /*   (If using a PSLG, markhull() will do the job.)        */
10258     if (!b->poly) {
10259       /* Be careful!  One must check for the case where all the input     */
10260       /*   vertices are collinear, and thus all the triangles are part of */
10261       /*   the bounding box.  Otherwise, the setvertexmark() call below   */
10262       /*   will cause a bad pointer reference.                            */
10263       if (dissolveedge.tri != m->dummytri) {
10264         org(dissolveedge, markorg);
10265         if (vertexmark(markorg) == 0) {
10266           setvertexmark(markorg, 1);
10267         }
10268       }
10269     }
10270     /* Disconnect the bounding box triangle from the mesh triangle. */
10271     dissolve(dissolveedge);
10272     lnext(nextedge, deadtriangle);
10273     sym(deadtriangle, nextedge);
10274     /* Get rid of the bounding box triangle. */
10275     triangledealloc(m, deadtriangle.tri);
10276     /* Do we need to turn the corner? */
10277     if (nextedge.tri == m->dummytri) {
10278       /* Turn the corner. */
10279       otricopy(dissolveedge, nextedge);
10280     }
10281   }
10282   triangledealloc(m, finaledge.tri);
10283 
10284   trifree((VOID *) m->infvertex1);  /* Deallocate the bounding box vertices. */
10285   trifree((VOID *) m->infvertex2);
10286   trifree((VOID *) m->infvertex3);
10287 
10288   return hullsize;
10289 }
10290 
10291 #endif /* not REDUCED */
10292 
10293 /*****************************************************************************/
10294 /*                                                                           */
10295 /*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
10296 /*                          inserting vertices.                              */
10297 /*                                                                           */
10298 /*  Returns the number of edges on the convex hull of the triangulation.     */
10299 /*                                                                           */
10300 /*****************************************************************************/
10301 
10302 #ifndef REDUCED
10303 
10304 #ifdef ANSI_DECLARATORS
10305 long incrementaldelaunay(struct mesh *m, struct behavior *b)
10306 #else /* not ANSI_DECLARATORS */
10307 long incrementaldelaunay(m, b)
10308 struct mesh *m;
10309 struct behavior *b;
10310 #endif /* not ANSI_DECLARATORS */
10311 
10312 {
10313   struct otri starttri;
10314   vertex vertexloop;
10315 
10316   /* Create a triangular bounding box. */
10317   boundingbox(m, b);
10318   if (b->verbose) {
10319     printf("  Incrementally inserting vertices.\n");
10320   }
10321   traversalinit(&m->vertices);
10322   vertexloop = vertextraverse(m);
10323   while (vertexloop != (vertex) NULL) {
10324     starttri.tri = m->dummytri;
10325     if (insertvertex(m, b, vertexloop, &starttri, (struct osub *) NULL, 0, 0)
10326         == DUPLICATEVERTEX) {
10327       if (!b->quiet) {
10328         printf(
10329 "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
10330                vertexloop[0], vertexloop[1]);
10331       }
10332       setvertextype(vertexloop, UNDEADVERTEX);
10333       m->undeads++;
10334     }
10335     vertexloop = vertextraverse(m);
10336   }
10337   /* Remove the bounding box. */
10338   return removebox(m, b);
10339 }
10340 
10341 #endif /* not REDUCED */
10342 
10345 /********* Incremental Delaunay triangulation ends here              *********/
10346 
10347 /********* Sweepline Delaunay triangulation begins here              *********/
10351 #ifndef REDUCED
10352 
10353 #ifdef ANSI_DECLARATORS
10354 void eventheapinsert(struct event **heap, int heapsize, struct event *newevent)
10355 #else /* not ANSI_DECLARATORS */
10356 void eventheapinsert(heap, heapsize, newevent)
10357 struct event **heap;
10358 int heapsize;
10359 struct event *newevent;
10360 #endif /* not ANSI_DECLARATORS */
10361 
10362 {
10363   REAL eventx, eventy;
10364   int eventnum;
10365   int parent;
10366   int notdone;
10367 
10368   eventx = newevent->xkey;
10369   eventy = newevent->ykey;
10370   eventnum = heapsize;
10371   notdone = eventnum > 0;
10372   while (notdone) {
10373     parent = (eventnum - 1) >> 1;
10374     if ((heap[parent]->ykey < eventy) ||
10375         ((heap[parent]->ykey == eventy)
10376          && (heap[parent]->xkey <= eventx))) {
10377       notdone = 0;
10378     } else {
10379       heap[eventnum] = heap[parent];
10380       heap[eventnum]->heapposition = eventnum;
10381 
10382       eventnum = parent;
10383       notdone = eventnum > 0;
10384     }
10385   }
10386   heap[eventnum] = newevent;
10387   newevent->heapposition = eventnum;
10388 }
10389 
10390 #endif /* not REDUCED */
10391 
10392 #ifndef REDUCED
10393 
10394 #ifdef ANSI_DECLARATORS
10395 void eventheapify(struct event **heap, int heapsize, int eventnum)
10396 #else /* not ANSI_DECLARATORS */
10397 void eventheapify(heap, heapsize, eventnum)
10398 struct event **heap;
10399 int heapsize;
10400 int eventnum;
10401 #endif /* not ANSI_DECLARATORS */
10402 
10403 {
10404   struct event *thisevent;
10405   REAL eventx, eventy;
10406   int leftchild, rightchild;
10407   int smallest;
10408   int notdone;
10409 
10410   thisevent = heap[eventnum];
10411   eventx = thisevent->xkey;
10412   eventy = thisevent->ykey;
10413   leftchild = 2 * eventnum + 1;
10414   notdone = leftchild < heapsize;
10415   while (notdone) {
10416     if ((heap[leftchild]->ykey < eventy) ||
10417         ((heap[leftchild]->ykey == eventy)
10418          && (heap[leftchild]->xkey < eventx))) {
10419       smallest = leftchild;
10420     } else {
10421       smallest = eventnum;
10422     }
10423     rightchild = leftchild + 1;
10424     if (rightchild < heapsize) {
10425       if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
10426           ((heap[rightchild]->ykey == heap[smallest]->ykey)
10427            && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
10428         smallest = rightchild;
10429       }
10430     }
10431     if (smallest == eventnum) {
10432       notdone = 0;
10433     } else {
10434       heap[eventnum] = heap[smallest];
10435       heap[eventnum]->heapposition = eventnum;
10436       heap[smallest] = thisevent;
10437       thisevent->heapposition = smallest;
10438 
10439       eventnum = smallest;
10440       leftchild = 2 * eventnum + 1;
10441       notdone = leftchild < heapsize;
10442     }
10443   }
10444 }
10445 
10446 #endif /* not REDUCED */
10447 
10448 #ifndef REDUCED
10449 
10450 #ifdef ANSI_DECLARATORS
10451 void eventheapdelete(struct event **heap, int heapsize, int eventnum)
10452 #else /* not ANSI_DECLARATORS */
10453 void eventheapdelete(heap, heapsize, eventnum)
10454 struct event **heap;
10455 int heapsize;
10456 int eventnum;
10457 #endif /* not ANSI_DECLARATORS */
10458 
10459 {
10460   struct event *moveevent;
10461   REAL eventx, eventy;
10462   int parent;
10463   int notdone;
10464 
10465   moveevent = heap[heapsize - 1];
10466   if (eventnum > 0) {
10467     eventx = moveevent->xkey;
10468     eventy = moveevent->ykey;
10469     do {
10470       parent = (eventnum - 1) >> 1;
10471       if ((heap[parent]->ykey < eventy) ||
10472           ((heap[parent]->ykey == eventy)
10473            && (heap[parent]->xkey <= eventx))) {
10474         notdone = 0;
10475       } else {
10476         heap[eventnum] = heap[parent];
10477         heap[eventnum]->heapposition = eventnum;
10478 
10479         eventnum = parent;
10480         notdone = eventnum > 0;
10481       }
10482     } while (notdone);
10483   }
10484   heap[eventnum] = moveevent;
10485   moveevent->heapposition = eventnum;
10486   eventheapify(heap, heapsize - 1, eventnum);
10487 }
10488 
10489 #endif /* not REDUCED */
10490 
10491 #ifndef REDUCED
10492 
10493 #ifdef ANSI_DECLARATORS
10494 void createeventheap(struct mesh *m, struct event ***eventheap,
10495                      struct event **events, struct event **freeevents)
10496 #else /* not ANSI_DECLARATORS */
10497 void createeventheap(m, eventheap, events, freeevents)
10498 struct mesh *m;
10499 struct event ***eventheap;
10500 struct event **events;
10501 struct event **freeevents;
10502 #endif /* not ANSI_DECLARATORS */
10503 
10504 {
10505   vertex thisvertex;
10506   int maxevents;
10507   int i;
10508 
10509   maxevents = (3 * m->invertices) / 2;
10510   *eventheap = (struct event **) trimalloc(maxevents *
10511                                            (int) sizeof(struct event *));
10512   *events = (struct event *) trimalloc(maxevents * (int) sizeof(struct event));
10513   traversalinit(&m->vertices);
10514   for (i = 0; i < m->invertices; i++) {
10515     thisvertex = vertextraverse(m);
10516     (*events)[i].eventptr = (VOID *) thisvertex;
10517     (*events)[i].xkey = thisvertex[0];
10518     (*events)[i].ykey = thisvertex[1];
10519     eventheapinsert(*eventheap, i, *events + i);
10520   }
10521   *freeevents = (struct event *) NULL;
10522   for (i = maxevents - 1; i >= m->invertices; i--) {
10523     (*events)[i].eventptr = (VOID *) *freeevents;
10524     *freeevents = *events + i;
10525   }
10526 }
10527 
10528 #endif /* not REDUCED */
10529 
10530 #ifndef REDUCED
10531 
10532 #ifdef ANSI_DECLARATORS
10533 int rightofhyperbola(struct mesh *m, struct otri *fronttri, vertex newsite)
10534 #else /* not ANSI_DECLARATORS */
10535 int rightofhyperbola(m, fronttri, newsite)
10536 struct mesh *m;
10537 struct otri *fronttri;
10538 vertex newsite;
10539 #endif /* not ANSI_DECLARATORS */
10540 
10541 {
10542   vertex leftvertex, rightvertex;
10543   REAL dxa, dya, dxb, dyb;
10544 
10545   m->hyperbolacount++;
10546 
10547   dest(*fronttri, leftvertex);
10548   apex(*fronttri, rightvertex);
10549   if ((leftvertex[1] < rightvertex[1]) ||
10550       ((leftvertex[1] == rightvertex[1]) &&
10551        (leftvertex[0] < rightvertex[0]))) {
10552     if (newsite[0] >= rightvertex[0]) {
10553       return 1;
10554     }
10555   } else {
10556     if (newsite[0] <= leftvertex[0]) {
10557       return 0;
10558     }
10559   }
10560   dxa = leftvertex[0] - newsite[0];
10561   dya = leftvertex[1] - newsite[1];
10562   dxb = rightvertex[0] - newsite[0];
10563   dyb = rightvertex[1] - newsite[1];
10564   return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
10565 }
10566 
10567 #endif /* not REDUCED */
10568 
10569 #ifndef REDUCED
10570 
10571 #ifdef ANSI_DECLARATORS
10572 REAL circletop(struct mesh *m, vertex pa, vertex pb, vertex pc, REAL ccwabc)
10573 #else /* not ANSI_DECLARATORS */
10574 REAL circletop(m, pa, pb, pc, ccwabc)
10575 struct mesh *m;
10576 vertex pa;
10577 vertex pb;
10578 vertex pc;
10579 REAL ccwabc;
10580 #endif /* not ANSI_DECLARATORS */
10581 
10582 {
10583   REAL xac, yac, xbc, ybc, xab, yab;
10584   REAL aclen2, bclen2, ablen2;
10585 
10586   m->circletopcount++;
10587 
10588   xac = pa[0] - pc[0];
10589   yac = pa[1] - pc[1];
10590   xbc = pb[0] - pc[0];
10591   ybc = pb[1] - pc[1];
10592   xab = pa[0] - pb[0];
10593   yab = pa[1] - pb[1];
10594   aclen2 = xac * xac + yac * yac;
10595   bclen2 = xbc * xbc + ybc * ybc;
10596   ablen2 = xab * xab + yab * yab;
10597   return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
10598                / (2.0 * ccwabc);
10599 }
10600 
10601 #endif /* not REDUCED */
10602 
10603 #ifndef REDUCED
10604 
10605 #ifdef ANSI_DECLARATORS
10606 void check4deadevent(struct otri *checktri, struct event **freeevents,
10607                      struct event **eventheap, int *heapsize)
10608 #else /* not ANSI_DECLARATORS */
10609 void check4deadevent(checktri, freeevents, eventheap, heapsize)
10610 struct otri *checktri;
10611 struct event **freeevents;
10612 struct event **eventheap;
10613 int *heapsize;
10614 #endif /* not ANSI_DECLARATORS */
10615 
10616 {
10617   struct event *deadevent;
10618   vertex eventvertex;
10619   int eventnum;
10620 
10621   org(*checktri, eventvertex);
10622   if (eventvertex != (vertex) NULL) {
10623     deadevent = (struct event *) eventvertex;
10624     eventnum = deadevent->heapposition;
10625     deadevent->eventptr = (VOID *) *freeevents;
10626     *freeevents = deadevent;
10627     eventheapdelete(eventheap, *heapsize, eventnum);
10628     (*heapsize)--;
10629     setorg(*checktri, NULL);
10630   }
10631 }
10632 
10633 #endif /* not REDUCED */
10634 
10635 #ifndef REDUCED
10636 
10637 #ifdef ANSI_DECLARATORS
10638 struct splaynode *splay(struct mesh *m, struct splaynode *splaytree,
10639                         vertex searchpoint, struct otri *searchtri)
10640 #else /* not ANSI_DECLARATORS */
10641 struct splaynode *splay(m, splaytree, searchpoint, searchtri)
10642 struct mesh *m;
10643 struct splaynode *splaytree;
10644 vertex searchpoint;
10645 struct otri *searchtri;
10646 #endif /* not ANSI_DECLARATORS */
10647 
10648 {
10649   struct splaynode *child, *grandchild;
10650   struct splaynode *lefttree, *righttree;
10651   struct splaynode *leftright;
10652   vertex checkvertex;
10653   int rightofroot, rightofchild;
10654 
10655   if (splaytree == (struct splaynode *) NULL) {
10656     return (struct splaynode *) NULL;
10657   }
10658   dest(splaytree->keyedge, checkvertex);
10659   if (checkvertex == splaytree->keydest) {
10660     rightofroot = rightofhyperbola(m, &splaytree->keyedge, searchpoint);
10661     if (rightofroot) {
10662       otricopy(splaytree->keyedge, *searchtri);
10663       child = splaytree->rchild;
10664     } else {
10665       child = splaytree->lchild;
10666     }
10667     if (child == (struct splaynode *) NULL) {
10668       return splaytree;
10669     }
10670     dest(child->keyedge, checkvertex);
10671     if (checkvertex != child->keydest) {
10672       child = splay(m, child, searchpoint, searchtri);
10673       if (child == (struct splaynode *) NULL) {
10674         if (rightofroot) {
10675           splaytree->rchild = (struct splaynode *) NULL;
10676         } else {
10677           splaytree->lchild = (struct splaynode *) NULL;
10678         }
10679         return splaytree;
10680       }
10681     }
10682     rightofchild = rightofhyperbola(m, &child->keyedge, searchpoint);
10683     if (rightofchild) {
10684       otricopy(child->keyedge, *searchtri);
10685       grandchild = splay(m, child->rchild, searchpoint, searchtri);
10686       child->rchild = grandchild;
10687     } else {
10688       grandchild = splay(m, child->lchild, searchpoint, searchtri);
10689       child->lchild = grandchild;
10690     }
10691     if (grandchild == (struct splaynode *) NULL) {
10692       if (rightofroot) {
10693         splaytree->rchild = child->lchild;
10694         child->lchild = splaytree;
10695       } else {
10696         splaytree->lchild = child->rchild;
10697         child->rchild = splaytree;
10698       }
10699       return child;
10700     }
10701     if (rightofchild) {
10702       if (rightofroot) {
10703         splaytree->rchild = child->lchild;
10704         child->lchild = splaytree;
10705       } else {
10706         splaytree->lchild = grandchild->rchild;
10707         grandchild->rchild = splaytree;
10708       }
10709       child->rchild = grandchild->lchild;
10710       grandchild->lchild = child;
10711     } else {
10712       if (rightofroot) {
10713         splaytree->rchild = grandchild->lchild;
10714         grandchild->lchild = splaytree;
10715       } else {
10716         splaytree->lchild = child->rchild;
10717         child->rchild = splaytree;
10718       }
10719       child->lchild = grandchild->rchild;
10720       grandchild->rchild = child;
10721     }
10722     return grandchild;
10723   } else {
10724     lefttree = splay(m, splaytree->lchild, searchpoint, searchtri);
10725     righttree = splay(m, splaytree->rchild, searchpoint, searchtri);
10726 
10727     pooldealloc(&m->splaynodes, (VOID *) splaytree);
10728     if (lefttree == (struct splaynode *) NULL) {
10729       return righttree;
10730     } else if (righttree == (struct splaynode *) NULL) {
10731       return lefttree;
10732     } else if (lefttree->rchild == (struct splaynode *) NULL) {
10733       lefttree->rchild = righttree->lchild;
10734       righttree->lchild = lefttree;
10735       return righttree;
10736     } else if (righttree->lchild == (struct splaynode *) NULL) {
10737       righttree->lchild = lefttree->rchild;
10738       lefttree->rchild = righttree;
10739       return lefttree;
10740     } else {
10741 /*      printf("Holy Toledo!!!\n"); */
10742       leftright = lefttree->rchild;
10743       while (leftright->rchild != (struct splaynode *) NULL) {
10744         leftright = leftright->rchild;
10745       }
10746       leftright->rchild = righttree;
10747       return lefttree;
10748     }
10749   }
10750 }
10751 
10752 #endif /* not REDUCED */
10753 
10754 #ifndef REDUCED
10755 
10756 #ifdef ANSI_DECLARATORS
10757 struct splaynode *splayinsert(struct mesh *m, struct splaynode *splayroot,
10758                               struct otri *newkey, vertex searchpoint)
10759 #else /* not ANSI_DECLARATORS */
10760 struct splaynode *splayinsert(m, splayroot, newkey, searchpoint)
10761 struct mesh *m;
10762 struct splaynode *splayroot;
10763 struct otri *newkey;
10764 vertex searchpoint;
10765 #endif /* not ANSI_DECLARATORS */
10766 
10767 {
10768   struct splaynode *newsplaynode;
10769 
10770   newsplaynode = (struct splaynode *) poolalloc(&m->splaynodes);
10771   otricopy(*newkey, newsplaynode->keyedge);
10772   dest(*newkey, newsplaynode->keydest);
10773   if (splayroot == (struct splaynode *) NULL) {
10774     newsplaynode->lchild = (struct splaynode *) NULL;
10775     newsplaynode->rchild = (struct splaynode *) NULL;
10776   } else if (rightofhyperbola(m, &splayroot->keyedge, searchpoint)) {
10777     newsplaynode->lchild = splayroot;
10778     newsplaynode->rchild = splayroot->rchild;
10779     splayroot->rchild = (struct splaynode *) NULL;
10780   } else {
10781     newsplaynode->lchild = splayroot->lchild;
10782     newsplaynode->rchild = splayroot;
10783     splayroot->lchild = (struct splaynode *) NULL;
10784   }
10785   return newsplaynode;
10786 }
10787 
10788 #endif /* not REDUCED */
10789 
10790 #ifndef REDUCED
10791 
10792 #ifdef ANSI_DECLARATORS
10793 struct splaynode *circletopinsert(struct mesh *m, struct behavior *b,
10794                                   struct splaynode *splayroot,
10795                                   struct otri *newkey,
10796                                   vertex pa, vertex pb, vertex pc, REAL topy)
10797 #else /* not ANSI_DECLARATORS */
10798 struct splaynode *circletopinsert(m, b, splayroot, newkey, pa, pb, pc, topy)
10799 struct mesh *m;
10800 struct behavior *b;
10801 struct splaynode *splayroot;
10802 struct otri *newkey;
10803 vertex pa;
10804 vertex pb;
10805 vertex pc;
10806 REAL topy;
10807 #endif /* not ANSI_DECLARATORS */
10808 
10809 {
10810   REAL ccwabc;
10811   REAL xac, yac, xbc, ybc;
10812   REAL aclen2, bclen2;
10813   REAL searchpoint[2];
10814   struct otri dummytri;
10815 
10816   ccwabc = counterclockwise(m, b, pa, pb, pc);
10817   xac = pa[0] - pc[0];
10818   yac = pa[1] - pc[1];
10819   xbc = pb[0] - pc[0];
10820   ybc = pb[1] - pc[1];
10821   aclen2 = xac * xac + yac * yac;
10822   bclen2 = xbc * xbc + ybc * ybc;
10823   searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
10824   searchpoint[1] = topy;
10825   return splayinsert(m, splay(m, splayroot, (vertex) searchpoint, &dummytri),
10826                      newkey, (vertex) searchpoint);
10827 }
10828 
10829 #endif /* not REDUCED */
10830 
10831 #ifndef REDUCED
10832 
10833 #ifdef ANSI_DECLARATORS
10834 struct splaynode *frontlocate(struct mesh *m, struct splaynode *splayroot,
10835                               struct otri *bottommost, vertex searchvertex,
10836                               struct otri *searchtri, int *farright)
10837 #else /* not ANSI_DECLARATORS */
10838 struct splaynode *frontlocate(m, splayroot, bottommost, searchvertex,
10839                               searchtri, farright)
10840 struct mesh *m;
10841 struct splaynode *splayroot;
10842 struct otri *bottommost;
10843 vertex searchvertex;
10844 struct otri *searchtri;
10845 int *farright;
10846 #endif /* not ANSI_DECLARATORS */
10847 
10848 {
10849   int farrightflag;
10850   triangle ptr;                       /* Temporary variable used by onext(). */
10851 
10852   otricopy(*bottommost, *searchtri);
10853   splayroot = splay(m, splayroot, searchvertex, searchtri);
10854 
10855   farrightflag = 0;
10856   while (!farrightflag && rightofhyperbola(m, searchtri, searchvertex)) {
10857     onextself(*searchtri);
10858     farrightflag = otriequal(*searchtri, *bottommost);
10859   }
10860   *farright = farrightflag;
10861   return splayroot;
10862 }
10863 
10864 #endif /* not REDUCED */
10865 
10866 #ifndef REDUCED
10867 
10868 #ifdef ANSI_DECLARATORS
10869 long sweeplinedelaunay(struct mesh *m, struct behavior *b)
10870 #else /* not ANSI_DECLARATORS */
10871 long sweeplinedelaunay(m, b)
10872 struct mesh *m;
10873 struct behavior *b;
10874 #endif /* not ANSI_DECLARATORS */
10875 
10876 {
10877   struct event **eventheap;
10878   struct event *events;
10879   struct event *freeevents;
10880   struct event *nextevent;
10881   struct event *newevent;
10882   struct splaynode *splayroot;
10883   struct otri bottommost;
10884   struct otri searchtri;
10885   struct otri fliptri;
10886   struct otri lefttri, righttri, farlefttri, farrighttri;
10887   struct otri inserttri;
10888   vertex firstvertex, secondvertex;
10889   vertex nextvertex, lastvertex;
10890   vertex connectvertex;
10891   vertex leftvertex, midvertex, rightvertex;
10892   REAL lefttest, righttest;
10893   int heapsize;
10894   int check4events, farrightflag;
10895   triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
10896 
10897   poolinit(&m->splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK,
10898            SPLAYNODEPERBLOCK, 0);
10899   splayroot = (struct splaynode *) NULL;
10900 
10901   if (b->verbose) {
10902     printf("  Placing vertices in event heap.\n");
10903   }
10904   createeventheap(m, &eventheap, &events, &freeevents);
10905   heapsize = m->invertices;
10906 
10907   if (b->verbose) {
10908     printf("  Forming triangulation.\n");
10909   }
10910   maketriangle(m, b, &lefttri);
10911   maketriangle(m, b, &righttri);
10912   bond(lefttri, righttri);
10913   lnextself(lefttri);
10914   lprevself(righttri);
10915   bond(lefttri, righttri);
10916   lnextself(lefttri);
10917   lprevself(righttri);
10918   bond(lefttri, righttri);
10919   firstvertex = (vertex) eventheap[0]->eventptr;
10920   eventheap[0]->eventptr = (VOID *) freeevents;
10921   freeevents = eventheap[0];
10922   eventheapdelete(eventheap, heapsize, 0);
10923   heapsize--;
10924   do {
10925     if (heapsize == 0) {
10926       printf("Error:  Input vertices are all identical.\n");
10927       triexit(1);
10928     }
10929     secondvertex = (vertex) eventheap[0]->eventptr;
10930     eventheap[0]->eventptr = (VOID *) freeevents;
10931     freeevents = eventheap[0];
10932     eventheapdelete(eventheap, heapsize, 0);
10933     heapsize--;
10934     if ((firstvertex[0] == secondvertex[0]) &&
10935         (firstvertex[1] == secondvertex[1])) {
10936       if (!b->quiet) {
10937         printf(
10938 "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
10939                secondvertex[0], secondvertex[1]);
10940       }
10941       setvertextype(secondvertex, UNDEADVERTEX);
10942       m->undeads++;
10943     }
10944   } while ((firstvertex[0] == secondvertex[0]) &&
10945            (firstvertex[1] == secondvertex[1]));
10946   setorg(lefttri, firstvertex);
10947   setdest(lefttri, secondvertex);
10948   setorg(righttri, secondvertex);
10949   setdest(righttri, firstvertex);
10950   lprev(lefttri, bottommost);
10951   lastvertex = secondvertex;
10952   while (heapsize > 0) {
10953     nextevent = eventheap[0];
10954     eventheapdelete(eventheap, heapsize, 0);
10955     heapsize--;
10956     check4events = 1;
10957     if (nextevent->xkey < m->xmin) {
10958       decode(nextevent->eventptr, fliptri);
10959       oprev(fliptri, farlefttri);
10960       check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
10961       onext(fliptri, farrighttri);
10962       check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
10963 
10964       if (otriequal(farlefttri, bottommost)) {
10965         lprev(fliptri, bottommost);
10966       }
10967       flip(m, b, &fliptri);
10968       setapex(fliptri, NULL);
10969       lprev(fliptri, lefttri);
10970       lnext(fliptri, righttri);
10971       sym(lefttri, farlefttri);
10972 
10973       if (randomnation(SAMPLERATE) == 0) {
10974         symself(fliptri);
10975         dest(fliptri, leftvertex);
10976         apex(fliptri, midvertex);
10977         org(fliptri, rightvertex);
10978         splayroot = circletopinsert(m, b, splayroot, &lefttri, leftvertex,
10979                                     midvertex, rightvertex, nextevent->ykey);
10980       }
10981     } else {
10982       nextvertex = (vertex) nextevent->eventptr;
10983       if ((nextvertex[0] == lastvertex[0]) &&
10984           (nextvertex[1] == lastvertex[1])) {
10985         if (!b->quiet) {
10986           printf(
10987 "Warning:  A duplicate vertex at (%.12g, %.12g) appeared and was ignored.\n",
10988                  nextvertex[0], nextvertex[1]);
10989         }
10990         setvertextype(nextvertex, UNDEADVERTEX);
10991         m->undeads++;
10992         check4events = 0;
10993       } else {
10994         lastvertex = nextvertex;
10995 
10996         splayroot = frontlocate(m, splayroot, &bottommost, nextvertex,
10997                                 &searchtri, &farrightflag);
10998 /*
10999         otricopy(bottommost, searchtri);
11000         farrightflag = 0;
11001         while (!farrightflag && rightofhyperbola(m, &searchtri, nextvertex)) {
11002           onextself(searchtri);
11003           farrightflag = otriequal(searchtri, bottommost);
11004         }
11005 */
11006 
11007         check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
11008 
11009         otricopy(searchtri, farrighttri);
11010         sym(searchtri, farlefttri);
11011         maketriangle(m, b, &lefttri);
11012         maketriangle(m, b, &righttri);
11013         dest(farrighttri, connectvertex);
11014         setorg(lefttri, connectvertex);
11015         setdest(lefttri, nextvertex);
11016         setorg(righttri, nextvertex);
11017         setdest(righttri, connectvertex);
11018         bond(lefttri, righttri);
11019         lnextself(lefttri);
11020         lprevself(righttri);
11021         bond(lefttri, righttri);
11022         lnextself(lefttri);
11023         lprevself(righttri);
11024         bond(lefttri, farlefttri);
11025         bond(righttri, farrighttri);
11026         if (!farrightflag && otriequal(farrighttri, bottommost)) {
11027           otricopy(lefttri, bottommost);
11028         }
11029 
11030         if (randomnation(SAMPLERATE) == 0) {
11031           splayroot = splayinsert(m, splayroot, &lefttri, nextvertex);
11032         } else if (randomnation(SAMPLERATE) == 0) {
11033           lnext(righttri, inserttri);
11034           splayroot = splayinsert(m, splayroot, &inserttri, nextvertex);
11035         }
11036       }
11037     }
11038     nextevent->eventptr = (VOID *) freeevents;
11039     freeevents = nextevent;
11040 
11041     if (check4events) {
11042       apex(farlefttri, leftvertex);
11043       dest(lefttri, midvertex);
11044       apex(lefttri, rightvertex);
11045       lefttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
11046       if (lefttest > 0.0) {
11047         newevent = freeevents;
11048         freeevents = (struct event *) freeevents->eventptr;
11049         newevent->xkey = m->xminextreme;
11050         newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
11051                                    lefttest);
11052         newevent->eventptr = (VOID *) encode(lefttri);
11053         eventheapinsert(eventheap, heapsize, newevent);
11054         heapsize++;
11055         setorg(lefttri, newevent);
11056       }
11057       apex(righttri, leftvertex);
11058       org(righttri, midvertex);
11059       apex(farrighttri, rightvertex);
11060       righttest = counterclockwise(m, b, leftvertex, midvertex, rightvertex);
11061       if (righttest > 0.0) {
11062         newevent = freeevents;
11063         freeevents = (struct event *) freeevents->eventptr;
11064         newevent->xkey = m->xminextreme;
11065         newevent->ykey = circletop(m, leftvertex, midvertex, rightvertex,
11066                                    righttest);
11067         newevent->eventptr = (VOID *) encode(farrighttri);
11068         eventheapinsert(eventheap, heapsize, newevent);
11069         heapsize++;
11070         setorg(farrighttri, newevent);
11071       }
11072     }
11073   }
11074 
11075   pooldeinit(&m->splaynodes);
11076   lprevself(bottommost);
11077   return removeghosts(m, b, &bottommost);
11078 }
11079 
11080 #endif /* not REDUCED */
11081 
11084 /********* Sweepline Delaunay triangulation ends here                *********/
11085 
11086 /********* General mesh construction routines begin here             *********/
11090 /*****************************************************************************/
11091 /*                                                                           */
11092 /*  delaunay()   Form a Delaunay triangulation.                              */
11093 /*                                                                           */
11094 /*****************************************************************************/
11095 
11096 #ifdef ANSI_DECLARATORS
11097 long delaunay(struct mesh *m, struct behavior *b)
11098 #else /* not ANSI_DECLARATORS */
11099 long delaunay(m, b)
11100 struct mesh *m;
11101 struct behavior *b;
11102 #endif /* not ANSI_DECLARATORS */
11103 
11104 {
11105   long hulledges;
11106 
11107   m->eextras = 0;
11108   initializetrisubpools(m, b);
11109 
11110 #ifdef REDUCED
11111   if (!b->quiet) {
11112     printf(
11113       "Constructing Delaunay triangulation by divide-and-conquer method.\n");
11114   }
11115   hulledges = divconqdelaunay(m, b);
11116 #else /* not REDUCED */
11117   if (!b->quiet) {
11118     printf("Constructing Delaunay triangulation ");
11119     if (b->incremental) {
11120       printf("by incremental method.\n");
11121     } else if (b->sweepline) {
11122       printf("by sweepline method.\n");
11123     } else {
11124       printf("by divide-and-conquer method.\n");
11125     }
11126   }
11127   if (b->incremental) {
11128     hulledges = incrementaldelaunay(m, b);
11129   } else if (b->sweepline) {
11130     hulledges = sweeplinedelaunay(m, b);
11131   } else {
11132     hulledges = divconqdelaunay(m, b);
11133   }
11134 #endif /* not REDUCED */
11135 
11136   if (m->triangles.items == 0) {
11137     /* The input vertices were all collinear, so there are no triangles. */
11138     return 0l;
11139   } else {
11140     return hulledges;
11141   }
11142 }
11143 
11144 /*****************************************************************************/
11145 /*                                                                           */
11146 /*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
11147 /*                  .poly) file.  Used when the -r switch is used.           */
11148 /*                                                                           */
11149 /*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
11150 /*  is used, this procedure will also read a .poly file and reconstruct the  */
11151 /*  subsegments of the original mesh.  If the -a switch is used, this        */
11152 /*  procedure will also read an .area file and set a maximum area constraint */
11153 /*  on each triangle.                                                        */
11154 /*                                                                           */
11155 /*  Vertices that are not corners of triangles, such as nodes on edges of    */
11156 /*  subparametric elements, are discarded.                                   */
11157 /*                                                                           */
11158 /*  This routine finds the adjacencies between triangles (and subsegments)   */
11159 /*  by forming one stack of triangles for each vertex.  Each triangle is on  */
11160 /*  three different stacks simultaneously.  Each triangle's subsegment       */
11161 /*  pointers are used to link the items in each stack.  This memory-saving   */
11162 /*  feature makes the code harder to read.  The most important thing to keep */
11163 /*  in mind is that each triangle is removed from a stack precisely when     */
11164 /*  the corresponding pointer is adjusted to refer to a subsegment rather    */
11165 /*  than the next triangle of the stack.                                     */
11166 /*                                                                           */
11167 /*****************************************************************************/
11168 
11169 #ifndef CDT_ONLY
11170 
11171 #ifdef TRILIBRARY
11172 
11173 #ifdef ANSI_DECLARATORS
11174 int reconstruct(struct mesh *m, struct behavior *b, int *trianglelist,
11175                 REAL *triangleattriblist, REAL *trianglearealist,
11176                 int elements, int corners, int attribs,
11177                 int *segmentlist,int *segmentmarkerlist, int numberofsegments)
11178 #else /* not ANSI_DECLARATORS */
11179 int reconstruct(m, b, trianglelist, triangleattriblist, trianglearealist,
11180                 elements, corners, attribs, segmentlist, segmentmarkerlist,
11181                 numberofsegments)
11182 struct mesh *m;
11183 struct behavior *b;
11184 int *trianglelist;
11185 REAL *triangleattriblist;
11186 REAL *trianglearealist;
11187 int elements;
11188 int corners;
11189 int attribs;
11190 int *segmentlist;
11191 int *segmentmarkerlist;
11192 int numberofsegments;
11193 #endif /* not ANSI_DECLARATORS */
11194 
11195 #else /* not TRILIBRARY */
11196 
11197 #ifdef ANSI_DECLARATORS
11198 long reconstruct(struct mesh *m, struct behavior *b, char *elefilename,
11199                  char *areafilename, char* polyfilename, FILE* polyfile)
11200 #else /* not ANSI_DECLARATORS */
11201 long reconstruct(m, b, elefilename, areafilename, polyfilename, polyfile)
11202 struct mesh *m;
11203 struct behavior *b;
11204 char *elefilename;
11205 char *areafilename;
11206 char* polyfilename;
11207 FILE* polyfile;
11208 #endif /* not ANSI_DECLARATORS */
11209 
11210 #endif /* not TRILIBRARY */
11211 
11212 {
11213 #ifdef TRILIBRARY
11214   int vertexindex;
11215   int attribindex;
11216 #else /* not TRILIBRARY */
11217   FILE *elefile;
11218   FILE *areafile;
11219   char inputline[INPUTLINESIZE];
11220   char *stringptr;
11221   int areaelements;
11222 #endif /* not TRILIBRARY */
11223   struct otri triangleloop;
11224   struct otri triangleleft;
11225   struct otri checktri;
11226   struct otri checkleft;
11227   struct otri checkneighbor;
11228   struct osub subsegloop;
11229   triangle *vertexarray;
11230   triangle* prevlink;
11231   triangle nexttri;
11232   vertex tdest, tapex;
11233   vertex checkdest, checkapex;
11234   vertex shorg;
11235   vertex killvertex;
11236   vertex segmentorg, segmentdest;
11237   REAL area;
11238   int corner[3];
11239   int end[2];
11240   int killvertexindex;
11241   int incorners;
11242   int segmentmarkers;
11243   int boundmarker;
11244   int aroundvertex;
11245   long hullsize;
11246   int notfound;
11247   long elementnumber, segmentnumber;
11248   int i, j;
11249   triangle ptr;                         /* Temporary variable used by sym(). */
11250 
11251 #ifdef TRILIBRARY
11252   m->inelements = elements;
11253   incorners = corners;
11254   if (incorners < 3) {
11255     printf("Error:  Triangles must have at least 3 vertices.\n");
11256     triexit(1);
11257   }
11258   m->eextras = attribs;
11259 #else /* not TRILIBRARY */
11260   /* Read the triangles from an .ele file. */
11261   if (!b->quiet) {
11262     printf("Opening %s.\n", elefilename);
11263   }
11264   elefile = fopen(elefilename, "r");
11265   if (elefile == (FILE *) NULL) {
11266     printf("  Error:  Cannot access file %s.\n", elefilename);
11267     triexit(1);
11268   }
11269   /* Read number of triangles, number of vertices per triangle, and */
11270   /*   number of triangle attributes from .ele file.                */
11271   stringptr = readline(inputline, elefile, elefilename);
11272   m->inelements = (int) strtol(stringptr, &stringptr, 0);
11273   stringptr = findfield(stringptr);
11274   if (*stringptr == '\0') {
11275     incorners = 3;
11276   } else {
11277     incorners = (int) strtol(stringptr, &stringptr, 0);
11278     if (incorners < 3) {
11279       printf("Error:  Triangles in %s must have at least 3 vertices.\n",
11280              elefilename);
11281       triexit(1);
11282     }
11283   }
11284   stringptr = findfield(stringptr);
11285   if (*stringptr == '\0') {
11286     m->eextras = 0;
11287   } else {
11288     m->eextras = (int) strtol(stringptr, &stringptr, 0);
11289   }
11290 #endif /* not TRILIBRARY */
11291 
11292   initializetrisubpools(m, b);
11293 
11294   /* Create the triangles. */
11295   for (elementnumber = 1; elementnumber <= m->inelements; elementnumber++) {
11296     maketriangle(m, b, &triangleloop);
11297     /* Mark the triangle as living. */
11298     triangleloop.tri[3] = (triangle) triangleloop.tri;
11299   }
11300 
11301   segmentmarkers = 0;
11302   if (b->poly) {
11303 #ifdef TRILIBRARY
11304     m->insegments = numberofsegments;
11305     segmentmarkers = segmentmarkerlist != (int *) NULL;
11306 #else /* not TRILIBRARY */
11307     /* Read number of segments and number of segment */
11308     /*   boundary markers from .poly file.           */
11309     stringptr = readline(inputline, polyfile, b->inpolyfilename);
11310     m->insegments = (int) strtol(stringptr, &stringptr, 0);
11311     stringptr = findfield(stringptr);
11312     if (*stringptr != '\0') {
11313       segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
11314     }
11315 #endif /* not TRILIBRARY */
11316 
11317     /* Create the subsegments. */
11318     for (segmentnumber = 1; segmentnumber <= m->insegments; segmentnumber++) {
11319       makesubseg(m, &subsegloop);
11320       /* Mark the subsegment as living. */
11321       subsegloop.ss[2] = (subseg) subsegloop.ss;
11322     }
11323   }
11324 
11325 #ifdef TRILIBRARY
11326   vertexindex = 0;
11327   attribindex = 0;
11328 #else /* not TRILIBRARY */
11329   if (b->vararea) {
11330     /* Open an .area file, check for consistency with the .ele file. */
11331     if (!b->quiet) {
11332       printf("Opening %s.\n", areafilename);
11333     }
11334     areafile = fopen(areafilename, "r");
11335     if (areafile == (FILE *) NULL) {
11336       printf("  Error:  Cannot access file %s.\n", areafilename);
11337       triexit(1);
11338     }
11339     stringptr = readline(inputline, areafile, areafilename);
11340     areaelements = (int) strtol(stringptr, &stringptr, 0);
11341     if (areaelements != m->inelements) {
11342       printf("Error:  %s and %s disagree on number of triangles.\n",
11343              elefilename, areafilename);
11344       triexit(1);
11345     }
11346   }
11347 #endif /* not TRILIBRARY */
11348 
11349   if (!b->quiet) {
11350     printf("Reconstructing mesh.\n");
11351   }
11352   /* Allocate a temporary array that maps each vertex to some adjacent */
11353   /*   triangle.  I took care to allocate all the permanent memory for */
11354   /*   triangles and subsegments first.                                */
11355   vertexarray = (triangle *) trimalloc(m->vertices.items *
11356                                        (int) sizeof(triangle));
11357   /* Each vertex is initially unrepresented. */
11358   for (i = 0; i < m->vertices.items; i++) {
11359     vertexarray[i] = (triangle) m->dummytri;
11360   }
11361 
11362   if (b->verbose) {
11363     printf("  Assembling triangles.\n");
11364   }
11365   /* Read the triangles from the .ele file, and link */
11366   /*   together those that share an edge.            */
11367   traversalinit(&m->triangles);
11368   triangleloop.tri = triangletraverse(m);
11369   elementnumber = b->firstnumber;
11370   while (triangleloop.tri != (triangle *) NULL) {
11371 #ifdef TRILIBRARY
11372     /* Copy the triangle's three corners. */
11373     for (j = 0; j < 3; j++) {
11374       corner[j] = trianglelist[vertexindex++];
11375       if ((corner[j] < b->firstnumber) ||
11376           (corner[j] >= b->firstnumber + m->invertices)) {
11377         printf("Error:  Triangle %ld has an invalid vertex index.\n",
11378                elementnumber);
11379         triexit(1);
11380       }
11381     }
11382 #else /* not TRILIBRARY */
11383     /* Read triangle number and the triangle's three corners. */
11384     stringptr = readline(inputline, elefile, elefilename);
11385     for (j = 0; j < 3; j++) {
11386       stringptr = findfield(stringptr);
11387       if (*stringptr == '\0') {
11388         printf("Error:  Triangle %ld is missing vertex %d in %s.\n",
11389                elementnumber, j + 1, elefilename);
11390         triexit(1);
11391       } else {
11392         corner[j] = (int) strtol(stringptr, &stringptr, 0);
11393         if ((corner[j] < b->firstnumber) ||
11394             (corner[j] >= b->firstnumber + m->invertices)) {
11395           printf("Error:  Triangle %ld has an invalid vertex index.\n",
11396                  elementnumber);
11397           triexit(1);
11398         }
11399       }
11400     }
11401 #endif /* not TRILIBRARY */
11402 
11403     /* Find out about (and throw away) extra nodes. */
11404     for (j = 3; j < incorners; j++) {
11405 #ifdef TRILIBRARY
11406       killvertexindex = trianglelist[vertexindex++];
11407 #else /* not TRILIBRARY */
11408       stringptr = findfield(stringptr);
11409       if (*stringptr != '\0') {
11410         killvertexindex = (int) strtol(stringptr, &stringptr, 0);
11411 #endif /* not TRILIBRARY */
11412         if ((killvertexindex >= b->firstnumber) &&
11413             (killvertexindex < b->firstnumber + m->invertices)) {
11414           /* Delete the non-corner vertex if it's not already deleted. */
11415           killvertex = getvertex(m, b, killvertexindex);
11416           if (vertextype(killvertex) != DEADVERTEX) {
11417             vertexdealloc(m, killvertex);
11418           }
11419         }
11420 #ifndef TRILIBRARY
11421       }
11422 #endif /* not TRILIBRARY */
11423     }
11424 
11425     /* Read the triangle's attributes. */
11426     for (j = 0; j < m->eextras; j++) {
11427 #ifdef TRILIBRARY
11428       setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
11429 #else /* not TRILIBRARY */
11430       stringptr = findfield(stringptr);
11431       if (*stringptr == '\0') {
11432         setelemattribute(triangleloop, j, 0);
11433       } else {
11434         setelemattribute(triangleloop, j,
11435                          (REAL) strtod(stringptr, &stringptr));
11436       }
11437 #endif /* not TRILIBRARY */
11438     }
11439 
11440     if (b->vararea) {
11441 #ifdef TRILIBRARY
11442       area = trianglearealist[elementnumber - b->firstnumber];
11443 #else /* not TRILIBRARY */
11444       /* Read an area constraint from the .area file. */
11445       stringptr = readline(inputline, areafile, areafilename);
11446       stringptr = findfield(stringptr);
11447       if (*stringptr == '\0') {
11448         area = -1.0;                      /* No constraint on this triangle. */
11449       } else {
11450         area = (REAL) strtod(stringptr, &stringptr);
11451       }
11452 #endif /* not TRILIBRARY */
11453       setareabound(triangleloop, area);
11454     }
11455 
11456     /* Set the triangle's vertices. */
11457     triangleloop.orient = 0;
11458     setorg(triangleloop, getvertex(m, b, corner[0]));
11459     setdest(triangleloop, getvertex(m, b, corner[1]));
11460     setapex(triangleloop, getvertex(m, b, corner[2]));
11461     /* Try linking the triangle to others that share these vertices. */
11462     for (triangleloop.orient = 0; triangleloop.orient < 3;
11463          triangleloop.orient++) {
11464       /* Take the number for the origin of triangleloop. */
11465       aroundvertex = corner[triangleloop.orient];
11466       /* Look for other triangles having this vertex. */
11467       nexttri = vertexarray[aroundvertex - b->firstnumber];
11468       /* Link the current triangle to the next one in the stack. */
11469       triangleloop.tri[6 + triangleloop.orient] = nexttri;
11470       /* Push the current triangle onto the stack. */
11471       vertexarray[aroundvertex - b->firstnumber] = encode(triangleloop);
11472       decode(nexttri, checktri);
11473       if (checktri.tri != m->dummytri) {
11474         dest(triangleloop, tdest);
11475         apex(triangleloop, tapex);
11476         /* Look for other triangles that share an edge. */
11477         do {
11478           dest(checktri, checkdest);
11479           apex(checktri, checkapex);
11480           if (tapex == checkdest) {
11481             /* The two triangles share an edge; bond them together. */
11482             lprev(triangleloop, triangleleft);
11483             bond(triangleleft, checktri);
11484           }
11485           if (tdest == checkapex) {
11486             /* The two triangles share an edge; bond them together. */
11487             lprev(checktri, checkleft);
11488             bond(triangleloop, checkleft);
11489           }
11490           /* Find the next triangle in the stack. */
11491           nexttri = checktri.tri[6 + checktri.orient];
11492           decode(nexttri, checktri);
11493         } while (checktri.tri != m->dummytri);
11494       }
11495     }
11496     triangleloop.tri = triangletraverse(m);
11497     elementnumber++;
11498   }
11499 
11500 #ifdef TRILIBRARY
11501   vertexindex = 0;
11502 #else /* not TRILIBRARY */
11503   fclose(elefile);
11504   if (b->vararea) {
11505     fclose(areafile);
11506   }
11507 #endif /* not TRILIBRARY */
11508 
11509   hullsize = 0;                      /* Prepare to count the boundary edges. */
11510   if (b->poly) {
11511     if (b->verbose) {
11512       printf("  Marking segments in triangulation.\n");
11513     }
11514     /* Read the segments from the .poly file, and link them */
11515     /*   to their neighboring triangles.                    */
11516     boundmarker = 0;
11517     traversalinit(&m->subsegs);
11518     subsegloop.ss = subsegtraverse(m);
11519     segmentnumber = b->firstnumber;
11520     while (subsegloop.ss != (subseg *) NULL) {
11521 #ifdef TRILIBRARY
11522       end[0] = segmentlist[vertexindex++];
11523       end[1] = segmentlist[vertexindex++];
11524       if (segmentmarkers) {
11525         boundmarker = segmentmarkerlist[segmentnumber - b->firstnumber];
11526       }
11527 #else /* not TRILIBRARY */
11528       /* Read the endpoints of each segment, and possibly a boundary marker. */
11529       stringptr = readline(inputline, polyfile, b->inpolyfilename);
11530       /* Skip the first (segment number) field. */
11531       stringptr = findfield(stringptr);
11532       if (*stringptr == '\0') {
11533         printf("Error:  Segment %ld has no endpoints in %s.\n", segmentnumber,
11534                polyfilename);
11535         triexit(1);
11536       } else {
11537         end[0] = (int) strtol(stringptr, &stringptr, 0);
11538       }
11539       stringptr = findfield(stringptr);
11540       if (*stringptr == '\0') {
11541         printf("Error:  Segment %ld is missing its second endpoint in %s.\n",
11542                segmentnumber, polyfilename);
11543         triexit(1);
11544       } else {
11545         end[1] = (int) strtol(stringptr, &stringptr, 0);
11546       }
11547       if (segmentmarkers) {
11548         stringptr = findfield(stringptr);
11549         if (*stringptr == '\0') {
11550           boundmarker = 0;
11551         } else {
11552           boundmarker = (int) strtol(stringptr, &stringptr, 0);
11553         }
11554       }
11555 #endif /* not TRILIBRARY */
11556       for (j = 0; j < 2; j++) {
11557         if ((end[j] < b->firstnumber) ||
11558             (end[j] >= b->firstnumber + m->invertices)) {
11559           printf("Error:  Segment %ld has an invalid vertex index.\n",
11560                  segmentnumber);
11561           triexit(1);
11562         }
11563       }
11564 
11565       /* set the subsegment's vertices. */
11566       subsegloop.ssorient = 0;
11567       segmentorg = getvertex(m, b, end[0]);
11568       segmentdest = getvertex(m, b, end[1]);
11569       setsorg(subsegloop, segmentorg);
11570       setsdest(subsegloop, segmentdest);
11571       setsegorg(subsegloop, segmentorg);
11572       setsegdest(subsegloop, segmentdest);
11573       setmark(subsegloop, boundmarker);
11574       /* Try linking the subsegment to triangles that share these vertices. */
11575       for (subsegloop.ssorient = 0; subsegloop.ssorient < 2;
11576            subsegloop.ssorient++) {
11577         /* Take the number for the destination of subsegloop. */
11578         aroundvertex = end[1 - subsegloop.ssorient];
11579         /* Look for triangles having this vertex. */
11580         prevlink = &vertexarray[aroundvertex - b->firstnumber];
11581         nexttri = vertexarray[aroundvertex - b->firstnumber];
11582         decode(nexttri, checktri);
11583         sorg(subsegloop, shorg);
11584         notfound = 1;
11585         /* Look for triangles having this edge.  Note that I'm only       */
11586         /*   comparing each triangle's destination with the subsegment;   */
11587         /*   each triangle's apex is handled through a different vertex.  */
11588         /*   Because each triangle appears on three vertices' lists, each */
11589         /*   occurrence of a triangle on a list can (and does) represent  */
11590         /*   an edge.  In this way, most edges are represented twice, and */
11591         /*   every triangle-subsegment bond is represented once.          */
11592         while (notfound && (checktri.tri != m->dummytri)) {
11593           dest(checktri, checkdest);
11594           if (shorg == checkdest) {
11595             /* We have a match.  Remove this triangle from the list. */
11596            * prevlink = checktri.tri[6 + checktri.orient];
11597             /* Bond the subsegment to the triangle. */
11598             tsbond(checktri, subsegloop);
11599             /* Check if this is a boundary edge. */
11600             sym(checktri, checkneighbor);
11601             if (checkneighbor.tri == m->dummytri) {
11602               /* The next line doesn't insert a subsegment (because there's */
11603               /*   already one there), but it sets the boundary markers of  */
11604               /*   the existing subsegment and its vertices.                */
11605               insertsubseg(m, b, &checktri, 1);
11606               hullsize++;
11607             }
11608             notfound = 0;
11609           }
11610           /* Find the next triangle in the stack. */
11611           prevlink = &checktri.tri[6 + checktri.orient];
11612           nexttri = checktri.tri[6 + checktri.orient];
11613           decode(nexttri, checktri);
11614         }
11615       }
11616       subsegloop.ss = subsegtraverse(m);
11617       segmentnumber++;
11618     }
11619   }
11620 
11621   /* Mark the remaining edges as not being attached to any subsegment. */
11622   /* Also, count the (yet uncounted) boundary edges.                   */
11623   for (i = 0; i < m->vertices.items; i++) {
11624     /* Search the stack of triangles adjacent to a vertex. */
11625     nexttri = vertexarray[i];
11626     decode(nexttri, checktri);
11627     while (checktri.tri != m->dummytri) {
11628       /* Find the next triangle in the stack before this */
11629       /*   information gets overwritten.                 */
11630       nexttri = checktri.tri[6 + checktri.orient];
11631       /* No adjacent subsegment.  (This overwrites the stack info.) */
11632       tsdissolve(checktri);
11633       sym(checktri, checkneighbor);
11634       if (checkneighbor.tri == m->dummytri) {
11635         insertsubseg(m, b, &checktri, 1);
11636         hullsize++;
11637       }
11638       decode(nexttri, checktri);
11639     }
11640   }
11641 
11642   trifree((VOID *) vertexarray);
11643   return hullsize;
11644 }
11645 
11646 #endif /* not CDT_ONLY */
11647 
11650 /********* General mesh construction routines end here               *********/
11651 
11652 /********* Segment insertion begins here                             *********/
11656 /*****************************************************************************/
11657 /*                                                                           */
11658 /*  finddirection()   Find the first triangle on the path from one point     */
11659 /*                    to another.                                            */
11660 /*                                                                           */
11661 /*  Finds the triangle that intersects a line segment drawn from the         */
11662 /*  origin of `searchtri' to the point `searchpoint', and returns the result */
11663 /*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
11664 /*  the triangle returned may differ from the one passed in.  This routine   */
11665 /*  is used to find the direction to move in to get from one point to        */
11666 /*  another.                                                                 */
11667 /*                                                                           */
11668 /*  The return value notes whether the destination or apex of the found      */
11669 /*  triangle is collinear with the two points in question.                   */
11670 /*                                                                           */
11671 /*****************************************************************************/
11672 
11673 #ifdef ANSI_DECLARATORS
11674 enum finddirectionresult finddirection(struct mesh *m, struct behavior *b,
11675                                        struct otri *searchtri,
11676                                        vertex searchpoint)
11677 #else /* not ANSI_DECLARATORS */
11678 enum finddirectionresult finddirection(m, b, searchtri, searchpoint)
11679 struct mesh *m;
11680 struct behavior *b;
11681 struct otri *searchtri;
11682 vertex searchpoint;
11683 #endif /* not ANSI_DECLARATORS */
11684 
11685 {
11686   struct otri checktri;
11687   vertex startvertex;
11688   vertex leftvertex, rightvertex;
11689   REAL leftccw, rightccw;
11690   int leftflag, rightflag;
11691   triangle ptr;           /* Temporary variable used by onext() and oprev(). */
11692 
11693   org(*searchtri, startvertex);
11694   dest(*searchtri, rightvertex);
11695   apex(*searchtri, leftvertex);
11696   /* Is `searchpoint' to the left? */
11697   leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
11698   leftflag = leftccw > 0.0;
11699   /* Is `searchpoint' to the right? */
11700   rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
11701   rightflag = rightccw > 0.0;
11702   if (leftflag && rightflag) {
11703     /* `searchtri' faces directly away from `searchpoint'.  We could go left */
11704     /*   or right.  Ask whether it's a triangle or a boundary on the left.   */
11705     onext(*searchtri, checktri);
11706     if (checktri.tri == m->dummytri) {
11707       leftflag = 0;
11708     } else {
11709       rightflag = 0;
11710     }
11711   }
11712   while (leftflag) {
11713     /* Turn left until satisfied. */
11714     onextself(*searchtri);
11715     if (searchtri->tri == m->dummytri) {
11716       printf("Internal error in finddirection():  Unable to find a\n");
11717       printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
11718              startvertex[1]);
11719       printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
11720       internalerror();
11721     }
11722     apex(*searchtri, leftvertex);
11723     rightccw = leftccw;
11724     leftccw = counterclockwise(m, b, searchpoint, startvertex, leftvertex);
11725     leftflag = leftccw > 0.0;
11726   }
11727   while (rightflag) {
11728     /* Turn right until satisfied. */
11729     oprevself(*searchtri);
11730     if (searchtri->tri == m->dummytri) {
11731       printf("Internal error in finddirection():  Unable to find a\n");
11732       printf("  triangle leading from (%.12g, %.12g) to", startvertex[0],
11733              startvertex[1]);
11734       printf("  (%.12g, %.12g).\n", searchpoint[0], searchpoint[1]);
11735       internalerror();
11736     }
11737     dest(*searchtri, rightvertex);
11738     leftccw = rightccw;
11739     rightccw = counterclockwise(m, b, startvertex, searchpoint, rightvertex);
11740     rightflag = rightccw > 0.0;
11741   }
11742   if (leftccw == 0.0) {
11743     return LEFTCOLLINEAR;
11744   } else if (rightccw == 0.0) {
11745     return RIGHTCOLLINEAR;
11746   } else {
11747     return WITHIN;
11748   }
11749 }
11750 
11751 /*****************************************************************************/
11752 /*                                                                           */
11753 /*  segmentintersection()   Find the intersection of an existing segment     */
11754 /*                          and a segment that is being inserted.  Insert    */
11755 /*                          a vertex at the intersection, splitting an       */
11756 /*                          existing subsegment.                             */
11757 /*                                                                           */
11758 /*  The segment being inserted connects the apex of splittri to endpoint2.   */
11759 /*  splitsubseg is the subsegment being split, and MUST adjoin splittri.     */
11760 /*  Hence, endpoints of the subsegment being split are the origin and        */
11761 /*  destination of splittri.                                                 */
11762 /*                                                                           */
11763 /*  On completion, splittri is a handle having the newly inserted            */
11764 /*  intersection point as its origin, and endpoint1 as its destination.      */
11765 /*                                                                           */
11766 /*****************************************************************************/
11767 
11768 #ifdef ANSI_DECLARATORS
11769 void segmentintersection(struct mesh *m, struct behavior *b,
11770                          struct otri *splittri, struct osub *splitsubseg,
11771                          vertex endpoint2)
11772 #else /* not ANSI_DECLARATORS */
11773 void segmentintersection(m, b, splittri, splitsubseg, endpoint2)
11774 struct mesh *m;
11775 struct behavior *b;
11776 struct otri *splittri;
11777 struct osub *splitsubseg;
11778 vertex endpoint2;
11779 #endif /* not ANSI_DECLARATORS */
11780 
11781 {
11782   struct osub opposubseg;
11783   vertex endpoint1;
11784   vertex torg, tdest;
11785   vertex leftvertex, rightvertex;
11786   vertex newvertex;
11787   enum insertvertexresult success;
11788   //enum finddirectionresult collinear; // commented out to get gcc4.6 working
11789   REAL ex, ey;
11790   REAL tx, ty;
11791   REAL etx, ety;
11792   REAL split, denom;
11793   int i;
11794   triangle ptr;                       /* Temporary variable used by onext(). */
11795   subseg sptr;                        /* Temporary variable used by snext(). */
11796 
11797   /* Find the other three segment endpoints. */
11798   apex(*splittri, endpoint1);
11799   org(*splittri, torg);
11800   dest(*splittri, tdest);
11801   /* Segment intersection formulae; see the Antonio reference. */
11802   tx = tdest[0] - torg[0];
11803   ty = tdest[1] - torg[1];
11804   ex = endpoint2[0] - endpoint1[0];
11805   ey = endpoint2[1] - endpoint1[1];
11806   etx = torg[0] - endpoint2[0];
11807   ety = torg[1] - endpoint2[1];
11808   denom = ty * ex - tx * ey;
11809   if (denom == 0.0) {
11810     printf("Internal error in segmentintersection():");
11811     printf("  Attempt to find intersection of parallel segments.\n");
11812     internalerror();
11813   }
11814   split = (ey * etx - ex * ety) / denom;
11815   /* Create the new vertex. */
11816   newvertex = (vertex) poolalloc(&m->vertices);
11817   /* Interpolate its coordinate and attributes. */
11818   for (i = 0; i < 2 + m->nextras; i++) {
11819     newvertex[i] = torg[i] + split * (tdest[i] - torg[i]);
11820   }
11821   setvertexmark(newvertex, mark(*splitsubseg));
11822   setvertextype(newvertex, INPUTVERTEX);
11823   if (b->verbose > 1) {
11824     printf(
11825   "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
11826            torg[0], torg[1], tdest[0], tdest[1], newvertex[0], newvertex[1]);
11827   }
11828   /* Insert the intersection vertex.  This should always succeed. */
11829   success = insertvertex(m, b, newvertex, splittri, splitsubseg, 0, 0);
11830   if (success != SUCCESSFULVERTEX) {
11831     printf("Internal error in segmentintersection():\n");
11832     printf("  Failure to split a segment.\n");
11833     internalerror();
11834   }
11835   /* Record a triangle whose origin is the new vertex. */
11836   setvertex2tri(newvertex, encode(*splittri));
11837   if (m->steinerleft > 0) {
11838     m->steinerleft--;
11839   }
11840 
11841   /* Divide the segment into two, and correct the segment endpoints. */
11842   ssymself(*splitsubseg);
11843   spivot(*splitsubseg, opposubseg);
11844   sdissolve(*splitsubseg);
11845   sdissolve(opposubseg);
11846   do {
11847     setsegorg(*splitsubseg, newvertex);
11848     snextself(*splitsubseg);
11849   } while (splitsubseg->ss != m->dummysub);
11850   do {
11851     setsegorg(opposubseg, newvertex);
11852     snextself(opposubseg);
11853   } while (opposubseg.ss != m->dummysub);
11854 
11855   /* Inserting the vertex may have caused edge flips.  We wish to rediscover */
11856   /*   the edge connecting endpoint1 to the new intersection vertex.         */
11857   finddirection(m, b, splittri, endpoint1); // "collinear =" commented out to get gcc4.6 working
11858   dest(*splittri, rightvertex);
11859   apex(*splittri, leftvertex);
11860   if ((leftvertex[0] == endpoint1[0]) && (leftvertex[1] == endpoint1[1])) {
11861     onextself(*splittri);
11862   } else if ((rightvertex[0] != endpoint1[0]) ||
11863              (rightvertex[1] != endpoint1[1])) {
11864     printf("Internal error in segmentintersection():\n");
11865     printf("  Topological inconsistency after splitting a segment.\n");
11866     internalerror();
11867   }
11868   /* `splittri' should have destination endpoint1. */
11869 }
11870 
11871 /*****************************************************************************/
11872 /*                                                                           */
11873 /*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
11874 /*                   to another, and check for completion (reaching the      */
11875 /*                   second endpoint), a collinear vertex, or the            */
11876 /*                   intersection of two segments.                           */
11877 /*                                                                           */
11878 /*  Returns one if the entire segment is successfully inserted, and zero if  */
11879 /*  the job must be finished by conformingedge() or constrainededge().       */
11880 /*                                                                           */
11881 /*  If the first triangle on the path has the second endpoint as its         */
11882 /*  destination or apex, a subsegment is inserted and the job is done.       */
11883 /*                                                                           */
11884 /*  If the first triangle on the path has a destination or apex that lies on */
11885 /*  the segment, a subsegment is inserted connecting the first endpoint to   */
11886 /*  the collinear vertex, and the search is continued from the collinear     */
11887 /*  vertex.                                                                  */
11888 /*                                                                           */
11889 /*  If the first triangle on the path has a subsegment opposite its origin,  */
11890 /*  then there is a segment that intersects the segment being inserted.      */
11891 /*  Their intersection vertex is inserted, splitting the subsegment.         */
11892 /*                                                                           */
11893 /*****************************************************************************/
11894 
11895 #ifdef ANSI_DECLARATORS
11896 int scoutsegment(struct mesh *m, struct behavior *b, struct otri *searchtri,
11897                  vertex endpoint2, int newmark)
11898 #else /* not ANSI_DECLARATORS */
11899 int scoutsegment(m, b, searchtri, endpoint2, newmark)
11900 struct mesh *m;
11901 struct behavior *b;
11902 struct otri *searchtri;
11903 vertex endpoint2;
11904 int newmark;
11905 #endif /* not ANSI_DECLARATORS */
11906 
11907 {
11908   struct otri crosstri;
11909   struct osub crosssubseg;
11910   vertex leftvertex, rightvertex;
11911   enum finddirectionresult collinear;
11912   subseg sptr;                      /* Temporary variable used by tspivot(). */
11913 
11914   collinear = finddirection(m, b, searchtri, endpoint2);
11915   dest(*searchtri, rightvertex);
11916   apex(*searchtri, leftvertex);
11917   if (((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) ||
11918       ((rightvertex[0] == endpoint2[0]) && (rightvertex[1] == endpoint2[1]))) {
11919     /* The segment is already an edge in the mesh. */
11920     if ((leftvertex[0] == endpoint2[0]) && (leftvertex[1] == endpoint2[1])) {
11921       lprevself(*searchtri);
11922     }
11923     /* Insert a subsegment, if there isn't already one there. */
11924     insertsubseg(m, b, searchtri, newmark);
11925     return 1;
11926   } else if (collinear == LEFTCOLLINEAR) {
11927     /* We've collided with a vertex between the segment's endpoints. */
11928     /* Make the collinear vertex be the triangle's origin. */
11929     lprevself(*searchtri);
11930     insertsubseg(m, b, searchtri, newmark);
11931     /* Insert the remainder of the segment. */
11932     return scoutsegment(m, b, searchtri, endpoint2, newmark);
11933   } else if (collinear == RIGHTCOLLINEAR) {
11934     /* We've collided with a vertex between the segment's endpoints. */
11935     insertsubseg(m, b, searchtri, newmark);
11936     /* Make the collinear vertex be the triangle's origin. */
11937     lnextself(*searchtri);
11938     /* Insert the remainder of the segment. */
11939     return scoutsegment(m, b, searchtri, endpoint2, newmark);
11940   } else {
11941     lnext(*searchtri, crosstri);
11942     tspivot(crosstri, crosssubseg);
11943     /* Check for a crossing segment. */
11944     if (crosssubseg.ss == m->dummysub) {
11945       return 0;
11946     } else {
11947       /* Insert a vertex at the intersection. */
11948       segmentintersection(m, b, &crosstri, &crosssubseg, endpoint2);
11949       otricopy(crosstri, *searchtri);
11950       insertsubseg(m, b, searchtri, newmark);
11951       /* Insert the remainder of the segment. */
11952       return scoutsegment(m, b, searchtri, endpoint2, newmark);
11953     }
11954   }
11955 }
11956 
11957 /*****************************************************************************/
11958 /*                                                                           */
11959 /*  conformingedge()   Force a segment into a conforming Delaunay            */
11960 /*                     triangulation by inserting a vertex at its midpoint,  */
11961 /*                     and recursively forcing in the two half-segments if   */
11962 /*                     necessary.                                            */
11963 /*                                                                           */
11964 /*  Generates a sequence of subsegments connecting `endpoint1' to            */
11965 /*  `endpoint2'.  `newmark' is the boundary marker of the segment, assigned  */
11966 /*  to each new splitting vertex and subsegment.                             */
11967 /*                                                                           */
11968 /*  Note that conformingedge() does not always maintain the conforming       */
11969 /*  Delaunay property.  Once inserted, segments are locked into place;       */
11970 /*  vertices inserted later (to force other segments in) may render these    */
11971 /*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
11972 /*  restored by enforcequality() by splitting encroached subsegments.        */
11973 /*                                                                           */
11974 /*****************************************************************************/
11975 
11976 #ifndef REDUCED
11977 #ifndef CDT_ONLY
11978 
11979 #ifdef ANSI_DECLARATORS
11980 void conformingedge(struct mesh *m, struct behavior *b,
11981                     vertex endpoint1, vertex endpoint2, int newmark)
11982 #else /* not ANSI_DECLARATORS */
11983 void conformingedge(m, b, endpoint1, endpoint2, newmark)
11984 struct mesh *m;
11985 struct behavior *b;
11986 vertex endpoint1;
11987 vertex endpoint2;
11988 int newmark;
11989 #endif /* not ANSI_DECLARATORS */
11990 
11991 {
11992   struct otri searchtri1, searchtri2;
11993   struct osub brokensubseg;
11994   vertex newvertex;
11995   vertex midvertex1, midvertex2;
11996   enum insertvertexresult success;
11997   int i;
11998   subseg sptr;                      /* Temporary variable used by tspivot(). */
11999 
12000   if (b->verbose > 2) {
12001     printf("Forcing segment into triangulation by recursive splitting:\n");
12002     printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
12003            endpoint2[0], endpoint2[1]);
12004   }
12005   /* Create a new vertex to insert in the middle of the segment. */
12006   newvertex = (vertex) poolalloc(&m->vertices);
12007   /* Interpolate coordinates and attributes. */
12008   for (i = 0; i < 2 + m->nextras; i++) {
12009     newvertex[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
12010   }
12011   setvertexmark(newvertex, newmark);
12012   setvertextype(newvertex, SEGMENTVERTEX);
12013   /* No known triangle to search from. */
12014   searchtri1.tri = m->dummytri;
12015   /* Attempt to insert the new vertex. */
12016   success = insertvertex(m, b, newvertex, &searchtri1, (struct osub *) NULL,
12017                          0, 0);
12018   if (success == DUPLICATEVERTEX) {
12019     if (b->verbose > 2) {
12020       printf("  Segment intersects existing vertex (%.12g, %.12g).\n",
12021              newvertex[0], newvertex[1]);
12022     }
12023     /* Use the vertex that's already there. */
12024     vertexdealloc(m, newvertex);
12025     org(searchtri1, newvertex);
12026   } else {
12027     if (success == VIOLATINGVERTEX) {
12028       if (b->verbose > 2) {
12029         printf("  Two segments intersect at (%.12g, %.12g).\n",
12030                newvertex[0], newvertex[1]);
12031       }
12032       /* By fluke, we've landed right on another segment.  Split it. */
12033       tspivot(searchtri1, brokensubseg);
12034       success = insertvertex(m, b, newvertex, &searchtri1, &brokensubseg,
12035                              0, 0);
12036       if (success != SUCCESSFULVERTEX) {
12037         printf("Internal error in conformingedge():\n");
12038         printf("  Failure to split a segment.\n");
12039         internalerror();
12040       }
12041     }
12042     /* The vertex has been inserted successfully. */
12043     if (m->steinerleft > 0) {
12044       m->steinerleft--;
12045     }
12046   }
12047   otricopy(searchtri1, searchtri2);
12048   /* `searchtri1' and `searchtri2' are fastened at their origins to         */
12049   /*   `newvertex', and will be directed toward `endpoint1' and `endpoint2' */
12050   /*   respectively.  First, we must get `searchtri2' out of the way so it  */
12051   /*   won't be invalidated during the insertion of the first half of the   */
12052   /*   segment.                                                             */
12053   finddirection(m, b, &searchtri2, endpoint2);
12054   if (!scoutsegment(m, b, &searchtri1, endpoint1, newmark)) {
12055     /* The origin of searchtri1 may have changed if a collision with an */
12056     /*   intervening vertex on the segment occurred.                    */
12057     org(searchtri1, midvertex1);
12058     conformingedge(m, b, midvertex1, endpoint1, newmark);
12059   }
12060   if (!scoutsegment(m, b, &searchtri2, endpoint2, newmark)) {
12061     /* The origin of searchtri2 may have changed if a collision with an */
12062     /*   intervening vertex on the segment occurred.                    */
12063     org(searchtri2, midvertex2);
12064     conformingedge(m, b, midvertex2, endpoint2, newmark);
12065   }
12066 }
12067 
12068 #endif /* not CDT_ONLY */
12069 #endif /* not REDUCED */
12070 
12071 /*****************************************************************************/
12072 /*                                                                           */
12073 /*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
12074 /*                    recursively from an existing vertex.  Pay special      */
12075 /*                    attention to stacking inverted triangles.              */
12076 /*                                                                           */
12077 /*  This is a support routine for inserting segments into a constrained      */
12078 /*  Delaunay triangulation.                                                  */
12079 /*                                                                           */
12080 /*  The origin of fixuptri is treated as if it has just been inserted, and   */
12081 /*  the local Delaunay condition needs to be enforced.  It is only enforced  */
12082 /*  in one sector, however, that being the angular range defined by          */
12083 /*  fixuptri.                                                                */
12084 /*                                                                           */
12085 /*  This routine also needs to make decisions regarding the "stacking" of    */
12086 /*  triangles.  (Read the description of constrainededge() below before      */
12087 /*  reading on here, so you understand the algorithm.)  If the position of   */
12088 /*  the new vertex (the origin of fixuptri) indicates that the vertex before */
12089 /*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
12090 /*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
12091 /*  triangles are identified.)                                               */
12092 /*                                                                           */
12093 /*  Otherwise, check whether the vertex before that was a reflex vertex.     */
12094 /*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
12095 /*  (popping it off the stack).  The edge flip may result in the creation    */
12096 /*  of a new inverted triangle, depending on whether or not the new vertex   */
12097 /*  is visible to the vertex three edges behind on the polygon.              */
12098 /*                                                                           */
12099 /*  If neither of the two vertices behind the new vertex are reflex          */
12100 /*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
12101 /*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
12102 /*                                                                           */
12103 /*  `leftside' indicates whether or not fixuptri is to the left of the       */
12104 /*  segment being inserted.  (Imagine that the segment is pointing up from   */
12105 /*  endpoint1 to endpoint2.)                                                 */
12106 /*                                                                           */
12107 /*****************************************************************************/
12108 
12109 #ifdef ANSI_DECLARATORS
12110 void delaunayfixup(struct mesh *m, struct behavior *b,
12111                    struct otri *fixuptri, int leftside)
12112 #else /* not ANSI_DECLARATORS */
12113 void delaunayfixup(m, b, fixuptri, leftside)
12114 struct mesh *m;
12115 struct behavior *b;
12116 struct otri *fixuptri;
12117 int leftside;
12118 #endif /* not ANSI_DECLARATORS */
12119 
12120 {
12121   struct otri neartri;
12122   struct otri fartri;
12123   struct osub faredge;
12124   vertex nearvertex, leftvertex, rightvertex, farvertex;
12125   triangle ptr;                         /* Temporary variable used by sym(). */
12126   subseg sptr;                      /* Temporary variable used by tspivot(). */
12127 
12128   lnext(*fixuptri, neartri);
12129   sym(neartri, fartri);
12130   /* Check if the edge opposite the origin of fixuptri can be flipped. */
12131   if (fartri.tri == m->dummytri) {
12132     return;
12133   }
12134   tspivot(neartri, faredge);
12135   if (faredge.ss != m->dummysub) {
12136     return;
12137   }
12138   /* Find all the relevant vertices. */
12139   apex(neartri, nearvertex);
12140   org(neartri, leftvertex);
12141   dest(neartri, rightvertex);
12142   apex(fartri, farvertex);
12143   /* Check whether the previous polygon vertex is a reflex vertex. */
12144   if (leftside) {
12145     if (counterclockwise(m, b, nearvertex, leftvertex, farvertex) <= 0.0) {
12146       /* leftvertex is a reflex vertex too.  Nothing can */
12147       /*   be done until a convex section is found.      */
12148       return;
12149     }
12150   } else {
12151     if (counterclockwise(m, b, farvertex, rightvertex, nearvertex) <= 0.0) {
12152       /* rightvertex is a reflex vertex too.  Nothing can */
12153       /*   be done until a convex section is found.       */
12154       return;
12155     }
12156   }
12157   if (counterclockwise(m, b, rightvertex, leftvertex, farvertex) > 0.0) {
12158     /* fartri is not an inverted triangle, and farvertex is not a reflex */
12159     /*   vertex.  As there are no reflex vertices, fixuptri isn't an     */
12160     /*   inverted triangle, either.  Hence, test the edge between the    */
12161     /*   triangles to ensure it is locally Delaunay.                     */
12162     if (incircle(m, b, leftvertex, farvertex, rightvertex, nearvertex) <=
12163         0.0) {
12164       return;
12165     }
12166     /* Not locally Delaunay; go on to an edge flip. */
12167   }        /* else fartri is inverted; remove it from the stack by flipping. */
12168   flip(m, b, &neartri);
12169   lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
12170   /* Recursively process the two triangles that result from the flip. */
12171   delaunayfixup(m, b, fixuptri, leftside);
12172   delaunayfixup(m, b, &fartri, leftside);
12173 }
12174 
12175 /*****************************************************************************/
12176 /*                                                                           */
12177 /*  constrainededge()   Force a segment into a constrained Delaunay          */
12178 /*                      triangulation by deleting the triangles it           */
12179 /*                      intersects, and triangulating the polygons that      */
12180 /*                      form on each side of it.                             */
12181 /*                                                                           */
12182 /*  Generates a single subsegment connecting `endpoint1' to `endpoint2'.     */
12183 /*  The triangle `starttri' has `endpoint1' as its origin.  `newmark' is the */
12184 /*  boundary marker of the segment.                                          */
12185 /*                                                                           */
12186 /*  To insert a segment, every triangle whose interior intersects the        */
12187 /*  segment is deleted.  The union of these deleted triangles is a polygon   */
12188 /*  (which is not necessarily monotone, but is close enough), which is       */
12189 /*  divided into two polygons by the new segment.  This routine's task is    */
12190 /*  to generate the Delaunay triangulation of these two polygons.            */
12191 /*                                                                           */
12192 /*  You might think of this routine's behavior as a two-step process.  The   */
12193 /*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
12194 /*  encountered.  This step creates a fan of edges connected to endpoint1,   */
12195 /*  including the desired edge to endpoint2.  The second step enforces the   */
12196 /*  Delaunay condition on each side of the segment in an incremental manner: */
12197 /*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
12198 /*  independently on each side of the segment), each vertex is "enforced"    */
12199 /*  as if it had just been inserted, but affecting only the previous         */
12200 /*  vertices.  The result is the same as if the vertices had been inserted   */
12201 /*  in the order they appear on the polygon, so the result is Delaunay.      */
12202 /*                                                                           */
12203 /*  In truth, constrainededge() interleaves these two steps.  The procedure  */
12204 /*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
12205 /*  and flipped, the newly exposed vertex (at the far end of the flipped     */
12206 /*  edge) is "enforced" upon the previously flipped edges, usually affecting */
12207 /*  only one side of the polygon (depending upon which side of the segment   */
12208 /*  the vertex falls on).                                                    */
12209 /*                                                                           */
12210 /*  The algorithm is complicated by the need to handle polygons that are not */
12211 /*  convex.  Although the polygon is not necessarily monotone, it can be     */
12212 /*  triangulated in a manner similar to the stack-based algorithms for       */
12213 /*  monotone polygons.  For each reflex vertex (local concavity) of the      */
12214 /*  polygon, there will be an inverted triangle formed by one of the edge    */
12215 /*  flips.  (An inverted triangle is one with negative area - that is, its   */
12216 /*  vertices are arranged in clockwise order - and is best thought of as a   */
12217 /*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
12218 /*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
12219 /*  later.                                                                   */
12220 /*                                                                           */
12221 /*  A reflex vertex is popped from the stack when a vertex is inserted that  */
12222 /*  is visible to the reflex vertex.  (However, if the vertex behind the     */
12223 /*  reflex vertex is not visible to the reflex vertex, a new inverted        */
12224 /*  triangle will take its place on the stack.)  These details are handled   */
12225 /*  by the delaunayfixup() routine above.                                    */
12226 /*                                                                           */
12227 /*****************************************************************************/
12228 
12229 #ifdef ANSI_DECLARATORS
12230 void constrainededge(struct mesh *m, struct behavior *b,
12231                      struct otri *starttri, vertex endpoint2, int newmark)
12232 #else /* not ANSI_DECLARATORS */
12233 void constrainededge(m, b, starttri, endpoint2, newmark)
12234 struct mesh *m;
12235 struct behavior *b;
12236 struct otri *starttri;
12237 vertex endpoint2;
12238 int newmark;
12239 #endif /* not ANSI_DECLARATORS */
12240 
12241 {
12242   struct otri fixuptri, fixuptri2;
12243   struct osub crosssubseg;
12244   vertex endpoint1;
12245   vertex farvertex;
12246   REAL area;
12247   int collision;
12248   int done;
12249   triangle ptr;             /* Temporary variable used by sym() and oprev(). */
12250   subseg sptr;                      /* Temporary variable used by tspivot(). */
12251 
12252   org(*starttri, endpoint1);
12253   lnext(*starttri, fixuptri);
12254   flip(m, b, &fixuptri);
12255   /* `collision' indicates whether we have found a vertex directly */
12256   /*   between endpoint1 and endpoint2.                            */
12257   collision = 0;
12258   done = 0;
12259   do {
12260     org(fixuptri, farvertex);
12261     /* `farvertex' is the extreme point of the polygon we are "digging" */
12262     /*   to get from endpoint1 to endpoint2.                           */
12263     if ((farvertex[0] == endpoint2[0]) && (farvertex[1] == endpoint2[1])) {
12264       oprev(fixuptri, fixuptri2);
12265       /* Enforce the Delaunay condition around endpoint2. */
12266       delaunayfixup(m, b, &fixuptri, 0);
12267       delaunayfixup(m, b, &fixuptri2, 1);
12268       done = 1;
12269     } else {
12270       /* Check whether farvertex is to the left or right of the segment */
12271       /*   being inserted, to decide which edge of fixuptri to dig      */
12272       /*   through next.                                                */
12273       area = counterclockwise(m, b, endpoint1, endpoint2, farvertex);
12274       if (area == 0.0) {
12275         /* We've collided with a vertex between endpoint1 and endpoint2. */
12276         collision = 1;
12277         oprev(fixuptri, fixuptri2);
12278         /* Enforce the Delaunay condition around farvertex. */
12279         delaunayfixup(m, b, &fixuptri, 0);
12280         delaunayfixup(m, b, &fixuptri2, 1);
12281         done = 1;
12282       } else {
12283         if (area > 0.0) {        /* farvertex is to the left of the segment. */
12284           oprev(fixuptri, fixuptri2);
12285           /* Enforce the Delaunay condition around farvertex, on the */
12286           /*   left side of the segment only.                        */
12287           delaunayfixup(m, b, &fixuptri2, 1);
12288           /* Flip the edge that crosses the segment.  After the edge is */
12289           /*   flipped, one of its endpoints is the fan vertex, and the */
12290           /*   destination of fixuptri is the fan vertex.               */
12291           lprevself(fixuptri);
12292         } else {                /* farvertex is to the right of the segment. */
12293           delaunayfixup(m, b, &fixuptri, 0);
12294           /* Flip the edge that crosses the segment.  After the edge is */
12295           /*   flipped, one of its endpoints is the fan vertex, and the */
12296           /*   destination of fixuptri is the fan vertex.               */
12297           oprevself(fixuptri);
12298         }
12299         /* Check for two intersecting segments. */
12300         tspivot(fixuptri, crosssubseg);
12301         if (crosssubseg.ss == m->dummysub) {
12302           flip(m, b, &fixuptri);    /* May create inverted triangle at left. */
12303         } else {
12304           /* We've collided with a segment between endpoint1 and endpoint2. */
12305           collision = 1;
12306           /* Insert a vertex at the intersection. */
12307           segmentintersection(m, b, &fixuptri, &crosssubseg, endpoint2);
12308           done = 1;
12309         }
12310       }
12311     }
12312   } while (!done);
12313   /* Insert a subsegment to make the segment permanent. */
12314   insertsubseg(m, b, &fixuptri, newmark);
12315   /* If there was a collision with an interceding vertex, install another */
12316   /*   segment connecting that vertex with endpoint2.                     */
12317   if (collision) {
12318     /* Insert the remainder of the segment. */
12319     if (!scoutsegment(m, b, &fixuptri, endpoint2, newmark)) {
12320       constrainededge(m, b, &fixuptri, endpoint2, newmark);
12321     }
12322   }
12323 }
12324 
12325 /*****************************************************************************/
12326 /*                                                                           */
12327 /*  insertsegment()   Insert a PSLG segment into a triangulation.            */
12328 /*                                                                           */
12329 /*****************************************************************************/
12330 
12331 #ifdef ANSI_DECLARATORS
12332 void insertsegment(struct mesh *m, struct behavior *b,
12333                    vertex endpoint1, vertex endpoint2, int newmark)
12334 #else /* not ANSI_DECLARATORS */
12335 void insertsegment(m, b, endpoint1, endpoint2, newmark)
12336 struct mesh *m;
12337 struct behavior *b;
12338 vertex endpoint1;
12339 vertex endpoint2;
12340 int newmark;
12341 #endif /* not ANSI_DECLARATORS */
12342 
12343 {
12344   struct otri searchtri1, searchtri2;
12345   triangle encodedtri;
12346   vertex checkvertex;
12347   triangle ptr;                         /* Temporary variable used by sym(). */
12348 
12349   if (b->verbose > 1) {
12350     printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
12351            endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
12352   }
12353 
12354   /* Find a triangle whose origin is the segment's first endpoint. */
12355   checkvertex = (vertex) NULL;
12356   encodedtri = vertex2tri(endpoint1);
12357   if (encodedtri != (triangle) NULL) {
12358     decode(encodedtri, searchtri1);
12359     org(searchtri1, checkvertex);
12360   }
12361   if (checkvertex != endpoint1) {
12362     /* Find a boundary triangle to search from. */
12363     searchtri1.tri = m->dummytri;
12364     searchtri1.orient = 0;
12365     symself(searchtri1);
12366     /* Search for the segment's first endpoint by point location. */
12367     if (locate(m, b, endpoint1, &searchtri1) != ONVERTEX) {
12368       printf(
12369         "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
12370       printf("  (%.12g, %.12g) in triangulation.\n",
12371              endpoint1[0], endpoint1[1]);
12372       internalerror();
12373     }
12374   }
12375   /* Remember this triangle to improve subsequent point location. */
12376   otricopy(searchtri1, m->recenttri);
12377   /* Scout the beginnings of a path from the first endpoint */
12378   /*   toward the second.                                   */
12379   if (scoutsegment(m, b, &searchtri1, endpoint2, newmark)) {
12380     /* The segment was easily inserted. */
12381     return;
12382   }
12383   /* The first endpoint may have changed if a collision with an intervening */
12384   /*   vertex on the segment occurred.                                      */
12385   org(searchtri1, endpoint1);
12386 
12387   /* Find a triangle whose origin is the segment's second endpoint. */
12388   checkvertex = (vertex) NULL;
12389   encodedtri = vertex2tri(endpoint2);
12390   if (encodedtri != (triangle) NULL) {
12391     decode(encodedtri, searchtri2);
12392     org(searchtri2, checkvertex);
12393   }
12394   if (checkvertex != endpoint2) {
12395     /* Find a boundary triangle to search from. */
12396     searchtri2.tri = m->dummytri;
12397     searchtri2.orient = 0;
12398     symself(searchtri2);
12399     /* Search for the segment's second endpoint by point location. */
12400     if (locate(m, b, endpoint2, &searchtri2) != ONVERTEX) {
12401       printf(
12402         "Internal error in insertsegment():  Unable to locate PSLG vertex\n");
12403       printf("  (%.12g, %.12g) in triangulation.\n",
12404              endpoint2[0], endpoint2[1]);
12405       internalerror();
12406     }
12407   }
12408   /* Remember this triangle to improve subsequent point location. */
12409   otricopy(searchtri2, m->recenttri);
12410   /* Scout the beginnings of a path from the second endpoint */
12411   /*   toward the first.                                     */
12412   if (scoutsegment(m, b, &searchtri2, endpoint1, newmark)) {
12413     /* The segment was easily inserted. */
12414     return;
12415   }
12416   /* The second endpoint may have changed if a collision with an intervening */
12417   /*   vertex on the segment occurred.                                       */
12418   org(searchtri2, endpoint2);
12419 
12420 #ifndef REDUCED
12421 #ifndef CDT_ONLY
12422   if (b->splitseg) {
12423     /* Insert vertices to force the segment into the triangulation. */
12424     conformingedge(m, b, endpoint1, endpoint2, newmark);
12425   } else {
12426 #endif /* not CDT_ONLY */
12427 #endif /* not REDUCED */
12428     /* Insert the segment directly into the triangulation. */
12429     constrainededge(m, b, &searchtri1, endpoint2, newmark);
12430 #ifndef REDUCED
12431 #ifndef CDT_ONLY
12432   }
12433 #endif /* not CDT_ONLY */
12434 #endif /* not REDUCED */
12435 }
12436 
12437 /*****************************************************************************/
12438 /*                                                                           */
12439 /*  markhull()   Cover the convex hull of a triangulation with subsegments.  */
12440 /*                                                                           */
12441 /*****************************************************************************/
12442 
12443 #ifdef ANSI_DECLARATORS
12444 void markhull(struct mesh *m, struct behavior *b)
12445 #else /* not ANSI_DECLARATORS */
12446 void markhull(m, b)
12447 struct mesh *m;
12448 struct behavior *b;
12449 #endif /* not ANSI_DECLARATORS */
12450 
12451 {
12452   struct otri hulltri;
12453   struct otri nexttri;
12454   struct otri starttri;
12455   triangle ptr;             /* Temporary variable used by sym() and oprev(). */
12456 
12457   /* Find a triangle handle on the hull. */
12458   hulltri.tri = m->dummytri;
12459   hulltri.orient = 0;
12460   symself(hulltri);
12461   /* Remember where we started so we know when to stop. */
12462   otricopy(hulltri, starttri);
12463   /* Go once counterclockwise around the convex hull. */
12464   do {
12465     /* Create a subsegment if there isn't already one here. */
12466     insertsubseg(m, b, &hulltri, 1);
12467     /* To find the next hull edge, go clockwise around the next vertex. */
12468     lnextself(hulltri);
12469     oprev(hulltri, nexttri);
12470     while (nexttri.tri != m->dummytri) {
12471       otricopy(nexttri, hulltri);
12472       oprev(hulltri, nexttri);
12473     }
12474   } while (!otriequal(hulltri, starttri));
12475 }
12476 
12477 /*****************************************************************************/
12478 /*                                                                           */
12479 /*  formskeleton()   Create the segments of a triangulation, including PSLG  */
12480 /*                   segments and edges on the convex hull.                  */
12481 /*                                                                           */
12482 /*  The PSLG segments are read from a .poly file.  The return value is the   */
12483 /*  number of segments in the file.                                          */
12484 /*                                                                           */
12485 /*****************************************************************************/
12486 
12487 #ifdef TRILIBRARY
12488 
12489 #ifdef ANSI_DECLARATORS
12490 void formskeleton(struct mesh *m, struct behavior *b, int *segmentlist,
12491                   int *segmentmarkerlist, int numberofsegments)
12492 #else /* not ANSI_DECLARATORS */
12493 void formskeleton(m, b, segmentlist, segmentmarkerlist, numberofsegments)
12494 struct mesh *m;
12495 struct behavior *b;
12496 int *segmentlist;
12497 int *segmentmarkerlist;
12498 int numberofsegments;
12499 #endif /* not ANSI_DECLARATORS */
12500 
12501 #else /* not TRILIBRARY */
12502 
12503 #ifdef ANSI_DECLARATORS
12504 void formskeleton(struct mesh *m, struct behavior *b,
12505                   FILE* polyfile, char* polyfilename)
12506 #else /* not ANSI_DECLARATORS */
12507 void formskeleton(m, b, polyfile, polyfilename)
12508 struct mesh *m;
12509 struct behavior *b;
12510 FILE* polyfile;
12511 char* polyfilename;
12512 #endif /* not ANSI_DECLARATORS */
12513 
12514 #endif /* not TRILIBRARY */
12515 
12516 {
12517 #ifdef TRILIBRARY
12518   char polyfilename[6];
12519   int index;
12520 #else /* not TRILIBRARY */
12521   char inputline[INPUTLINESIZE];
12522   char *stringptr;
12523 #endif /* not TRILIBRARY */
12524   vertex endpoint1, endpoint2;
12525   int segmentmarkers;
12526   int end1, end2;
12527   int boundmarker;
12528   int i;
12529 
12530   if (b->poly) {
12531     if (!b->quiet) {
12532       printf("Recovering segments in Delaunay triangulation.\n");
12533     }
12534 #ifdef TRILIBRARY
12535     strcpy(polyfilename, "input");
12536     m->insegments = numberofsegments;
12537     segmentmarkers = segmentmarkerlist != (int *) NULL;
12538     index = 0;
12539 #else /* not TRILIBRARY */
12540     /* Read the segments from a .poly file. */
12541     /* Read number of segments and number of boundary markers. */
12542     stringptr = readline(inputline, polyfile, polyfilename);
12543     m->insegments = (int) strtol(stringptr, &stringptr, 0);
12544     stringptr = findfield(stringptr);
12545     if (*stringptr == '\0') {
12546       segmentmarkers = 0;
12547     } else {
12548       segmentmarkers = (int) strtol(stringptr, &stringptr, 0);
12549     }
12550 #endif /* not TRILIBRARY */
12551     /* If the input vertices are collinear, there is no triangulation, */
12552     /*   so don't try to insert segments.                              */
12553     if (m->triangles.items == 0) {
12554       return;
12555     }
12556 
12557     /* If segments are to be inserted, compute a mapping */
12558     /*   from vertices to triangles.                     */
12559     if (m->insegments > 0) {
12560       makevertexmap(m, b);
12561       if (b->verbose) {
12562         printf("  Recovering PSLG segments.\n");
12563       }
12564     }
12565 
12566     boundmarker = 0;
12567     /* Read and insert the segments. */
12568     for (i = 0; i < m->insegments; i++) {
12569 #ifdef TRILIBRARY
12570       end1 = segmentlist[index++];
12571       end2 = segmentlist[index++];
12572       if (segmentmarkers) {
12573         boundmarker = segmentmarkerlist[i];
12574       }
12575 #else /* not TRILIBRARY */
12576       stringptr = readline(inputline, polyfile, b->inpolyfilename);
12577       stringptr = findfield(stringptr);
12578       if (*stringptr == '\0') {
12579         printf("Error:  Segment %d has no endpoints in %s.\n",
12580                b->firstnumber + i, polyfilename);
12581         triexit(1);
12582       } else {
12583         end1 = (int) strtol(stringptr, &stringptr, 0);
12584       }
12585       stringptr = findfield(stringptr);
12586       if (*stringptr == '\0') {
12587         printf("Error:  Segment %d is missing its second endpoint in %s.\n",
12588                b->firstnumber + i, polyfilename);
12589         triexit(1);
12590       } else {
12591         end2 = (int) strtol(stringptr, &stringptr, 0);
12592       }
12593       if (segmentmarkers) {
12594         stringptr = findfield(stringptr);
12595         if (*stringptr == '\0') {
12596           boundmarker = 0;
12597         } else {
12598           boundmarker = (int) strtol(stringptr, &stringptr, 0);
12599         }
12600       }
12601 #endif /* not TRILIBRARY */
12602       if ((end1 < b->firstnumber) ||
12603           (end1 >= b->firstnumber + m->invertices)) {
12604         if (!b->quiet) {
12605           printf("Warning:  Invalid first endpoint of segment %d in %s.\n",
12606                  b->firstnumber + i, polyfilename);
12607         }
12608       } else if ((end2 < b->firstnumber) ||
12609                  (end2 >= b->firstnumber + m->invertices)) {
12610         if (!b->quiet) {
12611           printf("Warning:  Invalid second endpoint of segment %d in %s.\n",
12612                  b->firstnumber + i, polyfilename);
12613         }
12614       } else {
12615         /* Find the vertices numbered `end1' and `end2'. */
12616         endpoint1 = getvertex(m, b, end1);
12617         endpoint2 = getvertex(m, b, end2);
12618         if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
12619           if (!b->quiet) {
12620             printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
12621                    b->firstnumber + i, polyfilename);
12622           }
12623         } else {
12624           insertsegment(m, b, endpoint1, endpoint2, boundmarker);
12625         }
12626       }
12627     }
12628   } else {
12629     m->insegments = 0;
12630   }
12631   if (b->convex || !b->poly) {
12632     /* Enclose the convex hull with subsegments. */
12633     if (b->verbose) {
12634       printf("  Enclosing convex hull with segments.\n");
12635     }
12636     markhull(m, b);
12637   }
12638 }
12639 
12642 /********* Segment insertion ends here                               *********/
12643 
12644 /********* Carving out holes and concavities begins here             *********/
12648 /*****************************************************************************/
12649 /*                                                                           */
12650 /*  infecthull()   Virally infect all of the triangles of the convex hull    */
12651 /*                 that are not protected by subsegments.  Where there are   */
12652 /*                 subsegments, set boundary markers as appropriate.         */
12653 /*                                                                           */
12654 /*****************************************************************************/
12655 
12656 #ifdef ANSI_DECLARATORS
12657 void infecthull(struct mesh *m, struct behavior *b)
12658 #else /* not ANSI_DECLARATORS */
12659 void infecthull(m, b)
12660 struct mesh *m;
12661 struct behavior *b;
12662 #endif /* not ANSI_DECLARATORS */
12663 
12664 {
12665   struct otri hulltri;
12666   struct otri nexttri;
12667   struct otri starttri;
12668   struct osub hullsubseg;
12669   triangle **deadtriangle;
12670   vertex horg, hdest;
12671   triangle ptr;                         /* Temporary variable used by sym(). */
12672   subseg sptr;                      /* Temporary variable used by tspivot(). */
12673 
12674   if (b->verbose) {
12675     printf("  Marking concavities (external triangles) for elimination.\n");
12676   }
12677   /* Find a triangle handle on the hull. */
12678   hulltri.tri = m->dummytri;
12679   hulltri.orient = 0;
12680   symself(hulltri);
12681   /* Remember where we started so we know when to stop. */
12682   otricopy(hulltri, starttri);
12683   /* Go once counterclockwise around the convex hull. */
12684   do {
12685     /* Ignore triangles that are already infected. */
12686     if (!infected(hulltri)) {
12687       /* Is the triangle protected by a subsegment? */
12688       tspivot(hulltri, hullsubseg);
12689       if (hullsubseg.ss == m->dummysub) {
12690         /* The triangle is not protected; infect it. */
12691         if (!infected(hulltri)) {
12692           infect(hulltri);
12693           deadtriangle = (triangle **) poolalloc(&m->viri);
12694           *deadtriangle = hulltri.tri;
12695         }
12696       } else {
12697         /* The triangle is protected; set boundary markers if appropriate. */
12698         if (mark(hullsubseg) == 0) {
12699           setmark(hullsubseg, 1);
12700           org(hulltri, horg);
12701           dest(hulltri, hdest);
12702           if (vertexmark(horg) == 0) {
12703             setvertexmark(horg, 1);
12704           }
12705           if (vertexmark(hdest) == 0) {
12706             setvertexmark(hdest, 1);
12707           }
12708         }
12709       }
12710     }
12711     /* To find the next hull edge, go clockwise around the next vertex. */
12712     lnextself(hulltri);
12713     oprev(hulltri, nexttri);
12714     while (nexttri.tri != m->dummytri) {
12715       otricopy(nexttri, hulltri);
12716       oprev(hulltri, nexttri);
12717     }
12718   } while (!otriequal(hulltri, starttri));
12719 }
12720 
12721 /*****************************************************************************/
12722 /*                                                                           */
12723 /*  plague()   Spread the virus from all infected triangles to any neighbors */
12724 /*             not protected by subsegments.  Delete all infected triangles. */
12725 /*                                                                           */
12726 /*  This is the procedure that actually creates holes and concavities.       */
12727 /*                                                                           */
12728 /*  This procedure operates in two phases.  The first phase identifies all   */
12729 /*  the triangles that will die, and marks them as infected.  They are       */
12730 /*  marked to ensure that each triangle is added to the virus pool only      */
12731 /*  once, so the procedure will terminate.                                   */
12732 /*                                                                           */
12733 /*  The second phase actually eliminates the infected triangles.  It also    */
12734 /*  eliminates orphaned vertices.                                            */
12735 /*                                                                           */
12736 /*****************************************************************************/
12737 
12738 #ifdef ANSI_DECLARATORS
12739 void plague(struct mesh *m, struct behavior *b)
12740 #else /* not ANSI_DECLARATORS */
12741 void plague(m, b)
12742 struct mesh *m;
12743 struct behavior *b;
12744 #endif /* not ANSI_DECLARATORS */
12745 
12746 {
12747   struct otri testtri;
12748   struct otri neighbor;
12749   triangle **virusloop;
12750   triangle **deadtriangle;
12751   struct osub neighborsubseg;
12752   vertex testvertex;
12753   vertex norg, ndest;
12754   vertex deadorg, deaddest, deadapex;
12755   int killorg;
12756   triangle ptr;             /* Temporary variable used by sym() and onext(). */
12757   subseg sptr;                      /* Temporary variable used by tspivot(). */
12758 
12759   if (b->verbose) {
12760     printf("  Marking neighbors of marked triangles.\n");
12761   }
12762   /* Loop through all the infected triangles, spreading the virus to */
12763   /*   their neighbors, then to their neighbors' neighbors.          */
12764   traversalinit(&m->viri);
12765   virusloop = (triangle **) traverse(&m->viri);
12766   while (virusloop != (triangle **) NULL) {
12767     testtri.tri = *virusloop;
12768     /* A triangle is marked as infected by messing with one of its pointers */
12769     /*   to subsegments, setting it to an illegal value.  Hence, we have to */
12770     /*   temporarily uninfect this triangle so that we can examine its      */
12771     /*   adjacent subsegments.                                              */
12772     uninfect(testtri);
12773     if (b->verbose > 2) {
12774       /* Assign the triangle an orientation for convenience in */
12775       /*   checking its vertices.                              */
12776       testtri.orient = 0;
12777       org(testtri, deadorg);
12778       dest(testtri, deaddest);
12779       apex(testtri, deadapex);
12780       printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
12781              deadorg[0], deadorg[1], deaddest[0], deaddest[1],
12782              deadapex[0], deadapex[1]);
12783     }
12784     /* Check each of the triangle's three neighbors. */
12785     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
12786       /* Find the neighbor. */
12787       sym(testtri, neighbor);
12788       /* Check for a subsegment between the triangle and its neighbor. */
12789       tspivot(testtri, neighborsubseg);
12790       /* Check if the neighbor is nonexistent or already infected. */
12791       if ((neighbor.tri == m->dummytri) || infected(neighbor)) {
12792         if (neighborsubseg.ss != m->dummysub) {
12793           /* There is a subsegment separating the triangle from its      */
12794           /*   neighbor, but both triangles are dying, so the subsegment */
12795           /*   dies too.                                                 */
12796           subsegdealloc(m, neighborsubseg.ss);
12797           if (neighbor.tri != m->dummytri) {
12798             /* Make sure the subsegment doesn't get deallocated again */
12799             /*   later when the infected neighbor is visited.         */
12800             uninfect(neighbor);
12801             tsdissolve(neighbor);
12802             infect(neighbor);
12803           }
12804         }
12805       } else {                   /* The neighbor exists and is not infected. */
12806         if (neighborsubseg.ss == m->dummysub) {
12807           /* There is no subsegment protecting the neighbor, so */
12808           /*   the neighbor becomes infected.                   */
12809           if (b->verbose > 2) {
12810             org(neighbor, deadorg);
12811             dest(neighbor, deaddest);
12812             apex(neighbor, deadapex);
12813             printf(
12814               "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
12815                    deadorg[0], deadorg[1], deaddest[0], deaddest[1],
12816                    deadapex[0], deadapex[1]);
12817           }
12818           infect(neighbor);
12819           /* Ensure that the neighbor's neighbors will be infected. */
12820           deadtriangle = (triangle **) poolalloc(&m->viri);
12821           *deadtriangle = neighbor.tri;
12822         } else {               /* The neighbor is protected by a subsegment. */
12823           /* Remove this triangle from the subsegment. */
12824           stdissolve(neighborsubseg);
12825           /* The subsegment becomes a boundary.  Set markers accordingly. */
12826           if (mark(neighborsubseg) == 0) {
12827             setmark(neighborsubseg, 1);
12828           }
12829           org(neighbor, norg);
12830           dest(neighbor, ndest);
12831           if (vertexmark(norg) == 0) {
12832             setvertexmark(norg, 1);
12833           }
12834           if (vertexmark(ndest) == 0) {
12835             setvertexmark(ndest, 1);
12836           }
12837         }
12838       }
12839     }
12840     /* Remark the triangle as infected, so it doesn't get added to the */
12841     /*   virus pool again.                                             */
12842     infect(testtri);
12843     virusloop = (triangle **) traverse(&m->viri);
12844   }
12845 
12846   if (b->verbose) {
12847     printf("  Deleting marked triangles.\n");
12848   }
12849 
12850   traversalinit(&m->viri);
12851   virusloop = (triangle **) traverse(&m->viri);
12852   while (virusloop != (triangle **) NULL) {
12853     testtri.tri = *virusloop;
12854 
12855     /* Check each of the three corners of the triangle for elimination. */
12856     /*   This is done by walking around each vertex, checking if it is  */
12857     /*   still connected to at least one live triangle.                 */
12858     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
12859       org(testtri, testvertex);
12860       /* Check if the vertex has already been tested. */
12861       if (testvertex != (vertex) NULL) {
12862         killorg = 1;
12863         /* Mark the corner of the triangle as having been tested. */
12864         setorg(testtri, NULL);
12865         /* Walk counterclockwise about the vertex. */
12866         onext(testtri, neighbor);
12867         /* Stop upon reaching a boundary or the starting triangle. */
12868         while ((neighbor.tri != m->dummytri) &&
12869                (!otriequal(neighbor, testtri))) {
12870           if (infected(neighbor)) {
12871             /* Mark the corner of this triangle as having been tested. */
12872             setorg(neighbor, NULL);
12873           } else {
12874             /* A live triangle.  The vertex survives. */
12875             killorg = 0;
12876           }
12877           /* Walk counterclockwise about the vertex. */
12878           onextself(neighbor);
12879         }
12880         /* If we reached a boundary, we must walk clockwise as well. */
12881         if (neighbor.tri == m->dummytri) {
12882           /* Walk clockwise about the vertex. */
12883           oprev(testtri, neighbor);
12884           /* Stop upon reaching a boundary. */
12885           while (neighbor.tri != m->dummytri) {
12886             if (infected(neighbor)) {
12887             /* Mark the corner of this triangle as having been tested. */
12888               setorg(neighbor, NULL);
12889             } else {
12890               /* A live triangle.  The vertex survives. */
12891               killorg = 0;
12892             }
12893             /* Walk clockwise about the vertex. */
12894             oprevself(neighbor);
12895           }
12896         }
12897         if (killorg) {
12898           if (b->verbose > 1) {
12899             printf("    Deleting vertex (%.12g, %.12g)\n",
12900                    testvertex[0], testvertex[1]);
12901           }
12902           setvertextype(testvertex, UNDEADVERTEX);
12903           m->undeads++;
12904         }
12905       }
12906     }
12907 
12908     /* Record changes in the number of boundary edges, and disconnect */
12909     /*   dead triangles from their neighbors.                         */
12910     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
12911       sym(testtri, neighbor);
12912       if (neighbor.tri == m->dummytri) {
12913         /* There is no neighboring triangle on this edge, so this edge    */
12914         /*   is a boundary edge.  This triangle is being deleted, so this */
12915         /*   boundary edge is deleted.                                    */
12916         m->hullsize--;
12917       } else {
12918         /* Disconnect the triangle from its neighbor. */
12919         dissolve(neighbor);
12920         /* There is a neighboring triangle on this edge, so this edge */
12921         /*   becomes a boundary edge when this triangle is deleted.   */
12922         m->hullsize++;
12923       }
12924     }
12925     /* Return the dead triangle to the pool of triangles. */
12926     triangledealloc(m, testtri.tri);
12927     virusloop = (triangle **) traverse(&m->viri);
12928   }
12929   /* Empty the virus pool. */
12930   poolrestart(&m->viri);
12931 }
12932 
12933 /*****************************************************************************/
12934 /*                                                                           */
12935 /*  regionplague()   Spread regional attributes and/or area constraints      */
12936 /*                   (from a .poly file) throughout the mesh.                */
12937 /*                                                                           */
12938 /*  This procedure operates in two phases.  The first phase spreads an       */
12939 /*  attribute and/or an area constraint through a (segment-bounded) region.  */
12940 /*  The triangles are marked to ensure that each triangle is added to the    */
12941 /*  virus pool only once, so the procedure will terminate.                   */
12942 /*                                                                           */
12943 /*  The second phase uninfects all infected triangles, returning them to     */
12944 /*  normal.                                                                  */
12945 /*                                                                           */
12946 /*****************************************************************************/
12947 
12948 #ifdef ANSI_DECLARATORS
12949 void regionplague(struct mesh *m, struct behavior *b,
12950                   REAL attribute, REAL area)
12951 #else /* not ANSI_DECLARATORS */
12952 void regionplague(m, b, attribute, area)
12953 struct mesh *m;
12954 struct behavior *b;
12955 REAL attribute;
12956 REAL area;
12957 #endif /* not ANSI_DECLARATORS */
12958 
12959 {
12960   struct otri testtri;
12961   struct otri neighbor;
12962   triangle **virusloop;
12963   triangle **regiontri;
12964   struct osub neighborsubseg;
12965   vertex regionorg, regiondest, regionapex;
12966   triangle ptr;             /* Temporary variable used by sym() and onext(). */
12967   subseg sptr;                      /* Temporary variable used by tspivot(). */
12968 
12969   if (b->verbose > 1) {
12970     printf("  Marking neighbors of marked triangles.\n");
12971   }
12972   /* Loop through all the infected triangles, spreading the attribute      */
12973   /*   and/or area constraint to their neighbors, then to their neighbors' */
12974   /*   neighbors.                                                          */
12975   traversalinit(&m->viri);
12976   virusloop = (triangle **) traverse(&m->viri);
12977   while (virusloop != (triangle **) NULL) {
12978     testtri.tri = *virusloop;
12979     /* A triangle is marked as infected by messing with one of its pointers */
12980     /*   to subsegments, setting it to an illegal value.  Hence, we have to */
12981     /*   temporarily uninfect this triangle so that we can examine its      */
12982     /*   adjacent subsegments.                                              */
12983     uninfect(testtri);
12984     if (b->regionattrib) {
12985       /* Set an attribute. */
12986       setelemattribute(testtri, m->eextras, attribute);
12987     }
12988     if (b->vararea) {
12989       /* Set an area constraint. */
12990       setareabound(testtri, area);
12991     }
12992     if (b->verbose > 2) {
12993       /* Assign the triangle an orientation for convenience in */
12994       /*   checking its vertices.                              */
12995       testtri.orient = 0;
12996       org(testtri, regionorg);
12997       dest(testtri, regiondest);
12998       apex(testtri, regionapex);
12999       printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
13000              regionorg[0], regionorg[1], regiondest[0], regiondest[1],
13001              regionapex[0], regionapex[1]);
13002     }
13003     /* Check each of the triangle's three neighbors. */
13004     for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
13005       /* Find the neighbor. */
13006       sym(testtri, neighbor);
13007       /* Check for a subsegment between the triangle and its neighbor. */
13008       tspivot(testtri, neighborsubseg);
13009       /* Make sure the neighbor exists, is not already infected, and */
13010       /*   isn't protected by a subsegment.                          */
13011       if ((neighbor.tri != m->dummytri) && !infected(neighbor)
13012           && (neighborsubseg.ss == m->dummysub)) {
13013         if (b->verbose > 2) {
13014           org(neighbor, regionorg);
13015           dest(neighbor, regiondest);
13016           apex(neighbor, regionapex);
13017           printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
13018                  regionorg[0], regionorg[1], regiondest[0], regiondest[1],
13019                  regionapex[0], regionapex[1]);
13020         }
13021         /* Infect the neighbor. */
13022         infect(neighbor);
13023         /* Ensure that the neighbor's neighbors will be infected. */
13024         regiontri = (triangle **) poolalloc(&m->viri);
13025         *regiontri = neighbor.tri;
13026       }
13027     }
13028     /* Remark the triangle as infected, so it doesn't get added to the */
13029     /*   virus pool again.                                             */
13030     infect(testtri);
13031     virusloop = (triangle **) traverse(&m->viri);
13032   }
13033 
13034   /* Uninfect all triangles. */
13035   if (b->verbose > 1) {
13036     printf("  Unmarking marked triangles.\n");
13037   }
13038   traversalinit(&m->viri);
13039   virusloop = (triangle **) traverse(&m->viri);
13040   while (virusloop != (triangle **) NULL) {
13041     testtri.tri = *virusloop;
13042     uninfect(testtri);
13043     virusloop = (triangle **) traverse(&m->viri);
13044   }
13045   /* Empty the virus pool. */
13046   poolrestart(&m->viri);
13047 }
13048 
13049 /*****************************************************************************/
13050 /*                                                                           */
13051 /*  carveholes()   Find the holes and infect them.  Find the area            */
13052 /*                 constraints and infect them.  Infect the convex hull.     */
13053 /*                 Spread the infection and kill triangles.  Spread the      */
13054 /*                 area constraints.                                         */
13055 /*                                                                           */
13056 /*  This routine mainly calls other routines to carry out all these          */
13057 /*  functions.                                                               */
13058 /*                                                                           */
13059 /*****************************************************************************/
13060 
13061 #ifdef ANSI_DECLARATORS
13062 void carveholes(struct mesh *m, struct behavior *b, REAL *holelist, int holes,
13063                 REAL *regionlist, int regions)
13064 #else /* not ANSI_DECLARATORS */
13065 void carveholes(m, b, holelist, holes, regionlist, regions)
13066 struct mesh *m;
13067 struct behavior *b;
13068 REAL *holelist;
13069 int holes;
13070 REAL *regionlist;
13071 int regions;
13072 #endif /* not ANSI_DECLARATORS */
13073 
13074 {
13075   struct otri searchtri;
13076   struct otri triangleloop;
13077   struct otri *regiontris;
13078   triangle **holetri;
13079   triangle **regiontri;
13080   vertex searchorg, searchdest;
13081   enum locateresult intersect;
13082   int i;
13083   triangle ptr;                         /* Temporary variable used by sym(). */
13084 
13085   if (!(b->quiet || (b->noholes && b->convex))) {
13086     printf("Removing unwanted triangles.\n");
13087     if (b->verbose && (holes > 0)) {
13088       printf("  Marking holes for elimination.\n");
13089     }
13090   }
13091 
13092   if (regions > 0) {
13093     /* Allocate storage for the triangles in which region points fall. */
13094     regiontris = (struct otri *) trimalloc(regions *
13095                                            (int) sizeof(struct otri));
13096   } else {
13097     regiontris = (struct otri *) NULL;
13098   }
13099 
13100   if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
13101     /* Initialize a pool of viri to be used for holes, concavities, */
13102     /*   regional attributes, and/or regional area constraints.     */
13103     poolinit(&m->viri, sizeof(triangle *), VIRUSPERBLOCK, VIRUSPERBLOCK, 0);
13104   }
13105 
13106   if (!b->convex) {
13107     /* Mark as infected any unprotected triangles on the boundary. */
13108     /*   This is one way by which concavities are created.         */
13109     infecthull(m, b);
13110   }
13111 
13112   if ((holes > 0) && !b->noholes) {
13113     /* Infect each triangle in which a hole lies. */
13114     for (i = 0; i < 2 * holes; i += 2) {
13115       /* Ignore holes that aren't within the bounds of the mesh. */
13116       if ((holelist[i] >= m->xmin) && (holelist[i] <= m->xmax)
13117           && (holelist[i + 1] >= m->ymin) && (holelist[i + 1] <= m->ymax)) {
13118         /* Start searching from some triangle on the outer boundary. */
13119         searchtri.tri = m->dummytri;
13120         searchtri.orient = 0;
13121         symself(searchtri);
13122         /* Ensure that the hole is to the left of this boundary edge; */
13123         /*   otherwise, locate() will falsely report that the hole    */
13124         /*   falls within the starting triangle.                      */
13125         org(searchtri, searchorg);
13126         dest(searchtri, searchdest);
13127         if (counterclockwise(m, b, searchorg, searchdest, &holelist[i]) >
13128             0.0) {
13129           /* Find a triangle that contains the hole. */
13130           intersect = locate(m, b, &holelist[i], &searchtri);
13131           if ((intersect != OUTSIDE) && (!infected(searchtri))) {
13132             /* Infect the triangle.  This is done by marking the triangle  */
13133             /*   as infected and including the triangle in the virus pool. */
13134             infect(searchtri);
13135             holetri = (triangle **) poolalloc(&m->viri);
13136             *holetri = searchtri.tri;
13137           }
13138         }
13139       }
13140     }
13141   }
13142 
13143   /* Now, we have to find all the regions BEFORE we carve the holes, because */
13144   /*   locate() won't work when the triangulation is no longer convex.       */
13145   /*   (Incidentally, this is the reason why regional attributes and area    */
13146   /*   constraints can't be used when refining a preexisting mesh, which     */
13147   /*   might not be convex; they can only be used with a freshly             */
13148   /*   triangulated PSLG.)                                                   */
13149   if (regions > 0) {
13150     /* Find the starting triangle for each region. */
13151     for (i = 0; i < regions; i++) {
13152       regiontris[i].tri = m->dummytri;
13153       /* Ignore region points that aren't within the bounds of the mesh. */
13154       if ((regionlist[4 * i] >= m->xmin) && (regionlist[4 * i] <= m->xmax) &&
13155           (regionlist[4 * i + 1] >= m->ymin) &&
13156           (regionlist[4 * i + 1] <= m->ymax)) {
13157         /* Start searching from some triangle on the outer boundary. */
13158         searchtri.tri = m->dummytri;
13159         searchtri.orient = 0;
13160         symself(searchtri);
13161         /* Ensure that the region point is to the left of this boundary */
13162         /*   edge; otherwise, locate() will falsely report that the     */
13163         /*   region point falls within the starting triangle.           */
13164         org(searchtri, searchorg);
13165         dest(searchtri, searchdest);
13166         if (counterclockwise(m, b, searchorg, searchdest, &regionlist[4 * i]) >
13167             0.0) {
13168           /* Find a triangle that contains the region point. */
13169           intersect = locate(m, b, &regionlist[4 * i], &searchtri);
13170           if ((intersect != OUTSIDE) && (!infected(searchtri))) {
13171             /* Record the triangle for processing after the */
13172             /*   holes have been carved.                    */
13173             otricopy(searchtri, regiontris[i]);
13174           }
13175         }
13176       }
13177     }
13178   }
13179 
13180   if (m->viri.items > 0) {
13181     /* Carve the holes and concavities. */
13182     plague(m, b);
13183   }
13184   /* The virus pool should be empty now. */
13185 
13186   if (regions > 0) {
13187     if (!b->quiet) {
13188       if (b->regionattrib) {
13189         if (b->vararea) {
13190           printf("Spreading regional attributes and area constraints.\n");
13191         } else {
13192           printf("Spreading regional attributes.\n");
13193         }
13194       } else {
13195         printf("Spreading regional area constraints.\n");
13196       }
13197     }
13198     if (b->regionattrib && !b->refine) {
13199       /* Assign every triangle a regional attribute of zero. */
13200       traversalinit(&m->triangles);
13201       triangleloop.orient = 0;
13202       triangleloop.tri = triangletraverse(m);
13203       while (triangleloop.tri != (triangle *) NULL) {
13204         setelemattribute(triangleloop, m->eextras, 0.0);
13205         triangleloop.tri = triangletraverse(m);
13206       }
13207     }
13208     for (i = 0; i < regions; i++) {
13209       if (regiontris[i].tri != m->dummytri) {
13210         /* Make sure the triangle under consideration still exists. */
13211         /*   It may have been eaten by the virus.                   */
13212         if (!deadtri(regiontris[i].tri)) {
13213           /* Put one triangle in the virus pool. */
13214           infect(regiontris[i]);
13215           regiontri = (triangle **) poolalloc(&m->viri);
13216           *regiontri = regiontris[i].tri;
13217           /* Apply one region's attribute and/or area constraint. */
13218           regionplague(m, b, regionlist[4 * i + 2], regionlist[4 * i + 3]);
13219           /* The virus pool should be empty now. */
13220         }
13221       }
13222     }
13223     if (b->regionattrib && !b->refine) {
13224       /* Note the fact that each triangle has an additional attribute. */
13225       m->eextras++;
13226     }
13227   }
13228 
13229   /* Free up memory. */
13230   if (((holes > 0) && !b->noholes) || !b->convex || (regions > 0)) {
13231     pooldeinit(&m->viri);
13232   }
13233   if (regions > 0) {
13234     trifree((VOID *) regiontris);
13235   }
13236 }
13237 
13240 /********* Carving out holes and concavities ends here               *********/
13241 
13242 /********* Mesh quality maintenance begins here                      *********/
13246 /*****************************************************************************/
13247 /*                                                                           */
13248 /*  tallyencs()   Traverse the entire list of subsegments, and check each    */
13249 /*                to see if it is encroached.  If so, add it to the list.    */
13250 /*                                                                           */
13251 /*****************************************************************************/
13252 
13253 #ifndef CDT_ONLY
13254 
13255 #ifdef ANSI_DECLARATORS
13256 void tallyencs(struct mesh *m, struct behavior *b)
13257 #else /* not ANSI_DECLARATORS */
13258 void tallyencs(m, b)
13259 struct mesh *m;
13260 struct behavior *b;
13261 #endif /* not ANSI_DECLARATORS */
13262 
13263 {
13264   struct osub subsegloop;
13265   //int dummy;
13266 
13267   traversalinit(&m->subsegs);
13268   subsegloop.ssorient = 0;
13269   subsegloop.ss = subsegtraverse(m);
13270   while (subsegloop.ss != (subseg *) NULL) {
13271     /* If the segment is encroached, add it to the list. */
13272     // dummy = checkseg4encroach(m, b, &subsegloop); // "dummy =" commented out to get gcc 4.6 working
13273     checkseg4encroach(m, b, &subsegloop); // "dummy =" commented out to get gcc 4.6 working
13274     subsegloop.ss = subsegtraverse(m);
13275   }
13276 }
13277 
13278 #endif /* not CDT_ONLY */
13279 
13280 /*****************************************************************************/
13281 /*                                                                           */
13282 /*  precisionerror()  Print an error message for precision problems.         */
13283 /*                                                                           */
13284 /*****************************************************************************/
13285 
13286 #ifndef CDT_ONLY
13287 
13288 void precisionerror()
13289 {
13290   printf("Try increasing the area criterion and/or reducing the minimum\n");
13291   printf("  allowable angle so that tiny triangles are not created.\n");
13292 #ifdef SINGLE
13293   printf("Alternatively, try recompiling me with double precision\n");
13294   printf("  arithmetic (by removing \"#define SINGLE\" from the\n");
13295   printf("  source file or \"-DSINGLE\" from the makefile).\n");
13296 #endif /* SINGLE */
13297 }
13298 
13299 #endif /* not CDT_ONLY */
13300 
13301 /*****************************************************************************/
13302 /*                                                                           */
13303 /*  splitencsegs()   Split all the encroached subsegments.                   */
13304 /*                                                                           */
13305 /*  Each encroached subsegment is repaired by splitting it - inserting a     */
13306 /*  vertex at or near its midpoint.  Newly inserted vertices may encroach    */
13307 /*  upon other subsegments; these are also repaired.                         */
13308 /*                                                                           */
13309 /*  `triflaws' is a flag that specifies whether one should take note of new  */
13310 /*  bad triangles that result from inserting vertices to repair encroached   */
13311 /*  subsegments.                                                             */
13312 /*                                                                           */
13313 /*****************************************************************************/
13314 
13315 #ifndef CDT_ONLY
13316 
13317 #ifdef ANSI_DECLARATORS
13318 void splitencsegs(struct mesh *m, struct behavior *b, int triflaws)
13319 #else /* not ANSI_DECLARATORS */
13320 void splitencsegs(m, b, triflaws)
13321 struct mesh *m;
13322 struct behavior *b;
13323 int triflaws;
13324 #endif /* not ANSI_DECLARATORS */
13325 
13326 {
13327   struct otri enctri;
13328   struct otri testtri;
13329   struct osub testsh;
13330   struct osub currentenc;
13331   struct badsubseg *encloop;
13332   vertex eorg, edest, eapex;
13333   vertex newvertex;
13334   enum insertvertexresult success;
13335   REAL segmentlength, nearestpoweroftwo;
13336   REAL split;
13337   REAL multiplier, divisor;
13338   int acuteorg, acuteorg2, acutedest, acutedest2;
13339   //int dummy;
13340   int i;
13341   triangle ptr;                     /* Temporary variable used by stpivot(). */
13342   subseg sptr;                        /* Temporary variable used by snext(). */
13343 
13344   /* Note that steinerleft == -1 if an unlimited number */
13345   /*   of Steiner points is allowed.                    */
13346   while ((m->badsubsegs.items > 0) && (m->steinerleft != 0)) {
13347     traversalinit(&m->badsubsegs);
13348     encloop = badsubsegtraverse(m);
13349     while ((encloop != (struct badsubseg *) NULL) && (m->steinerleft != 0)) {
13350       sdecode(encloop->encsubseg, currentenc);
13351       sorg(currentenc, eorg);
13352       sdest(currentenc, edest);
13353       /* Make sure that this segment is still the same segment it was   */
13354       /*   when it was determined to be encroached.  If the segment was */
13355       /*   enqueued multiple times (because several newly inserted      */
13356       /*   vertices encroached it), it may have already been split.     */
13357       if (!deadsubseg(currentenc.ss) &&
13358           (eorg == encloop->subsegorg) && (edest == encloop->subsegdest)) {
13359         /* To decide where to split a segment, we need to know if the   */
13360         /*   segment shares an endpoint with an adjacent segment.       */
13361         /*   The concern is that, if we simply split every encroached   */
13362         /*   segment in its center, two adjacent segments with a small  */
13363         /*   angle between them might lead to an infinite loop; each    */
13364         /*   vertex added to split one segment will encroach upon the   */
13365         /*   other segment, which must then be split with a vertex that */
13366         /*   will encroach upon the first segment, and so on forever.   */
13367         /* To avoid this, imagine a set of concentric circles, whose    */
13368         /*   radii are powers of two, about each segment endpoint.      */
13369         /*   These concentric circles determine where the segment is    */
13370         /*   split.  (If both endpoints are shared with adjacent        */
13371         /*   segments, split the segment in the middle, and apply the   */
13372         /*   concentric circles for later splittings.)                  */
13373 
13374         /* Is the origin shared with another segment? */
13375         stpivot(currentenc, enctri);
13376         lnext(enctri, testtri);
13377         tspivot(testtri, testsh);
13378         acuteorg = testsh.ss != m->dummysub;
13379         /* Is the destination shared with another segment? */
13380         lnextself(testtri);
13381         tspivot(testtri, testsh);
13382         acutedest = testsh.ss != m->dummysub;
13383 
13384         /* If we're using Chew's algorithm (rather than Ruppert's) */
13385         /*   to define encroachment, delete free vertices from the */
13386         /*   subsegment's diametral circle.                        */
13387         if (!b->conformdel && !acuteorg && !acutedest) {
13388           apex(enctri, eapex);
13389           while ((vertextype(eapex) == FREEVERTEX) &&
13390                  ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
13391                   (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
13392             deletevertex(m, b, &testtri);
13393             stpivot(currentenc, enctri);
13394             apex(enctri, eapex);
13395             lprev(enctri, testtri);
13396           }
13397         }
13398 
13399         /* Now, check the other side of the segment, if there's a triangle */
13400         /*   there.                                                        */
13401         sym(enctri, testtri);
13402         if (testtri.tri != m->dummytri) {
13403           /* Is the destination shared with another segment? */
13404           lnextself(testtri);
13405           tspivot(testtri, testsh);
13406           acutedest2 = testsh.ss != m->dummysub;
13407           acutedest = acutedest || acutedest2;
13408           /* Is the origin shared with another segment? */
13409           lnextself(testtri);
13410           tspivot(testtri, testsh);
13411           acuteorg2 = testsh.ss != m->dummysub;
13412           acuteorg = acuteorg || acuteorg2;
13413 
13414           /* Delete free vertices from the subsegment's diametral circle. */
13415           if (!b->conformdel && !acuteorg2 && !acutedest2) {
13416             org(testtri, eapex);
13417             while ((vertextype(eapex) == FREEVERTEX) &&
13418                    ((eorg[0] - eapex[0]) * (edest[0] - eapex[0]) +
13419                     (eorg[1] - eapex[1]) * (edest[1] - eapex[1]) < 0.0)) {
13420               deletevertex(m, b, &testtri);
13421               sym(enctri, testtri);
13422               apex(testtri, eapex);
13423               lprevself(testtri);
13424             }
13425           }
13426         }
13427 
13428         /* Use the concentric circles if exactly one endpoint is shared */
13429         /*   with another adjacent segment.                             */
13430         if (acuteorg || acutedest) {
13431           segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0]) +
13432                                (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
13433           /* Find the power of two that most evenly splits the segment.  */
13434           /*   The worst case is a 2:1 ratio between subsegment lengths. */
13435           nearestpoweroftwo = 1.0;
13436           while (segmentlength > 3.0 * nearestpoweroftwo) {
13437             nearestpoweroftwo *= 2.0;
13438           }
13439           while (segmentlength < 1.5 * nearestpoweroftwo) {
13440             nearestpoweroftwo *= 0.5;
13441           }
13442           /* Where do we split the segment? */
13443           split = nearestpoweroftwo / segmentlength;
13444           if (acutedest) {
13445             split = 1.0 - split;
13446           }
13447         } else {
13448           /* If we're not worried about adjacent segments, split */
13449           /*   this segment in the middle.                       */
13450           split = 0.5;
13451         }
13452 
13453         /* Create the new vertex. */
13454         newvertex = (vertex) poolalloc(&m->vertices);
13455         /* Interpolate its coordinate and attributes. */
13456         for (i = 0; i < 2 + m->nextras; i++) {
13457           newvertex[i] = eorg[i] + split * (edest[i] - eorg[i]);
13458         }
13459 
13460         if (!b->noexact) {
13461           /* Roundoff in the above calculation may yield a `newvertex'   */
13462           /*   that is not precisely collinear with `eorg' and `edest'.  */
13463           /*   Improve collinearity by one step of iterative refinement. */
13464           multiplier = counterclockwise(m, b, eorg, edest, newvertex);
13465           divisor = ((eorg[0] - edest[0]) * (eorg[0] - edest[0]) +
13466                      (eorg[1] - edest[1]) * (eorg[1] - edest[1]));
13467           if ((multiplier != 0.0) && (divisor != 0.0)) {
13468             multiplier = multiplier / divisor;
13469             /* Watch out for NANs. */
13470             if (multiplier == multiplier) {
13471               newvertex[0] += multiplier * (edest[1] - eorg[1]);
13472               newvertex[1] += multiplier * (eorg[0] - edest[0]);
13473             }
13474           }
13475         }
13476 
13477         setvertexmark(newvertex, mark(currentenc));
13478         setvertextype(newvertex, SEGMENTVERTEX);
13479         if (b->verbose > 1) {
13480           printf(
13481   "  Splitting subsegment (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
13482                  eorg[0], eorg[1], edest[0], edest[1],
13483                  newvertex[0], newvertex[1]);
13484         }
13485         /* Check whether the new vertex lies on an endpoint. */
13486         if (((newvertex[0] == eorg[0]) && (newvertex[1] == eorg[1])) ||
13487             ((newvertex[0] == edest[0]) && (newvertex[1] == edest[1]))) {
13488           printf("Error:  Ran out of precision at (%.12g, %.12g).\n",
13489                  newvertex[0], newvertex[1]);
13490           printf("I attempted to split a segment to a smaller size than\n");
13491           printf("  can be accommodated by the finite precision of\n");
13492           printf("  floating point arithmetic.\n");
13493           precisionerror();
13494           triexit(1);
13495         }
13496         /* Insert the splitting vertex.  This should always succeed. */
13497         success = insertvertex(m, b, newvertex, &enctri, &currentenc,
13498                                1, triflaws);
13499         if ((success != SUCCESSFULVERTEX) && (success != ENCROACHINGVERTEX)) {
13500           printf("Internal error in splitencsegs():\n");
13501           printf("  Failure to split a segment.\n");
13502           internalerror();
13503         }
13504         if (m->steinerleft > 0) {
13505           m->steinerleft--;
13506         }
13507         /* Check the two new subsegments to see if they're encroached. */
13508         //dummy = checkseg4encroach(m, b, &currentenc); // commented out to get gcc 4.6 working
13509         checkseg4encroach(m, b, &currentenc); // "dummy =" commented out to get gcc 4.6 working
13510         snextself(currentenc);
13511         //dummy = checkseg4encroach(m, b, &currentenc); // commented out to get gcc 4.6 working
13512         checkseg4encroach(m, b, &currentenc); // "dummy =" commented out to get gcc 4.6 working
13513       }
13514 
13515       badsubsegdealloc(m, encloop);
13516       encloop = badsubsegtraverse(m);
13517     }
13518   }
13519 }
13520 
13521 #endif /* not CDT_ONLY */
13522 
13523 /*****************************************************************************/
13524 /*                                                                           */
13525 /*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
13526 /*                                                                           */
13527 /*****************************************************************************/
13528 
13529 #ifndef CDT_ONLY
13530 
13531 #ifdef ANSI_DECLARATORS
13532 void tallyfaces(struct mesh *m, struct behavior *b)
13533 #else /* not ANSI_DECLARATORS */
13534 void tallyfaces(m, b)
13535 struct mesh *m;
13536 struct behavior *b;
13537 #endif /* not ANSI_DECLARATORS */
13538 
13539 {
13540   struct otri triangleloop;
13541 
13542   if (b->verbose) {
13543     printf("  Making a list of bad triangles.\n");
13544   }
13545   traversalinit(&m->triangles);
13546   triangleloop.orient = 0;
13547   triangleloop.tri = triangletraverse(m);
13548   while (triangleloop.tri != (triangle *) NULL) {
13549     /* If the triangle is bad, enqueue it. */
13550     testtriangle(m, b, &triangleloop);
13551     triangleloop.tri = triangletraverse(m);
13552   }
13553 }
13554 
13555 #endif /* not CDT_ONLY */
13556 
13557 /*****************************************************************************/
13558 /*                                                                           */
13559 /*  splittriangle()   Inserts a vertex at the circumcenter of a triangle.    */
13560 /*                    Deletes the newly inserted vertex if it encroaches     */
13561 /*                    upon a segment.                                        */
13562 /*                                                                           */
13563 /*****************************************************************************/
13564 
13565 #ifndef CDT_ONLY
13566 
13567 #ifdef ANSI_DECLARATORS
13568 void splittriangle(struct mesh *m, struct behavior *b,
13569                    struct badtriang *badtri)
13570 #else /* not ANSI_DECLARATORS */
13571 void splittriangle(m, b, badtri)
13572 struct mesh *m;
13573 struct behavior *b;
13574 struct badtriang *badtri;
13575 #endif /* not ANSI_DECLARATORS */
13576 
13577 {
13578   struct otri badotri;
13579   vertex borg, bdest, bapex;
13580   vertex newvertex;
13581   REAL xi, eta;
13582   enum insertvertexresult success;
13583   int errorflag;
13584   int i;
13585 
13586   decode(badtri->poortri, badotri);
13587   org(badotri, borg);
13588   dest(badotri, bdest);
13589   apex(badotri, bapex);
13590   /* Make sure that this triangle is still the same triangle it was      */
13591   /*   when it was tested and determined to be of bad quality.           */
13592   /*   Subsequent transformations may have made it a different triangle. */
13593   if (!deadtri(badotri.tri) && (borg == badtri->triangorg) &&
13594       (bdest == badtri->triangdest) && (bapex == badtri->triangapex)) {
13595     if (b->verbose > 1) {
13596       printf("  Splitting this triangle at its circumcenter:\n");
13597       printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
13598              borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
13599     }
13600 
13601     errorflag = 0;
13602     /* Create a new vertex at the triangle's circumcenter. */
13603     newvertex = (vertex) poolalloc(&m->vertices);
13604     findcircumcenter(m, b, borg, bdest, bapex, newvertex, &xi, &eta, 1);
13605 
13606     /* Check whether the new vertex lies on a triangle vertex. */
13607     if (((newvertex[0] == borg[0]) && (newvertex[1] == borg[1])) ||
13608         ((newvertex[0] == bdest[0]) && (newvertex[1] == bdest[1])) ||
13609         ((newvertex[0] == bapex[0]) && (newvertex[1] == bapex[1]))) {
13610       if (!b->quiet) {
13611         printf(
13612              "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
13613                newvertex[0], newvertex[1]);
13614         errorflag = 1;
13615       }
13616       vertexdealloc(m, newvertex);
13617     } else {
13618       for (i = 2; i < 2 + m->nextras; i++) {
13619         /* Interpolate the vertex attributes at the circumcenter. */
13620         newvertex[i] = borg[i] + xi * (bdest[i] - borg[i])
13621                               + eta * (bapex[i] - borg[i]);
13622       }
13623       /* The new vertex must be in the interior, and therefore is a */
13624       /*   free vertex with a marker of zero.                       */
13625       setvertexmark(newvertex, 0);
13626       setvertextype(newvertex, FREEVERTEX);
13627 
13628       /* Ensure that the handle `badotri' does not represent the longest  */
13629       /*   edge of the triangle.  This ensures that the circumcenter must */
13630       /*   fall to the left of this edge, so point location will work.    */
13631       /*   (If the angle org-apex-dest exceeds 90 degrees, then the       */
13632       /*   circumcenter lies outside the org-dest edge, and eta is        */
13633       /*   negative.  Roundoff error might prevent eta from being         */
13634       /*   negative when it should be, so I test eta against xi.)         */
13635       if (eta < xi) {
13636         lprevself(badotri);
13637       }
13638 
13639       /* Insert the circumcenter, searching from the edge of the triangle, */
13640       /*   and maintain the Delaunay property of the triangulation.        */
13641       success = insertvertex(m, b, newvertex, &badotri, (struct osub *) NULL,
13642                              1, 1);
13643       if (success == SUCCESSFULVERTEX) {
13644         if (m->steinerleft > 0) {
13645           m->steinerleft--;
13646         }
13647       } else if (success == ENCROACHINGVERTEX) {
13648         /* If the newly inserted vertex encroaches upon a subsegment, */
13649         /*   delete the new vertex.                                   */
13650         undovertex(m, b);
13651         if (b->verbose > 1) {
13652           printf("  Rejecting (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
13653         }
13654         vertexdealloc(m, newvertex);
13655       } else if (success == VIOLATINGVERTEX) {
13656         /* Failed to insert the new vertex, but some subsegment was */
13657         /*   marked as being encroached.                            */
13658         vertexdealloc(m, newvertex);
13659       } else {                                 /* success == DUPLICATEVERTEX */
13660         /* Couldn't insert the new vertex because a vertex is already there. */
13661         if (!b->quiet) {
13662           printf(
13663             "Warning:  New vertex (%.12g, %.12g) falls on existing vertex.\n",
13664                  newvertex[0], newvertex[1]);
13665           errorflag = 1;
13666         }
13667         vertexdealloc(m, newvertex);
13668       }
13669     }
13670     if (errorflag) {
13671       if (b->verbose) {
13672         printf("  The new vertex is at the circumcenter of triangle\n");
13673         printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
13674                borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
13675       }
13676       printf("This probably means that I am trying to refine triangles\n");
13677       printf("  to a smaller size than can be accommodated by the finite\n");
13678       printf("  precision of floating point arithmetic.  (You can be\n");
13679       printf("  sure of this if I fail to terminate.)\n");
13680       precisionerror();
13681     }
13682   }
13683 }
13684 
13685 #endif /* not CDT_ONLY */
13686 
13687 /*****************************************************************************/
13688 /*                                                                           */
13689 /*  enforcequality()   Remove all the encroached subsegments and bad         */
13690 /*                     triangles from the triangulation.                     */
13691 /*                                                                           */
13692 /*****************************************************************************/
13693 
13694 #ifndef CDT_ONLY
13695 
13696 #ifdef ANSI_DECLARATORS
13697 void enforcequality(struct mesh *m, struct behavior *b)
13698 #else /* not ANSI_DECLARATORS */
13699 void enforcequality(m, b)
13700 struct mesh *m;
13701 struct behavior *b;
13702 #endif /* not ANSI_DECLARATORS */
13703 
13704 {
13705   struct badtriang *badtri;
13706   int i;
13707 
13708   if (!b->quiet) {
13709     printf("Adding Steiner points to enforce quality.\n");
13710   }
13711   /* Initialize the pool of encroached subsegments. */
13712   poolinit(&m->badsubsegs, sizeof(struct badsubseg), BADSUBSEGPERBLOCK,
13713            BADSUBSEGPERBLOCK, 0);
13714   if (b->verbose) {
13715     printf("  Looking for encroached subsegments.\n");
13716   }
13717   /* Test all segments to see if they're encroached. */
13718   tallyencs(m, b);
13719   if (b->verbose && (m->badsubsegs.items > 0)) {
13720     printf("  Splitting encroached subsegments.\n");
13721   }
13722   /* Fix encroached subsegments without noting bad triangles. */
13723   splitencsegs(m, b, 0);
13724   /* At this point, if we haven't run out of Steiner points, the */
13725   /*   triangulation should be (conforming) Delaunay.            */
13726 
13727   /* Next, we worry about enforcing triangle quality. */
13728   if ((b->minangle > 0.0) || b->vararea || b->fixedarea || b->usertest) {
13729     /* Initialize the pool of bad triangles. */
13730     poolinit(&m->badtriangles, sizeof(struct badtriang), BADTRIPERBLOCK,
13731              BADTRIPERBLOCK, 0);
13732     /* Initialize the queues of bad triangles. */
13733     for (i = 0; i < 4096; i++) {
13734       m->queuefront[i] = (struct badtriang *) NULL;
13735     }
13736     m->firstnonemptyq = -1;
13737     /* Test all triangles to see if they're bad. */
13738     tallyfaces(m, b);
13739     /* Initialize the pool of recently flipped triangles. */
13740     poolinit(&m->flipstackers, sizeof(struct flipstacker), FLIPSTACKERPERBLOCK,
13741              FLIPSTACKERPERBLOCK, 0);
13742     m->checkquality = 1;
13743     if (b->verbose) {
13744       printf("  Splitting bad triangles.\n");
13745     }
13746     while ((m->badtriangles.items > 0) && (m->steinerleft != 0)) {
13747       /* Fix one bad triangle by inserting a vertex at its circumcenter. */
13748       badtri = dequeuebadtriang(m);
13749       splittriangle(m, b, badtri);
13750       if (m->badsubsegs.items > 0) {
13751         /* Put bad triangle back in queue for another try later. */
13752         enqueuebadtriang(m, b, badtri);
13753         /* Fix any encroached subsegments that resulted. */
13754         /*   Record any new bad triangles that result.   */
13755         splitencsegs(m, b, 1);
13756       } else {
13757         /* Return the bad triangle to the pool. */
13758         pooldealloc(&m->badtriangles, (VOID *) badtri);
13759       }
13760     }
13761   }
13762   /* At this point, if the "-D" switch was selected and we haven't run out  */
13763   /*   of Steiner points, the triangulation should be (conforming) Delaunay */
13764   /*   and have no low-quality triangles.                                   */
13765 
13766   /* Might we have run out of Steiner points too soon? */
13767   if (!b->quiet && b->conformdel && (m->badsubsegs.items > 0) &&
13768       (m->steinerleft == 0)) {
13769     printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");
13770     if (m->badsubsegs.items == 1) {
13771       printf("  one encroached subsegment, and therefore might not be truly\n"
13772              );
13773     } else {
13774       printf("  %ld encroached subsegments, and therefore might not be truly\n"
13775              , m->badsubsegs.items);
13776     }
13777     printf("  Delaunay.  If the Delaunay property is important to you,\n");
13778     printf("  try increasing the number of Steiner points (controlled by\n");
13779     printf("  the -S switch) slightly and try again.\n\n");
13780   }
13781 }
13782 
13783 #endif /* not CDT_ONLY */
13784 
13787 /********* Mesh quality maintenance ends here                        *********/
13788 
13789 /*****************************************************************************/
13790 /*                                                                           */
13791 /*  highorder()   Create extra nodes for quadratic subparametric elements.   */
13792 /*                                                                           */
13793 /*****************************************************************************/
13794 
13795 #ifdef ANSI_DECLARATORS
13796 void highorder(struct mesh *m, struct behavior *b)
13797 #else /* not ANSI_DECLARATORS */
13798 void highorder(m, b)
13799 struct mesh *m;
13800 struct behavior *b;
13801 #endif /* not ANSI_DECLARATORS */
13802 
13803 {
13804   struct otri triangleloop, trisym;
13805   struct osub checkmark;
13806   vertex newvertex;
13807   vertex torg, tdest;
13808   int i;
13809   triangle ptr;                         /* Temporary variable used by sym(). */
13810   subseg sptr;                      /* Temporary variable used by tspivot(). */
13811 
13812   if (!b->quiet) {
13813     printf("Adding vertices for second-order triangles.\n");
13814   }
13815   /* The following line ensures that dead items in the pool of nodes    */
13816   /*   cannot be allocated for the extra nodes associated with high     */
13817   /*   order elements.  This ensures that the primary nodes (at the     */
13818   /*   corners of elements) will occur earlier in the output files, and */
13819   /*   have lower indices, than the extra nodes.                        */
13820   m->vertices.deaditemstack = (VOID *) NULL;
13821 
13822   traversalinit(&m->triangles);
13823   triangleloop.tri = triangletraverse(m);
13824   /* To loop over the set of edges, loop over all triangles, and look at   */
13825   /*   the three edges of each triangle.  If there isn't another triangle  */
13826   /*   adjacent to the edge, operate on the edge.  If there is another     */
13827   /*   adjacent triangle, operate on the edge only if the current triangle */
13828   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
13829   /*   considered only once.                                               */
13830   while (triangleloop.tri != (triangle *) NULL) {
13831     for (triangleloop.orient = 0; triangleloop.orient < 3;
13832          triangleloop.orient++) {
13833       sym(triangleloop, trisym);
13834       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
13835         org(triangleloop, torg);
13836         dest(triangleloop, tdest);
13837         /* Create a new node in the middle of the edge.  Interpolate */
13838         /*   its attributes.                                         */
13839         newvertex = (vertex) poolalloc(&m->vertices);
13840         for (i = 0; i < 2 + m->nextras; i++) {
13841           newvertex[i] = 0.5 * (torg[i] + tdest[i]);
13842         }
13843         /* Set the new node's marker to zero or one, depending on */
13844         /*   whether it lies on a boundary.                       */
13845         setvertexmark(newvertex, trisym.tri == m->dummytri);
13846         setvertextype(newvertex,
13847                       trisym.tri == m->dummytri ? FREEVERTEX : SEGMENTVERTEX);
13848         if (b->usesegments) {
13849           tspivot(triangleloop, checkmark);
13850           /* If this edge is a segment, transfer the marker to the new node. */
13851           if (checkmark.ss != m->dummysub) {
13852             setvertexmark(newvertex, mark(checkmark));
13853             setvertextype(newvertex, SEGMENTVERTEX);
13854           }
13855         }
13856         if (b->verbose > 1) {
13857           printf("  Creating (%.12g, %.12g).\n", newvertex[0], newvertex[1]);
13858         }
13859         /* Record the new node in the (one or two) adjacent elements. */
13860         triangleloop.tri[m->highorderindex + triangleloop.orient] =
13861                 (triangle) newvertex;
13862         if (trisym.tri != m->dummytri) {
13863           trisym.tri[m->highorderindex + trisym.orient] = (triangle) newvertex;
13864         }
13865       }
13866     }
13867     triangleloop.tri = triangletraverse(m);
13868   }
13869 }
13870 
13871 /********* File I/O routines begin here                              *********/
13875 /*****************************************************************************/
13876 /*                                                                           */
13877 /*  readline()   Read a nonempty line from a file.                           */
13878 /*                                                                           */
13879 /*  A line is considered "nonempty" if it contains something that looks like */
13880 /*  a number.  Comments (prefaced by `#') are ignored.                       */
13881 /*                                                                           */
13882 /*****************************************************************************/
13883 
13884 #ifndef TRILIBRARY
13885 
13886 #ifdef ANSI_DECLARATORS
13887 char *readline(char *string, FILE *infile, char *infilename)
13888 #else /* not ANSI_DECLARATORS */
13889 char *readline(string, infile, infilename)
13890 char *string;
13891 FILE *infile;
13892 char *infilename;
13893 #endif /* not ANSI_DECLARATORS */
13894 
13895 {
13896   char *result;
13897 
13898   /* Search for something that looks like a number. */
13899   do {
13900     result = fgets(string, INPUTLINESIZE, infile);
13901     if (result == (char *) NULL) {
13902       printf("  Error:  Unexpected end of file in %s.\n", infilename);
13903       triexit(1);
13904     }
13905     /* Skip anything that doesn't look like a number, a comment, */
13906     /*   or the end of a line.                                   */
13907     while ((*result != '\0') && (*result != '#')
13908            && (*result != '.') && (*result != '+') && (*result != '-')
13909            && ((*result < '0') || (*result > '9'))) {
13910       result++;
13911     }
13912   /* If it's a comment or end of line, read another line and try again. */
13913   } while ((*result == '#') || (*result == '\0'));
13914   return result;
13915 }
13916 
13917 #endif /* not TRILIBRARY */
13918 
13919 /*****************************************************************************/
13920 /*                                                                           */
13921 /*  findfield()   Find the next field of a string.                           */
13922 /*                                                                           */
13923 /*  Jumps past the current field by searching for whitespace, then jumps     */
13924 /*  past the whitespace to find the next field.                              */
13925 /*                                                                           */
13926 /*****************************************************************************/
13927 
13928 #ifndef TRILIBRARY
13929 
13930 #ifdef ANSI_DECLARATORS
13931 char *findfield(char *string)
13932 #else /* not ANSI_DECLARATORS */
13933 char *findfield(string)
13934 char *string;
13935 #endif /* not ANSI_DECLARATORS */
13936 
13937 {
13938   char *result;
13939 
13940   result = string;
13941   /* Skip the current field.  Stop upon reaching whitespace. */
13942   while ((*result != '\0') && (*result != '#')
13943          && (*result != ' ') && (*result != '\t')) {
13944     result++;
13945   }
13946   /* Now skip the whitespace and anything else that doesn't look like a */
13947   /*   number, a comment, or the end of a line.                         */
13948   while ((*result != '\0') && (*result != '#')
13949          && (*result != '.') && (*result != '+') && (*result != '-')
13950          && ((*result < '0') || (*result > '9'))) {
13951     result++;
13952   }
13953   /* Check for a comment (prefixed with `#'). */
13954   if (*result == '#') {
13955     *result = '\0';
13956   }
13957   return result;
13958 }
13959 
13960 #endif /* not TRILIBRARY */
13961 
13962 /*****************************************************************************/
13963 /*                                                                           */
13964 /*  readnodes()   Read the vertices from a file, which may be a .node or     */
13965 /*                .poly file.                                                */
13966 /*                                                                           */
13967 /*****************************************************************************/
13968 
13969 #ifndef TRILIBRARY
13970 
13971 #ifdef ANSI_DECLARATORS
13972 void readnodes(struct mesh *m, struct behavior *b, char *nodefilename,
13973                char* polyfilename, FILE **polyfile)
13974 #else /* not ANSI_DECLARATORS */
13975 void readnodes(m, b, nodefilename, polyfilename, polyfile)
13976 struct mesh *m;
13977 struct behavior *b;
13978 char *nodefilename;
13979 char* polyfilename;
13980 FILE **polyfile;
13981 #endif /* not ANSI_DECLARATORS */
13982 
13983 {
13984   FILE *infile;
13985   vertex vertexloop;
13986   char inputline[INPUTLINESIZE];
13987   char *stringptr;
13988   char *infilename;
13989   REAL x, y;
13990   int firstnode;
13991   int nodemarkers;
13992   int currentmarker;
13993   int i, j;
13994 
13995   if (b->poly) {
13996     /* Read the vertices from a .poly file. */
13997     if (!b->quiet) {
13998       printf("Opening %s.\n", polyfilename);
13999     }
14000    * polyfile = fopen(polyfilename, "r");
14001     if (*polyfile == (FILE *) NULL) {
14002       printf("  Error:  Cannot access file %s.\n", polyfilename);
14003       triexit(1);
14004     }
14005     /* Read number of vertices, number of dimensions, number of vertex */
14006     /*   attributes, and number of boundary markers.                   */
14007     stringptr = readline(inputline,* polyfile, polyfilename);
14008     m->invertices = (int) strtol(stringptr, &stringptr, 0);
14009     stringptr = findfield(stringptr);
14010     if (*stringptr == '\0') {
14011       m->mesh_dim = 2;
14012     } else {
14013       m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
14014     }
14015     stringptr = findfield(stringptr);
14016     if (*stringptr == '\0') {
14017       m->nextras = 0;
14018     } else {
14019       m->nextras = (int) strtol(stringptr, &stringptr, 0);
14020     }
14021     stringptr = findfield(stringptr);
14022     if (*stringptr == '\0') {
14023       nodemarkers = 0;
14024     } else {
14025       nodemarkers = (int) strtol(stringptr, &stringptr, 0);
14026     }
14027     if (m->invertices > 0) {
14028       infile =* polyfile;
14029       infilename = polyfilename;
14030       m->readnodefile = 0;
14031     } else {
14032       /* If the .poly file claims there are zero vertices, that means that */
14033       /*   the vertices should be read from a separate .node file.         */
14034       m->readnodefile = 1;
14035       infilename = nodefilename;
14036     }
14037   } else {
14038     m->readnodefile = 1;
14039     infilename = nodefilename;
14040    * polyfile = (FILE *) NULL;
14041   }
14042 
14043   if (m->readnodefile) {
14044     /* Read the vertices from a .node file. */
14045     if (!b->quiet) {
14046       printf("Opening %s.\n", nodefilename);
14047     }
14048     infile = fopen(nodefilename, "r");
14049     if (infile == (FILE *) NULL) {
14050       printf("  Error:  Cannot access file %s.\n", nodefilename);
14051       triexit(1);
14052     }
14053     /* Read number of vertices, number of dimensions, number of vertex */
14054     /*   attributes, and number of boundary markers.                   */
14055     stringptr = readline(inputline, infile, nodefilename);
14056     m->invertices = (int) strtol(stringptr, &stringptr, 0);
14057     stringptr = findfield(stringptr);
14058     if (*stringptr == '\0') {
14059       m->mesh_dim = 2;
14060     } else {
14061       m->mesh_dim = (int) strtol(stringptr, &stringptr, 0);
14062     }
14063     stringptr = findfield(stringptr);
14064     if (*stringptr == '\0') {
14065       m->nextras = 0;
14066     } else {
14067       m->nextras = (int) strtol(stringptr, &stringptr, 0);
14068     }
14069     stringptr = findfield(stringptr);
14070     if (*stringptr == '\0') {
14071       nodemarkers = 0;
14072     } else {
14073       nodemarkers = (int) strtol(stringptr, &stringptr, 0);
14074     }
14075   }
14076 
14077   if (m->invertices < 3) {
14078     printf("Error:  Input must have at least three input vertices.\n");
14079     triexit(1);
14080   }
14081   if (m->mesh_dim != 2) {
14082     printf("Error:  Triangle only works with two-dimensional meshes.\n");
14083     triexit(1);
14084   }
14085   if (m->nextras == 0) {
14086     b->weighted = 0;
14087   }
14088 
14089   initializevertexpool(m, b);
14090 
14091   /* Read the vertices. */
14092   for (i = 0; i < m->invertices; i++) {
14093     vertexloop = (vertex) poolalloc(&m->vertices);
14094     stringptr = readline(inputline, infile, infilename);
14095     if (i == 0) {
14096       firstnode = (int) strtol(stringptr, &stringptr, 0);
14097       if ((firstnode == 0) || (firstnode == 1)) {
14098         b->firstnumber = firstnode;
14099       }
14100     }
14101     stringptr = findfield(stringptr);
14102     if (*stringptr == '\0') {
14103       printf("Error:  Vertex %d has no x coordinate.\n", b->firstnumber + i);
14104       triexit(1);
14105     }
14106     x = (REAL) strtod(stringptr, &stringptr);
14107     stringptr = findfield(stringptr);
14108     if (*stringptr == '\0') {
14109       printf("Error:  Vertex %d has no y coordinate.\n", b->firstnumber + i);
14110       triexit(1);
14111     }
14112     y = (REAL) strtod(stringptr, &stringptr);
14113     vertexloop[0] = x;
14114     vertexloop[1] = y;
14115     /* Read the vertex attributes. */
14116     for (j = 2; j < 2 + m->nextras; j++) {
14117       stringptr = findfield(stringptr);
14118       if (*stringptr == '\0') {
14119         vertexloop[j] = 0.0;
14120       } else {
14121         vertexloop[j] = (REAL) strtod(stringptr, &stringptr);
14122       }
14123     }
14124     if (nodemarkers) {
14125       /* Read a vertex marker. */
14126       stringptr = findfield(stringptr);
14127       if (*stringptr == '\0') {
14128         setvertexmark(vertexloop, 0);
14129       } else {
14130         currentmarker = (int) strtol(stringptr, &stringptr, 0);
14131         setvertexmark(vertexloop, currentmarker);
14132       }
14133     } else {
14134       /* If no markers are specified in the file, they default to zero. */
14135       setvertexmark(vertexloop, 0);
14136     }
14137     setvertextype(vertexloop, INPUTVERTEX);
14138     /* Determine the smallest and largest x and y coordinates. */
14139     if (i == 0) {
14140       m->xmin = m->xmax = x;
14141       m->ymin = m->ymax = y;
14142     } else {
14143       m->xmin = (x < m->xmin) ? x : m->xmin;
14144       m->xmax = (x > m->xmax) ? x : m->xmax;
14145       m->ymin = (y < m->ymin) ? y : m->ymin;
14146       m->ymax = (y > m->ymax) ? y : m->ymax;
14147     }
14148   }
14149   if (m->readnodefile) {
14150     fclose(infile);
14151   }
14152 
14153   /* Nonexistent x value used as a flag to mark circle events in sweepline */
14154   /*   Delaunay algorithm.                                                 */
14155   m->xminextreme = 10 * m->xmin - 9 * m->xmax;
14156 }
14157 
14158 #endif /* not TRILIBRARY */
14159 
14160 /*****************************************************************************/
14161 /*                                                                           */
14162 /*  transfernodes()   Read the vertices from memory.                         */
14163 /*                                                                           */
14164 /*****************************************************************************/
14165 
14166 #ifdef TRILIBRARY
14167 
14168 #ifdef ANSI_DECLARATORS
14169 void transfernodes(struct mesh *m, struct behavior *b, REAL* pointlist,
14170                    REAL* pointattriblist, int* pointmarkerlist,
14171                    int numberofpoints, int numberofpointattribs)
14172 #else /* not ANSI_DECLARATORS */
14173 void transfernodes(m, b, pointlist, pointattriblist, pointmarkerlist,
14174                    numberofpoints, numberofpointattribs)
14175 struct mesh *m;
14176 struct behavior *b;
14177 REAL* pointlist;
14178 REAL* pointattriblist;
14179 int* pointmarkerlist;
14180 int numberofpoints;
14181 int numberofpointattribs;
14182 #endif /* not ANSI_DECLARATORS */
14183 
14184 {
14185   vertex vertexloop;
14186   REAL x, y;
14187   int i, j;
14188   int coordindex;
14189   int attribindex;
14190 
14191   m->invertices = numberofpoints;
14192   m->mesh_dim = 2;
14193   m->nextras = numberofpointattribs;
14194   m->readnodefile = 0;
14195   if (m->invertices < 3) {
14196     printf("Error:  Input must have at least three input vertices.\n");
14197     triexit(1);
14198   }
14199   if (m->nextras == 0) {
14200     b->weighted = 0;
14201   }
14202 
14203   initializevertexpool(m, b);
14204 
14205   /* Read the vertices. */
14206   coordindex = 0;
14207   attribindex = 0;
14208   for (i = 0; i < m->invertices; i++) {
14209     vertexloop = (vertex) poolalloc(&m->vertices);
14210     /* Read the vertex coordinates. */
14211     x = vertexloop[0] = pointlist[coordindex++];
14212     y = vertexloop[1] = pointlist[coordindex++];
14213     /* Read the vertex attributes. */
14214     for (j = 0; j < numberofpointattribs; j++) {
14215       vertexloop[2 + j] = pointattriblist[attribindex++];
14216     }
14217     if (pointmarkerlist != (int *) NULL) {
14218       /* Read a vertex marker. */
14219       setvertexmark(vertexloop, pointmarkerlist[i]);
14220     } else {
14221       /* If no markers are specified, they default to zero. */
14222       setvertexmark(vertexloop, 0);
14223     }
14224     setvertextype(vertexloop, INPUTVERTEX);
14225     /* Determine the smallest and largest x and y coordinates. */
14226     if (i == 0) {
14227       m->xmin = m->xmax = x;
14228       m->ymin = m->ymax = y;
14229     } else {
14230       m->xmin = (x < m->xmin) ? x : m->xmin;
14231       m->xmax = (x > m->xmax) ? x : m->xmax;
14232       m->ymin = (y < m->ymin) ? y : m->ymin;
14233       m->ymax = (y > m->ymax) ? y : m->ymax;
14234     }
14235   }
14236 
14237   /* Nonexistent x value used as a flag to mark circle events in sweepline */
14238   /*   Delaunay algorithm.                                                 */
14239   m->xminextreme = 10 * m->xmin - 9 * m->xmax;
14240 }
14241 
14242 #endif /* TRILIBRARY */
14243 
14244 /*****************************************************************************/
14245 /*                                                                           */
14246 /*  readholes()   Read the holes, and possibly regional attributes and area  */
14247 /*                constraints, from a .poly file.                            */
14248 /*                                                                           */
14249 /*****************************************************************************/
14250 
14251 #ifndef TRILIBRARY
14252 
14253 #ifdef ANSI_DECLARATORS
14254 void readholes(struct mesh *m, struct behavior *b,
14255                FILE* polyfile, char* polyfilename, REAL **hlist, int *holes,
14256                REAL **rlist, int *regions)
14257 #else /* not ANSI_DECLARATORS */
14258 void readholes(m, b, polyfile, polyfilename, hlist, holes, rlist, regions)
14259 struct mesh *m;
14260 struct behavior *b;
14261 FILE* polyfile;
14262 char* polyfilename;
14263 REAL **hlist;
14264 int *holes;
14265 REAL **rlist;
14266 int *regions;
14267 #endif /* not ANSI_DECLARATORS */
14268 
14269 {
14270   REAL *holelist;
14271   REAL *regionlist;
14272   char inputline[INPUTLINESIZE];
14273   char *stringptr;
14274   int index;
14275   int i;
14276 
14277   /* Read the holes. */
14278   stringptr = readline(inputline, polyfile, polyfilename);
14279   *holes = (int) strtol(stringptr, &stringptr, 0);
14280   if (*holes > 0) {
14281     holelist = (REAL *) trimalloc(2 * *holes * (int) sizeof(REAL));
14282     *hlist = holelist;
14283     for (i = 0; i < 2 * *holes; i += 2) {
14284       stringptr = readline(inputline, polyfile, polyfilename);
14285       stringptr = findfield(stringptr);
14286       if (*stringptr == '\0') {
14287         printf("Error:  Hole %d has no x coordinate.\n",
14288                b->firstnumber + (i >> 1));
14289         triexit(1);
14290       } else {
14291         holelist[i] = (REAL) strtod(stringptr, &stringptr);
14292       }
14293       stringptr = findfield(stringptr);
14294       if (*stringptr == '\0') {
14295         printf("Error:  Hole %d has no y coordinate.\n",
14296                b->firstnumber + (i >> 1));
14297         triexit(1);
14298       } else {
14299         holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
14300       }
14301     }
14302   } else {
14303     *hlist = (REAL *) NULL;
14304   }
14305 
14306 #ifndef CDT_ONLY
14307   if ((b->regionattrib || b->vararea) && !b->refine) {
14308     /* Read the area constraints. */
14309     stringptr = readline(inputline, polyfile, polyfilename);
14310     *regions = (int) strtol(stringptr, &stringptr, 0);
14311     if (*regions > 0) {
14312       regionlist = (REAL *) trimalloc(4 * *regions * (int) sizeof(REAL));
14313       *rlist = regionlist;
14314       index = 0;
14315       for (i = 0; i < *regions; i++) {
14316         stringptr = readline(inputline, polyfile, polyfilename);
14317         stringptr = findfield(stringptr);
14318         if (*stringptr == '\0') {
14319           printf("Error:  Region %d has no x coordinate.\n",
14320                  b->firstnumber + i);
14321           triexit(1);
14322         } else {
14323           regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
14324         }
14325         stringptr = findfield(stringptr);
14326         if (*stringptr == '\0') {
14327           printf("Error:  Region %d has no y coordinate.\n",
14328                  b->firstnumber + i);
14329           triexit(1);
14330         } else {
14331           regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
14332         }
14333         stringptr = findfield(stringptr);
14334         if (*stringptr == '\0') {
14335           printf(
14336             "Error:  Region %d has no region attribute or area constraint.\n",
14337                  b->firstnumber + i);
14338           triexit(1);
14339         } else {
14340           regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
14341         }
14342         stringptr = findfield(stringptr);
14343         if (*stringptr == '\0') {
14344           regionlist[index] = regionlist[index - 1];
14345         } else {
14346           regionlist[index] = (REAL) strtod(stringptr, &stringptr);
14347         }
14348         index++;
14349       }
14350     }
14351   } else {
14352     /* Set `*regions' to zero to avoid an accidental free() later. */
14353     *regions = 0;
14354     *rlist = (REAL *) NULL;
14355   }
14356 #endif /* not CDT_ONLY */
14357 
14358   fclose(polyfile);
14359 }
14360 
14361 #endif /* not TRILIBRARY */
14362 
14363 /*****************************************************************************/
14364 /*                                                                           */
14365 /*  finishfile()   Write the command line to the output file so the user     */
14366 /*                 can remember how the file was generated.  Close the file. */
14367 /*                                                                           */
14368 /*****************************************************************************/
14369 
14370 #ifndef TRILIBRARY
14371 
14372 #ifdef ANSI_DECLARATORS
14373 void finishfile(FILE *outfile, int argc, char **argv)
14374 #else /* not ANSI_DECLARATORS */
14375 void finishfile(outfile, argc, argv)
14376 FILE *outfile;
14377 int argc;
14378 char **argv;
14379 #endif /* not ANSI_DECLARATORS */
14380 
14381 {
14382   int i;
14383 
14384   fprintf(outfile, "# Generated by");
14385   for (i = 0; i < argc; i++) {
14386     fprintf(outfile, " ");
14387     fputs(argv[i], outfile);
14388   }
14389   fprintf(outfile, "\n");
14390   fclose(outfile);
14391 }
14392 
14393 #endif /* not TRILIBRARY */
14394 
14395 /*****************************************************************************/
14396 /*                                                                           */
14397 /*  writenodes()   Number the vertices and write them to a .node file.       */
14398 /*                                                                           */
14399 /*  To save memory, the vertex numbers are written over the boundary markers */
14400 /*  after the vertices are written to a file.                                */
14401 /*                                                                           */
14402 /*****************************************************************************/
14403 
14404 #ifdef TRILIBRARY
14405 
14406 #ifdef ANSI_DECLARATORS
14407 void writenodes(struct mesh *m, struct behavior *b, REAL **pointlist,
14408                 REAL **pointattriblist, int **pointmarkerlist)
14409 #else /* not ANSI_DECLARATORS */
14410 void writenodes(m, b, pointlist, pointattriblist, pointmarkerlist)
14411 struct mesh *m;
14412 struct behavior *b;
14413 REAL **pointlist;
14414 REAL **pointattriblist;
14415 int **pointmarkerlist;
14416 #endif /* not ANSI_DECLARATORS */
14417 
14418 #else /* not TRILIBRARY */
14419 
14420 #ifdef ANSI_DECLARATORS
14421 void writenodes(struct mesh *m, struct behavior *b, char *nodefilename,
14422                 int argc, char **argv)
14423 #else /* not ANSI_DECLARATORS */
14424 void writenodes(m, b, nodefilename, argc, argv)
14425 struct mesh *m;
14426 struct behavior *b;
14427 char *nodefilename;
14428 int argc;
14429 char **argv;
14430 #endif /* not ANSI_DECLARATORS */
14431 
14432 #endif /* not TRILIBRARY */
14433 
14434 {
14435 #ifdef TRILIBRARY
14436   REAL* plist;
14437   REAL* palist;
14438   int* pmlist;
14439   int coordindex;
14440   int attribindex;
14441 #else /* not TRILIBRARY */
14442   FILE *outfile;
14443 #endif /* not TRILIBRARY */
14444   vertex vertexloop;
14445   long outvertices;
14446   int vertexnumber;
14447   int i;
14448 
14449   if (b->jettison) {
14450     outvertices = m->vertices.items - m->undeads;
14451   } else {
14452     outvertices = m->vertices.items;
14453   }
14454 
14455 #ifdef TRILIBRARY
14456   if (!b->quiet) {
14457     printf("Writing vertices.\n");
14458   }
14459   /* Allocate memory for output vertices if necessary. */
14460   if (*pointlist == (REAL *) NULL) {
14461    * pointlist = (REAL *) trimalloc((int) (outvertices * 2 * sizeof(REAL)));
14462   }
14463   /* Allocate memory for output vertex attributes if necessary. */
14464   if ((m->nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
14465    * pointattriblist = (REAL *) trimalloc((int) (outvertices * m->nextras *
14466                                                  sizeof(REAL)));
14467   }
14468   /* Allocate memory for output vertex markers if necessary. */
14469   if (!b->nobound && (*pointmarkerlist == (int *) NULL)) {
14470    * pointmarkerlist = (int *) trimalloc((int) (outvertices * sizeof(int)));
14471   }
14472   plist =* pointlist;
14473   palist =* pointattriblist;
14474   pmlist =* pointmarkerlist;
14475   coordindex = 0;
14476   attribindex = 0;
14477 #else /* not TRILIBRARY */
14478   if (!b->quiet) {
14479     printf("Writing %s.\n", nodefilename);
14480   }
14481   outfile = fopen(nodefilename, "w");
14482   if (outfile == (FILE *) NULL) {
14483     printf("  Error:  Cannot create file %s.\n", nodefilename);
14484     triexit(1);
14485   }
14486   /* Number of vertices, number of dimensions, number of vertex attributes, */
14487   /*   and number of boundary markers (zero or one).                        */
14488   fprintf(outfile, "%ld  %d  %d  %d\n", outvertices, m->mesh_dim,
14489           m->nextras, 1 - b->nobound);
14490 #endif /* not TRILIBRARY */
14491 
14492   traversalinit(&m->vertices);
14493   vertexnumber = b->firstnumber;
14494   vertexloop = vertextraverse(m);
14495   while (vertexloop != (vertex) NULL) {
14496     if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
14497 #ifdef TRILIBRARY
14498       /* X and y coordinates. */
14499       plist[coordindex++] = vertexloop[0];
14500       plist[coordindex++] = vertexloop[1];
14501       /* Vertex attributes. */
14502       for (i = 0; i < m->nextras; i++) {
14503         palist[attribindex++] = vertexloop[2 + i];
14504       }
14505       if (!b->nobound) {
14506         /* Copy the boundary marker. */
14507         pmlist[vertexnumber - b->firstnumber] = vertexmark(vertexloop);
14508       }
14509 #else /* not TRILIBRARY */
14510       /* Vertex number, x and y coordinates. */
14511       fprintf(outfile, "%4d    %.17g  %.17g", vertexnumber, vertexloop[0],
14512               vertexloop[1]);
14513       for (i = 0; i < m->nextras; i++) {
14514         /* Write an attribute. */
14515         fprintf(outfile, "  %.17g", vertexloop[i + 2]);
14516       }
14517       if (b->nobound) {
14518         fprintf(outfile, "\n");
14519       } else {
14520         /* Write the boundary marker. */
14521         fprintf(outfile, "    %d\n", vertexmark(vertexloop));
14522       }
14523 #endif /* not TRILIBRARY */
14524 
14525       setvertexmark(vertexloop, vertexnumber);
14526       vertexnumber++;
14527     }
14528     vertexloop = vertextraverse(m);
14529   }
14530 
14531 #ifndef TRILIBRARY
14532   finishfile(outfile, argc, argv);
14533 #endif /* not TRILIBRARY */
14534 }
14535 
14536 /*****************************************************************************/
14537 /*                                                                           */
14538 /*  numbernodes()   Number the vertices.                                     */
14539 /*                                                                           */
14540 /*  Each vertex is assigned a marker equal to its number.                    */
14541 /*                                                                           */
14542 /*  Used when writenodes() is not called because no .node file is written.   */
14543 /*                                                                           */
14544 /*****************************************************************************/
14545 
14546 #ifdef ANSI_DECLARATORS
14547 void numbernodes(struct mesh *m, struct behavior *b)
14548 #else /* not ANSI_DECLARATORS */
14549 void numbernodes(m, b)
14550 struct mesh *m;
14551 struct behavior *b;
14552 #endif /* not ANSI_DECLARATORS */
14553 
14554 {
14555   vertex vertexloop;
14556   int vertexnumber;
14557 
14558   traversalinit(&m->vertices);
14559   vertexnumber = b->firstnumber;
14560   vertexloop = vertextraverse(m);
14561   while (vertexloop != (vertex) NULL) {
14562     setvertexmark(vertexloop, vertexnumber);
14563     if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
14564       vertexnumber++;
14565     }
14566     vertexloop = vertextraverse(m);
14567   }
14568 }
14569 
14570 /*****************************************************************************/
14571 /*                                                                           */
14572 /*  writeelements()   Write the triangles to an .ele file.                   */
14573 /*                                                                           */
14574 /*****************************************************************************/
14575 
14576 #ifdef TRILIBRARY
14577 
14578 #ifdef ANSI_DECLARATORS
14579 void writeelements(struct mesh *m, struct behavior *b,
14580                    int **trianglelist, REAL **triangleattriblist)
14581 #else /* not ANSI_DECLARATORS */
14582 void writeelements(m, b, trianglelist, triangleattriblist)
14583 struct mesh *m;
14584 struct behavior *b;
14585 int **trianglelist;
14586 REAL **triangleattriblist;
14587 #endif /* not ANSI_DECLARATORS */
14588 
14589 #else /* not TRILIBRARY */
14590 
14591 #ifdef ANSI_DECLARATORS
14592 void writeelements(struct mesh *m, struct behavior *b, char *elefilename,
14593                    int argc, char **argv)
14594 #else /* not ANSI_DECLARATORS */
14595 void writeelements(m, b, elefilename, argc, argv)
14596 struct mesh *m;
14597 struct behavior *b;
14598 char *elefilename;
14599 int argc;
14600 char **argv;
14601 #endif /* not ANSI_DECLARATORS */
14602 
14603 #endif /* not TRILIBRARY */
14604 
14605 {
14606 #ifdef TRILIBRARY
14607   int *tlist;
14608   REAL *talist;
14609   int vertexindex;
14610   int attribindex;
14611 #else /* not TRILIBRARY */
14612   FILE *outfile;
14613 #endif /* not TRILIBRARY */
14614   struct otri triangleloop;
14615   vertex p1, p2, p3;
14616   vertex mid1, mid2, mid3;
14617   long elementnumber;
14618   int i;
14619 
14620 #ifdef TRILIBRARY
14621   if (!b->quiet) {
14622     printf("Writing triangles.\n");
14623   }
14624   /* Allocate memory for output triangles if necessary. */
14625   if (*trianglelist == (int *) NULL) {
14626     *trianglelist = (int *) trimalloc((int) (m->triangles.items *
14627                                              ((b->order + 1) * (b->order + 2) /
14628                                               2) * sizeof(int)));
14629   }
14630   /* Allocate memory for output triangle attributes if necessary. */
14631   if ((m->eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
14632     *triangleattriblist = (REAL *) trimalloc((int) (m->triangles.items *
14633                                                     m->eextras *
14634                                                     sizeof(REAL)));
14635   }
14636   tlist = *trianglelist;
14637   talist = *triangleattriblist;
14638   vertexindex = 0;
14639   attribindex = 0;
14640 #else /* not TRILIBRARY */
14641   if (!b->quiet) {
14642     printf("Writing %s.\n", elefilename);
14643   }
14644   outfile = fopen(elefilename, "w");
14645   if (outfile == (FILE *) NULL) {
14646     printf("  Error:  Cannot create file %s.\n", elefilename);
14647     triexit(1);
14648   }
14649   /* Number of triangles, vertices per triangle, attributes per triangle. */
14650   fprintf(outfile, "%ld  %d  %d\n", m->triangles.items,
14651           (b->order + 1) * (b->order + 2) / 2, m->eextras);
14652 #endif /* not TRILIBRARY */
14653 
14654   traversalinit(&m->triangles);
14655   triangleloop.tri = triangletraverse(m);
14656   triangleloop.orient = 0;
14657   elementnumber = b->firstnumber;
14658   while (triangleloop.tri != (triangle *) NULL) {
14659     org(triangleloop, p1);
14660     dest(triangleloop, p2);
14661     apex(triangleloop, p3);
14662     if (b->order == 1) {
14663 #ifdef TRILIBRARY
14664       tlist[vertexindex++] = vertexmark(p1);
14665       tlist[vertexindex++] = vertexmark(p2);
14666       tlist[vertexindex++] = vertexmark(p3);
14667 #else /* not TRILIBRARY */
14668       /* Triangle number, indices for three vertices. */
14669       fprintf(outfile, "%4ld    %4d  %4d  %4d", elementnumber,
14670               vertexmark(p1), vertexmark(p2), vertexmark(p3));
14671 #endif /* not TRILIBRARY */
14672     } else {
14673       mid1 = (vertex) triangleloop.tri[m->highorderindex + 1];
14674       mid2 = (vertex) triangleloop.tri[m->highorderindex + 2];
14675       mid3 = (vertex) triangleloop.tri[m->highorderindex];
14676 #ifdef TRILIBRARY
14677       tlist[vertexindex++] = vertexmark(p1);
14678       tlist[vertexindex++] = vertexmark(p2);
14679       tlist[vertexindex++] = vertexmark(p3);
14680       tlist[vertexindex++] = vertexmark(mid1);
14681       tlist[vertexindex++] = vertexmark(mid2);
14682       tlist[vertexindex++] = vertexmark(mid3);
14683 #else /* not TRILIBRARY */
14684       /* Triangle number, indices for six vertices. */
14685       fprintf(outfile, "%4ld    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
14686               vertexmark(p1), vertexmark(p2), vertexmark(p3), vertexmark(mid1),
14687               vertexmark(mid2), vertexmark(mid3));
14688 #endif /* not TRILIBRARY */
14689     }
14690 
14691 #ifdef TRILIBRARY
14692     for (i = 0; i < m->eextras; i++) {
14693       talist[attribindex++] = elemattribute(triangleloop, i);
14694     }
14695 #else /* not TRILIBRARY */
14696     for (i = 0; i < m->eextras; i++) {
14697       fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
14698     }
14699     fprintf(outfile, "\n");
14700 #endif /* not TRILIBRARY */
14701 
14702     triangleloop.tri = triangletraverse(m);
14703     elementnumber++;
14704   }
14705 
14706 #ifndef TRILIBRARY
14707   finishfile(outfile, argc, argv);
14708 #endif /* not TRILIBRARY */
14709 }
14710 
14711 /*****************************************************************************/
14712 /*                                                                           */
14713 /*  writepoly()   Write the segments and holes to a .poly file.              */
14714 /*                                                                           */
14715 /*****************************************************************************/
14716 
14717 #ifdef TRILIBRARY
14718 
14719 #ifdef ANSI_DECLARATORS
14720 void writepoly(struct mesh *m, struct behavior *b,
14721                int **segmentlist, int **segmentmarkerlist)
14722 #else /* not ANSI_DECLARATORS */
14723 void writepoly(m, b, segmentlist, segmentmarkerlist)
14724 struct mesh *m;
14725 struct behavior *b;
14726 int **segmentlist;
14727 int **segmentmarkerlist;
14728 #endif /* not ANSI_DECLARATORS */
14729 
14730 #else /* not TRILIBRARY */
14731 
14732 #ifdef ANSI_DECLARATORS
14733 void writepoly(struct mesh *m, struct behavior *b, char* polyfilename,
14734                REAL *holelist, int holes, REAL *regionlist, int regions,
14735                int argc, char **argv)
14736 #else /* not ANSI_DECLARATORS */
14737 void writepoly(m, b, polyfilename, holelist, holes, regionlist, regions,
14738                argc, argv)
14739 struct mesh *m;
14740 struct behavior *b;
14741 char* polyfilename;
14742 REAL *holelist;
14743 int holes;
14744 REAL *regionlist;
14745 int regions;
14746 int argc;
14747 char **argv;
14748 #endif /* not ANSI_DECLARATORS */
14749 
14750 #endif /* not TRILIBRARY */
14751 
14752 {
14753 #ifdef TRILIBRARY
14754   int *slist;
14755   int *smlist;
14756   int index;
14757 #else /* not TRILIBRARY */
14758   FILE *outfile;
14759   long holenumber, regionnumber;
14760 #endif /* not TRILIBRARY */
14761   struct osub subsegloop;
14762   vertex endpoint1, endpoint2;
14763   long subsegnumber;
14764 
14765 #ifdef TRILIBRARY
14766   if (!b->quiet) {
14767     printf("Writing segments.\n");
14768   }
14769   /* Allocate memory for output segments if necessary. */
14770   if (*segmentlist == (int *) NULL) {
14771     *segmentlist = (int *) trimalloc((int) (m->subsegs.items * 2 *
14772                                             sizeof(int)));
14773   }
14774   /* Allocate memory for output segment markers if necessary. */
14775   if (!b->nobound && (*segmentmarkerlist == (int *) NULL)) {
14776     *segmentmarkerlist = (int *) trimalloc((int) (m->subsegs.items *
14777                                                   sizeof(int)));
14778   }
14779   slist = *segmentlist;
14780   smlist = *segmentmarkerlist;
14781   index = 0;
14782 #else /* not TRILIBRARY */
14783   if (!b->quiet) {
14784     printf("Writing %s.\n", polyfilename);
14785   }
14786   outfile = fopen(polyfilename, "w");
14787   if (outfile == (FILE *) NULL) {
14788     printf("  Error:  Cannot create file %s.\n", polyfilename);
14789     triexit(1);
14790   }
14791   /* The zero indicates that the vertices are in a separate .node file. */
14792   /*   Followed by number of dimensions, number of vertex attributes,   */
14793   /*   and number of boundary markers (zero or one).                    */
14794   fprintf(outfile, "%d  %d  %d  %d\n", 0, m->mesh_dim, m->nextras,
14795           1 - b->nobound);
14796   /* Number of segments, number of boundary markers (zero or one). */
14797   fprintf(outfile, "%ld  %d\n", m->subsegs.items, 1 - b->nobound);
14798 #endif /* not TRILIBRARY */
14799 
14800   traversalinit(&m->subsegs);
14801   subsegloop.ss = subsegtraverse(m);
14802   subsegloop.ssorient = 0;
14803   subsegnumber = b->firstnumber;
14804   while (subsegloop.ss != (subseg *) NULL) {
14805     sorg(subsegloop, endpoint1);
14806     sdest(subsegloop, endpoint2);
14807 #ifdef TRILIBRARY
14808     /* Copy indices of the segment's two endpoints. */
14809     slist[index++] = vertexmark(endpoint1);
14810     slist[index++] = vertexmark(endpoint2);
14811     if (!b->nobound) {
14812       /* Copy the boundary marker. */
14813       smlist[subsegnumber - b->firstnumber] = mark(subsegloop);
14814     }
14815 #else /* not TRILIBRARY */
14816     /* Segment number, indices of its two endpoints, and possibly a marker. */
14817     if (b->nobound) {
14818       fprintf(outfile, "%4ld    %4d  %4d\n", subsegnumber,
14819               vertexmark(endpoint1), vertexmark(endpoint2));
14820     } else {
14821       fprintf(outfile, "%4ld    %4d  %4d    %4d\n", subsegnumber,
14822               vertexmark(endpoint1), vertexmark(endpoint2), mark(subsegloop));
14823     }
14824 #endif /* not TRILIBRARY */
14825 
14826     subsegloop.ss = subsegtraverse(m);
14827     subsegnumber++;
14828   }
14829 
14830 #ifndef TRILIBRARY
14831 #ifndef CDT_ONLY
14832   fprintf(outfile, "%d\n", holes);
14833   if (holes > 0) {
14834     for (holenumber = 0; holenumber < holes; holenumber++) {
14835       /* Hole number, x and y coordinates. */
14836       fprintf(outfile, "%4ld   %.17g  %.17g\n", b->firstnumber + holenumber,
14837               holelist[2 * holenumber], holelist[2 * holenumber + 1]);
14838     }
14839   }
14840   if (regions > 0) {
14841     fprintf(outfile, "%d\n", regions);
14842     for (regionnumber = 0; regionnumber < regions; regionnumber++) {
14843       /* Region number, x and y coordinates, attribute, maximum area. */
14844       fprintf(outfile, "%4ld   %.17g  %.17g  %.17g  %.17g\n",
14845               b->firstnumber + regionnumber,
14846               regionlist[4 * regionnumber], regionlist[4 * regionnumber + 1],
14847               regionlist[4 * regionnumber + 2],
14848               regionlist[4 * regionnumber + 3]);
14849     }
14850   }
14851 #endif /* not CDT_ONLY */
14852 
14853   finishfile(outfile, argc, argv);
14854 #endif /* not TRILIBRARY */
14855 }
14856 
14857 /*****************************************************************************/
14858 /*                                                                           */
14859 /*  writeedges()   Write the edges to an .edge file.                         */
14860 /*                                                                           */
14861 /*****************************************************************************/
14862 
14863 #ifdef TRILIBRARY
14864 
14865 #ifdef ANSI_DECLARATORS
14866 void writeedges(struct mesh *m, struct behavior *b,
14867                 int **edgelist, int **edgemarkerlist)
14868 #else /* not ANSI_DECLARATORS */
14869 void writeedges(m, b, edgelist, edgemarkerlist)
14870 struct mesh *m;
14871 struct behavior *b;
14872 int **edgelist;
14873 int **edgemarkerlist;
14874 #endif /* not ANSI_DECLARATORS */
14875 
14876 #else /* not TRILIBRARY */
14877 
14878 #ifdef ANSI_DECLARATORS
14879 void writeedges(struct mesh *m, struct behavior *b, char *edgefilename,
14880                 int argc, char **argv)
14881 #else /* not ANSI_DECLARATORS */
14882 void writeedges(m, b, edgefilename, argc, argv)
14883 struct mesh *m;
14884 struct behavior *b;
14885 char *edgefilename;
14886 int argc;
14887 char **argv;
14888 #endif /* not ANSI_DECLARATORS */
14889 
14890 #endif /* not TRILIBRARY */
14891 
14892 {
14893 #ifdef TRILIBRARY
14894   int *elist;
14895   int *emlist;
14896   int index;
14897 #else /* not TRILIBRARY */
14898   FILE *outfile;
14899 #endif /* not TRILIBRARY */
14900   struct otri triangleloop, trisym;
14901   struct osub checkmark;
14902   vertex p1, p2;
14903   long edgenumber;
14904   triangle ptr;                         /* Temporary variable used by sym(). */
14905   subseg sptr;                      /* Temporary variable used by tspivot(). */
14906 
14907 #ifdef TRILIBRARY
14908   if (!b->quiet) {
14909     printf("Writing edges.\n");
14910   }
14911   /* Allocate memory for edges if necessary. */
14912   if (*edgelist == (int *) NULL) {
14913     *edgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
14914   }
14915   /* Allocate memory for edge markers if necessary. */
14916   if (!b->nobound && (*edgemarkerlist == (int *) NULL)) {
14917     *edgemarkerlist = (int *) trimalloc((int) (m->edges * sizeof(int)));
14918   }
14919   elist = *edgelist;
14920   emlist = *edgemarkerlist;
14921   index = 0;
14922 #else /* not TRILIBRARY */
14923   if (!b->quiet) {
14924     printf("Writing %s.\n", edgefilename);
14925   }
14926   outfile = fopen(edgefilename, "w");
14927   if (outfile == (FILE *) NULL) {
14928     printf("  Error:  Cannot create file %s.\n", edgefilename);
14929     triexit(1);
14930   }
14931   /* Number of edges, number of boundary markers (zero or one). */
14932   fprintf(outfile, "%ld  %d\n", m->edges, 1 - b->nobound);
14933 #endif /* not TRILIBRARY */
14934 
14935   traversalinit(&m->triangles);
14936   triangleloop.tri = triangletraverse(m);
14937   edgenumber = b->firstnumber;
14938   /* To loop over the set of edges, loop over all triangles, and look at   */
14939   /*   the three edges of each triangle.  If there isn't another triangle  */
14940   /*   adjacent to the edge, operate on the edge.  If there is another     */
14941   /*   adjacent triangle, operate on the edge only if the current triangle */
14942   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
14943   /*   considered only once.                                               */
14944   while (triangleloop.tri != (triangle *) NULL) {
14945     for (triangleloop.orient = 0; triangleloop.orient < 3;
14946          triangleloop.orient++) {
14947       sym(triangleloop, trisym);
14948       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
14949         org(triangleloop, p1);
14950         dest(triangleloop, p2);
14951 #ifdef TRILIBRARY
14952         elist[index++] = vertexmark(p1);
14953         elist[index++] = vertexmark(p2);
14954 #endif /* TRILIBRARY */
14955         if (b->nobound) {
14956 #ifndef TRILIBRARY
14957           /* Edge number, indices of two endpoints. */
14958           fprintf(outfile, "%4ld   %d  %d\n", edgenumber,
14959                   vertexmark(p1), vertexmark(p2));
14960 #endif /* not TRILIBRARY */
14961         } else {
14962           /* Edge number, indices of two endpoints, and a boundary marker. */
14963           /*   If there's no subsegment, the boundary marker is zero.      */
14964           if (b->usesegments) {
14965             tspivot(triangleloop, checkmark);
14966             if (checkmark.ss == m->dummysub) {
14967 #ifdef TRILIBRARY
14968               emlist[edgenumber - b->firstnumber] = 0;
14969 #else /* not TRILIBRARY */
14970               fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
14971                       vertexmark(p1), vertexmark(p2), 0);
14972 #endif /* not TRILIBRARY */
14973             } else {
14974 #ifdef TRILIBRARY
14975               emlist[edgenumber - b->firstnumber] = mark(checkmark);
14976 #else /* not TRILIBRARY */
14977               fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
14978                       vertexmark(p1), vertexmark(p2), mark(checkmark));
14979 #endif /* not TRILIBRARY */
14980             }
14981           } else {
14982 #ifdef TRILIBRARY
14983             emlist[edgenumber - b->firstnumber] = trisym.tri == m->dummytri;
14984 #else /* not TRILIBRARY */
14985             fprintf(outfile, "%4ld   %d  %d  %d\n", edgenumber,
14986                     vertexmark(p1), vertexmark(p2), trisym.tri == m->dummytri);
14987 #endif /* not TRILIBRARY */
14988           }
14989         }
14990         edgenumber++;
14991       }
14992     }
14993     triangleloop.tri = triangletraverse(m);
14994   }
14995 
14996 #ifndef TRILIBRARY
14997   finishfile(outfile, argc, argv);
14998 #endif /* not TRILIBRARY */
14999 }
15000 
15001 /*****************************************************************************/
15002 /*                                                                           */
15003 /*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
15004 /*                   file.                                                   */
15005 /*                                                                           */
15006 /*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
15007 /*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
15008 /*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
15009 /*  edges.                                                                   */
15010 /*                                                                           */
15011 /*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
15012 /*  procedure messes up the subsegments or the extra nodes of every          */
15013 /*  element.  Hence, you should call this procedure last.                    */
15014 /*                                                                           */
15015 /*****************************************************************************/
15016 
15017 #ifdef TRILIBRARY
15018 
15019 #ifdef ANSI_DECLARATORS
15020 void writevoronoi(struct mesh *m, struct behavior *b, REAL **vpointlist,
15021                   REAL **vpointattriblist, int **vpointmarkerlist,
15022                   int **vedgelist, int **vedgemarkerlist, REAL **vnormlist)
15023 #else /* not ANSI_DECLARATORS */
15024 void writevoronoi(m, b, vpointlist, vpointattriblist, vpointmarkerlist,
15025                   vedgelist, vedgemarkerlist, vnormlist)
15026 struct mesh *m;
15027 struct behavior *b;
15028 REAL **vpointlist;
15029 REAL **vpointattriblist;
15030 int **vpointmarkerlist;
15031 int **vedgelist;
15032 int **vedgemarkerlist;
15033 REAL **vnormlist;
15034 #endif /* not ANSI_DECLARATORS */
15035 
15036 #else /* not TRILIBRARY */
15037 
15038 #ifdef ANSI_DECLARATORS
15039 void writevoronoi(struct mesh *m, struct behavior *b, char *vnodefilename,
15040                   char *vedgefilename, int argc, char **argv)
15041 #else /* not ANSI_DECLARATORS */
15042 void writevoronoi(m, b, vnodefilename, vedgefilename, argc, argv)
15043 struct mesh *m;
15044 struct behavior *b;
15045 char *vnodefilename;
15046 char *vedgefilename;
15047 int argc;
15048 char **argv;
15049 #endif /* not ANSI_DECLARATORS */
15050 
15051 #endif /* not TRILIBRARY */
15052 
15053 {
15054 #ifdef TRILIBRARY
15055   REAL* plist;
15056   REAL* palist;
15057   int *elist;
15058   REAL *normlist;
15059   int coordindex;
15060   int attribindex;
15061 #else /* not TRILIBRARY */
15062   FILE *outfile;
15063 #endif /* not TRILIBRARY */
15064   struct otri triangleloop, trisym;
15065   vertex torg, tdest, tapex;
15066   REAL circumcenter[2];
15067   REAL xi, eta;
15068   long vnodenumber, vedgenumber;
15069   int p1, p2;
15070   int i;
15071   triangle ptr;                         /* Temporary variable used by sym(). */
15072 
15073 #ifdef TRILIBRARY
15074   if (!b->quiet) {
15075     printf("Writing Voronoi vertices.\n");
15076   }
15077   /* Allocate memory for Voronoi vertices if necessary. */
15078   if (*vpointlist == (REAL *) NULL) {
15079     *vpointlist = (REAL *) trimalloc((int) (m->triangles.items * 2 *
15080                                             sizeof(REAL)));
15081   }
15082   /* Allocate memory for Voronoi vertex attributes if necessary. */
15083   if (*vpointattriblist == (REAL *) NULL) {
15084     *vpointattriblist = (REAL *) trimalloc((int) (m->triangles.items *
15085                                                   m->nextras * sizeof(REAL)));
15086   }
15087   *vpointmarkerlist = (int *) NULL;
15088   plist = *vpointlist;
15089   palist = *vpointattriblist;
15090   coordindex = 0;
15091   attribindex = 0;
15092 #else /* not TRILIBRARY */
15093   if (!b->quiet) {
15094     printf("Writing %s.\n", vnodefilename);
15095   }
15096   outfile = fopen(vnodefilename, "w");
15097   if (outfile == (FILE *) NULL) {
15098     printf("  Error:  Cannot create file %s.\n", vnodefilename);
15099     triexit(1);
15100   }
15101   /* Number of triangles, two dimensions, number of vertex attributes, */
15102   /*   no markers.                                                     */
15103   fprintf(outfile, "%ld  %d  %d  %d\n", m->triangles.items, 2, m->nextras, 0);
15104 #endif /* not TRILIBRARY */
15105 
15106   traversalinit(&m->triangles);
15107   triangleloop.tri = triangletraverse(m);
15108   triangleloop.orient = 0;
15109   vnodenumber = b->firstnumber;
15110   while (triangleloop.tri != (triangle *) NULL) {
15111     org(triangleloop, torg);
15112     dest(triangleloop, tdest);
15113     apex(triangleloop, tapex);
15114     findcircumcenter(m, b, torg, tdest, tapex, circumcenter, &xi, &eta, 0);
15115 #ifdef TRILIBRARY
15116     /* X and y coordinates. */
15117     plist[coordindex++] = circumcenter[0];
15118     plist[coordindex++] = circumcenter[1];
15119     for (i = 2; i < 2 + m->nextras; i++) {
15120       /* Interpolate the vertex attributes at the circumcenter. */
15121       palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
15122                                      + eta * (tapex[i] - torg[i]);
15123     }
15124 #else /* not TRILIBRARY */
15125     /* Voronoi vertex number, x and y coordinates. */
15126     fprintf(outfile, "%4ld    %.17g  %.17g", vnodenumber, circumcenter[0],
15127             circumcenter[1]);
15128     for (i = 2; i < 2 + m->nextras; i++) {
15129       /* Interpolate the vertex attributes at the circumcenter. */
15130       fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
15131                                          + eta * (tapex[i] - torg[i]));
15132     }
15133     fprintf(outfile, "\n");
15134 #endif /* not TRILIBRARY */
15135 
15136     * (int *) (triangleloop.tri + 6) = (int) vnodenumber;
15137     triangleloop.tri = triangletraverse(m);
15138     vnodenumber++;
15139   }
15140 
15141 #ifndef TRILIBRARY
15142   finishfile(outfile, argc, argv);
15143 #endif /* not TRILIBRARY */
15144 
15145 #ifdef TRILIBRARY
15146   if (!b->quiet) {
15147     printf("Writing Voronoi edges.\n");
15148   }
15149   /* Allocate memory for output Voronoi edges if necessary. */
15150   if (*vedgelist == (int *) NULL) {
15151     *vedgelist = (int *) trimalloc((int) (m->edges * 2 * sizeof(int)));
15152   }
15153   *vedgemarkerlist = (int *) NULL;
15154   /* Allocate memory for output Voronoi norms if necessary. */
15155   if (*vnormlist == (REAL *) NULL) {
15156     *vnormlist = (REAL *) trimalloc((int) (m->edges * 2 * sizeof(REAL)));
15157   }
15158   elist = *vedgelist;
15159   normlist = *vnormlist;
15160   coordindex = 0;
15161 #else /* not TRILIBRARY */
15162   if (!b->quiet) {
15163     printf("Writing %s.\n", vedgefilename);
15164   }
15165   outfile = fopen(vedgefilename, "w");
15166   if (outfile == (FILE *) NULL) {
15167     printf("  Error:  Cannot create file %s.\n", vedgefilename);
15168     triexit(1);
15169   }
15170   /* Number of edges, zero boundary markers. */
15171   fprintf(outfile, "%ld  %d\n", m->edges, 0);
15172 #endif /* not TRILIBRARY */
15173 
15174   traversalinit(&m->triangles);
15175   triangleloop.tri = triangletraverse(m);
15176   vedgenumber = b->firstnumber;
15177   /* To loop over the set of edges, loop over all triangles, and look at   */
15178   /*   the three edges of each triangle.  If there isn't another triangle  */
15179   /*   adjacent to the edge, operate on the edge.  If there is another     */
15180   /*   adjacent triangle, operate on the edge only if the current triangle */
15181   /*   has a smaller pointer than its neighbor.  This way, each edge is    */
15182   /*   considered only once.                                               */
15183   while (triangleloop.tri != (triangle *) NULL) {
15184     for (triangleloop.orient = 0; triangleloop.orient < 3;
15185          triangleloop.orient++) {
15186       sym(triangleloop, trisym);
15187       if ((triangleloop.tri < trisym.tri) || (trisym.tri == m->dummytri)) {
15188         /* Find the number of this triangle (and Voronoi vertex). */
15189         p1 = * (int *) (triangleloop.tri + 6);
15190         if (trisym.tri == m->dummytri) {
15191           org(triangleloop, torg);
15192           dest(triangleloop, tdest);
15193 #ifdef TRILIBRARY
15194           /* Copy an infinite ray.  Index of one endpoint, and -1. */
15195           elist[coordindex] = p1;
15196           normlist[coordindex++] = tdest[1] - torg[1];
15197           elist[coordindex] = -1;
15198           normlist[coordindex++] = torg[0] - tdest[0];
15199 #else /* not TRILIBRARY */
15200           /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
15201           /*   and x and y coordinates of a vector representing the          */
15202           /*   direction of the ray.                                         */
15203           fprintf(outfile, "%4ld   %d  %d   %.17g  %.17g\n", vedgenumber,
15204                   p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
15205 #endif /* not TRILIBRARY */
15206         } else {
15207           /* Find the number of the adjacent triangle (and Voronoi vertex). */
15208           p2 = * (int *) (trisym.tri + 6);
15209           /* Finite edge.  Write indices of two endpoints. */
15210 #ifdef TRILIBRARY
15211           elist[coordindex] = p1;
15212           normlist[coordindex++] = 0.0;
15213           elist[coordindex] = p2;
15214           normlist[coordindex++] = 0.0;
15215 #else /* not TRILIBRARY */
15216           fprintf(outfile, "%4ld   %d  %d\n", vedgenumber, p1, p2);
15217 #endif /* not TRILIBRARY */
15218         }
15219         vedgenumber++;
15220       }
15221     }
15222     triangleloop.tri = triangletraverse(m);
15223   }
15224 
15225 #ifndef TRILIBRARY
15226   finishfile(outfile, argc, argv);
15227 #endif /* not TRILIBRARY */
15228 }
15229 
15230 #ifdef TRILIBRARY
15231 
15232 #ifdef ANSI_DECLARATORS
15233 void writeneighbors(struct mesh *m, struct behavior *b, int **neighborlist)
15234 #else /* not ANSI_DECLARATORS */
15235 void writeneighbors(m, b, neighborlist)
15236 struct mesh *m;
15237 struct behavior *b;
15238 int **neighborlist;
15239 #endif /* not ANSI_DECLARATORS */
15240 
15241 #else /* not TRILIBRARY */
15242 
15243 #ifdef ANSI_DECLARATORS
15244 void writeneighbors(struct mesh *m, struct behavior *b, char *neighborfilename,
15245                     int argc, char **argv)
15246 #else /* not ANSI_DECLARATORS */
15247 void writeneighbors(m, b, neighborfilename, argc, argv)
15248 struct mesh *m;
15249 struct behavior *b;
15250 char *neighborfilename;
15251 int argc;
15252 char **argv;
15253 #endif /* not ANSI_DECLARATORS */
15254 
15255 #endif /* not TRILIBRARY */
15256 
15257 {
15258 #ifdef TRILIBRARY
15259   int *nlist;
15260   int index;
15261 #else /* not TRILIBRARY */
15262   FILE *outfile;
15263 #endif /* not TRILIBRARY */
15264   struct otri triangleloop, trisym;
15265   long elementnumber;
15266   int neighbor1, neighbor2, neighbor3;
15267   triangle ptr;                         /* Temporary variable used by sym(). */
15268 
15269 #ifdef TRILIBRARY
15270   if (!b->quiet) {
15271     printf("Writing neighbors.\n");
15272   }
15273   /* Allocate memory for neighbors if necessary. */
15274   if (*neighborlist == (int *) NULL) {
15275     *neighborlist = (int *) trimalloc((int) (m->triangles.items * 3 *
15276                                              sizeof(int)));
15277   }
15278   nlist = *neighborlist;
15279   index = 0;
15280 #else /* not TRILIBRARY */
15281   if (!b->quiet) {
15282     printf("Writing %s.\n", neighborfilename);
15283   }
15284   outfile = fopen(neighborfilename, "w");
15285   if (outfile == (FILE *) NULL) {
15286     printf("  Error:  Cannot create file %s.\n", neighborfilename);
15287     triexit(1);
15288   }
15289   /* Number of triangles, three neighbors per triangle. */
15290   fprintf(outfile, "%ld  %d\n", m->triangles.items, 3);
15291 #endif /* not TRILIBRARY */
15292 
15293   traversalinit(&m->triangles);
15294   triangleloop.tri = triangletraverse(m);
15295   triangleloop.orient = 0;
15296   elementnumber = b->firstnumber;
15297   while (triangleloop.tri != (triangle *) NULL) {
15298     * (int *) (triangleloop.tri + 6) = (int) elementnumber;
15299     triangleloop.tri = triangletraverse(m);
15300     elementnumber++;
15301   }
15302   * (int *) (m->dummytri + 6) = -1;
15303 
15304   traversalinit(&m->triangles);
15305   triangleloop.tri = triangletraverse(m);
15306   elementnumber = b->firstnumber;
15307   while (triangleloop.tri != (triangle *) NULL) {
15308     triangleloop.orient = 1;
15309     sym(triangleloop, trisym);
15310     neighbor1 = * (int *) (trisym.tri + 6);
15311     triangleloop.orient = 2;
15312     sym(triangleloop, trisym);
15313     neighbor2 = * (int *) (trisym.tri + 6);
15314     triangleloop.orient = 0;
15315     sym(triangleloop, trisym);
15316     neighbor3 = * (int *) (trisym.tri + 6);
15317 #ifdef TRILIBRARY
15318     nlist[index++] = neighbor1;
15319     nlist[index++] = neighbor2;
15320     nlist[index++] = neighbor3;
15321 #else /* not TRILIBRARY */
15322     /* Triangle number, neighboring triangle numbers. */
15323     fprintf(outfile, "%4ld    %d  %d  %d\n", elementnumber,
15324             neighbor1, neighbor2, neighbor3);
15325 #endif /* not TRILIBRARY */
15326 
15327     triangleloop.tri = triangletraverse(m);
15328     elementnumber++;
15329   }
15330 
15331 #ifndef TRILIBRARY
15332   finishfile(outfile, argc, argv);
15333 #endif /* not TRILIBRARY */
15334 }
15335 
15336 /*****************************************************************************/
15337 /*                                                                           */
15338 /*  writeoff()   Write the triangulation to an .off file.                    */
15339 /*                                                                           */
15340 /*  OFF stands for the Object File Format, a format used by the Geometry     */
15341 /*  Center's Geomview package.                                               */
15342 /*                                                                           */
15343 /*****************************************************************************/
15344 
15345 #ifndef TRILIBRARY
15346 
15347 #ifdef ANSI_DECLARATORS
15348 void writeoff(struct mesh *m, struct behavior *b, char *offfilename,
15349               int argc, char **argv)
15350 #else /* not ANSI_DECLARATORS */
15351 void writeoff(m, b, offfilename, argc, argv)
15352 struct mesh *m;
15353 struct behavior *b;
15354 char *offfilename;
15355 int argc;
15356 char **argv;
15357 #endif /* not ANSI_DECLARATORS */
15358 
15359 {
15360   FILE *outfile;
15361   struct otri triangleloop;
15362   vertex vertexloop;
15363   vertex p1, p2, p3;
15364   long outvertices;
15365 
15366   if (!b->quiet) {
15367     printf("Writing %s.\n", offfilename);
15368   }
15369 
15370   if (b->jettison) {
15371     outvertices = m->vertices.items - m->undeads;
15372   } else {
15373     outvertices = m->vertices.items;
15374   }
15375 
15376   outfile = fopen(offfilename, "w");
15377   if (outfile == (FILE *) NULL) {
15378     printf("  Error:  Cannot create file %s.\n", offfilename);
15379     triexit(1);
15380   }
15381   /* Number of vertices, triangles, and edges. */
15382   fprintf(outfile, "OFF\n%ld  %ld  %ld\n", outvertices, m->triangles.items,
15383           m->edges);
15384 
15385   /* Write the vertices. */
15386   traversalinit(&m->vertices);
15387   vertexloop = vertextraverse(m);
15388   while (vertexloop != (vertex) NULL) {
15389     if (!b->jettison || (vertextype(vertexloop) != UNDEADVERTEX)) {
15390       /* The "0.0" is here because the OFF format uses 3D coordinates. */
15391       fprintf(outfile, " %.17g  %.17g  %.17g\n", vertexloop[0], vertexloop[1],
15392               0.0);
15393     }
15394     vertexloop = vertextraverse(m);
15395   }
15396 
15397   /* Write the triangles. */
15398   traversalinit(&m->triangles);
15399   triangleloop.tri = triangletraverse(m);
15400   triangleloop.orient = 0;
15401   while (triangleloop.tri != (triangle *) NULL) {
15402     org(triangleloop, p1);
15403     dest(triangleloop, p2);
15404     apex(triangleloop, p3);
15405     /* The "3" means a three-vertex polygon. */
15406     fprintf(outfile, " 3   %4d  %4d  %4d\n", vertexmark(p1) - b->firstnumber,
15407             vertexmark(p2) - b->firstnumber, vertexmark(p3) - b->firstnumber);
15408     triangleloop.tri = triangletraverse(m);
15409   }
15410   finishfile(outfile, argc, argv);
15411 }
15412 
15413 #endif /* not TRILIBRARY */
15414 
15417 /********* File I/O routines end here                                *********/
15418 
15419 /*****************************************************************************/
15420 /*                                                                           */
15421 /*  quality_statistics()   Print statistics about the quality of the mesh.   */
15422 /*                                                                           */
15423 /*****************************************************************************/
15424 
15425 #ifdef ANSI_DECLARATORS
15426 void quality_statistics(struct mesh *m, struct behavior *b)
15427 #else /* not ANSI_DECLARATORS */
15428 void quality_statistics(m, b)
15429 struct mesh *m;
15430 struct behavior *b;
15431 #endif /* not ANSI_DECLARATORS */
15432 
15433 {
15434   struct otri triangleloop;
15435   vertex p[3];
15436   REAL cossquaretable[8];
15437   REAL ratiotable[16];
15438   REAL dx[3], dy[3];
15439   REAL edgelength[3];
15440   REAL dotproduct;
15441   REAL cossquare;
15442   REAL triarea;
15443   REAL shortest, longest;
15444   REAL trilongest2;
15445   REAL smallestarea, biggestarea;
15446   REAL triminaltitude2;
15447   REAL minaltitude;
15448   REAL triaspect2;
15449   REAL worstaspect;
15450   REAL smallestangle, biggestangle;
15451   REAL radconst, degconst;
15452   int angletable[18];
15453   int aspecttable[16];
15454   int aspectindex;
15455   int tendegree;
15456   int acutebiggest;
15457   int i, ii, j, k;
15458 
15459   printf("Mesh quality statistics:\n\n");
15460   radconst = PI / 18.0;
15461   degconst = 180.0 / PI;
15462   for (i = 0; i < 8; i++) {
15463     cossquaretable[i] = cos(radconst * (REAL) (i + 1));
15464     cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
15465   }
15466   for (i = 0; i < 18; i++) {
15467     angletable[i] = 0;
15468   }
15469 
15470   ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
15471   ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
15472   ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
15473   ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
15474   ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
15475   ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
15476   ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
15477   ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
15478   for (i = 0; i < 16; i++) {
15479     aspecttable[i] = 0;
15480   }
15481 
15482   worstaspect = 0.0;
15483   minaltitude = m->xmax - m->xmin + m->ymax - m->ymin;
15484   minaltitude = minaltitude * minaltitude;
15485   shortest = minaltitude;
15486   longest = 0.0;
15487   smallestarea = minaltitude;
15488   biggestarea = 0.0;
15489   worstaspect = 0.0;
15490   smallestangle = 0.0;
15491   biggestangle = 2.0;
15492   acutebiggest = 1;
15493 
15494   traversalinit(&m->triangles);
15495   triangleloop.tri = triangletraverse(m);
15496   triangleloop.orient = 0;
15497   while (triangleloop.tri != (triangle *) NULL) {
15498     org(triangleloop, p[0]);
15499     dest(triangleloop, p[1]);
15500     apex(triangleloop, p[2]);
15501     trilongest2 = 0.0;
15502 
15503     for (i = 0; i < 3; i++) {
15504       j = plus1mod3[i];
15505       k = minus1mod3[i];
15506       dx[i] = p[j][0] - p[k][0];
15507       dy[i] = p[j][1] - p[k][1];
15508       edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
15509       if (edgelength[i] > trilongest2) {
15510         trilongest2 = edgelength[i];
15511       }
15512       if (edgelength[i] > longest) {
15513         longest = edgelength[i];
15514       }
15515       if (edgelength[i] < shortest) {
15516         shortest = edgelength[i];
15517       }
15518     }
15519 
15520     triarea = counterclockwise(m, b, p[0], p[1], p[2]);
15521     if (triarea < smallestarea) {
15522       smallestarea = triarea;
15523     }
15524     if (triarea > biggestarea) {
15525       biggestarea = triarea;
15526     }
15527     triminaltitude2 = triarea * triarea / trilongest2;
15528     if (triminaltitude2 < minaltitude) {
15529       minaltitude = triminaltitude2;
15530     }
15531     triaspect2 = trilongest2 / triminaltitude2;
15532     if (triaspect2 > worstaspect) {
15533       worstaspect = triaspect2;
15534     }
15535     aspectindex = 0;
15536     while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
15537            && (aspectindex < 15)) {
15538       aspectindex++;
15539     }
15540     aspecttable[aspectindex]++;
15541 
15542     for (i = 0; i < 3; i++) {
15543       j = plus1mod3[i];
15544       k = minus1mod3[i];
15545       dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
15546       cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
15547       tendegree = 8;
15548       for (ii = 7; ii >= 0; ii--) {
15549         if (cossquare > cossquaretable[ii]) {
15550           tendegree = ii;
15551         }
15552       }
15553       if (dotproduct <= 0.0) {
15554         angletable[tendegree]++;
15555         if (cossquare > smallestangle) {
15556           smallestangle = cossquare;
15557         }
15558         if (acutebiggest && (cossquare < biggestangle)) {
15559           biggestangle = cossquare;
15560         }
15561       } else {
15562         angletable[17 - tendegree]++;
15563         if (acutebiggest || (cossquare > biggestangle)) {
15564           biggestangle = cossquare;
15565           acutebiggest = 0;
15566         }
15567       }
15568     }
15569     triangleloop.tri = triangletraverse(m);
15570   }
15571 
15572   shortest = sqrt(shortest);
15573   longest = sqrt(longest);
15574   minaltitude = sqrt(minaltitude);
15575   worstaspect = sqrt(worstaspect);
15576   smallestarea *= 0.5;
15577   biggestarea *= 0.5;
15578   if (smallestangle >= 1.0) {
15579     smallestangle = 0.0;
15580   } else {
15581     smallestangle = degconst * acos(sqrt(smallestangle));
15582   }
15583   if (biggestangle >= 1.0) {
15584     biggestangle = 180.0;
15585   } else {
15586     if (acutebiggest) {
15587       biggestangle = degconst * acos(sqrt(biggestangle));
15588     } else {
15589       biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
15590     }
15591   }
15592 
15593   printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
15594          smallestarea, biggestarea);
15595   printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
15596          shortest, longest);
15597   printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
15598          minaltitude, worstaspect);
15599 
15600   printf("  Triangle aspect ratio histogram:\n");
15601   printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
15602          ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
15603          aspecttable[8]);
15604   for (i = 1; i < 7; i++) {
15605     printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
15606            ratiotable[i - 1], ratiotable[i], aspecttable[i],
15607            ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
15608   }
15609   printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
15610          ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
15611          aspecttable[15]);
15612   printf("  (Aspect ratio is longest edge divided by shortest altitude)\n\n");
15613 
15614   printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
15615          smallestangle, biggestangle);
15616 
15617   printf("  Angle histogram:\n");
15618   for (i = 0; i < 9; i++) {
15619     printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
15620            i * 10, i * 10 + 10, angletable[i],
15621            i * 10 + 90, i * 10 + 100, angletable[i + 9]);
15622   }
15623   printf("\n");
15624 }
15625 
15626 /*****************************************************************************/
15627 /*                                                                           */
15628 /*  statistics()   Print all sorts of cool facts.                            */
15629 /*                                                                           */
15630 /*****************************************************************************/
15631 
15632 #ifdef ANSI_DECLARATORS
15633 void statistics(struct mesh *m, struct behavior *b)
15634 #else /* not ANSI_DECLARATORS */
15635 void statistics(m, b)
15636 struct mesh *m;
15637 struct behavior *b;
15638 #endif /* not ANSI_DECLARATORS */
15639 
15640 {
15641   printf("\nStatistics:\n\n");
15642   printf("  Input vertices: %d\n", m->invertices);
15643   if (b->refine) {
15644     printf("  Input triangles: %d\n", m->inelements);
15645   }
15646   if (b->poly) {
15647     printf("  Input segments: %d\n", m->insegments);
15648     if (!b->refine) {
15649       printf("  Input holes: %d\n", m->holes);
15650     }
15651   }
15652 
15653   printf("\n  Mesh vertices: %ld\n", m->vertices.items - m->undeads);
15654   printf("  Mesh triangles: %ld\n", m->triangles.items);
15655   printf("  Mesh edges: %ld\n", m->edges);
15656   printf("  Mesh exterior boundary edges: %ld\n", m->hullsize);
15657   if (b->poly || b->refine) {
15658     printf("  Mesh interior boundary edges: %ld\n",
15659            m->subsegs.items - m->hullsize);
15660     printf("  Mesh subsegments (constrained edges): %ld\n",
15661            m->subsegs.items);
15662   }
15663   printf("\n");
15664 
15665   if (b->verbose) {
15666     quality_statistics(m, b);
15667     printf("Memory allocation statistics:\n\n");
15668     printf("  Maximum number of vertices: %ld\n", m->vertices.maxitems);
15669     printf("  Maximum number of triangles: %ld\n", m->triangles.maxitems);
15670     if (m->subsegs.maxitems > 0) {
15671       printf("  Maximum number of subsegments: %ld\n", m->subsegs.maxitems);
15672     }
15673     if (m->viri.maxitems > 0) {
15674       printf("  Maximum number of viri: %ld\n", m->viri.maxitems);
15675     }
15676     if (m->badsubsegs.maxitems > 0) {
15677       printf("  Maximum number of encroached subsegments: %ld\n",
15678              m->badsubsegs.maxitems);
15679     }
15680     if (m->badtriangles.maxitems > 0) {
15681       printf("  Maximum number of bad triangles: %ld\n",
15682              m->badtriangles.maxitems);
15683     }
15684     if (m->flipstackers.maxitems > 0) {
15685       printf("  Maximum number of stacked triangle flips: %ld\n",
15686              m->flipstackers.maxitems);
15687     }
15688     if (m->splaynodes.maxitems > 0) {
15689       printf("  Maximum number of splay tree nodes: %ld\n",
15690              m->splaynodes.maxitems);
15691     }
15692     printf("  Approximate heap memory use (bytes): %ld\n\n",
15693            m->vertices.maxitems * m->vertices.itembytes +
15694            m->triangles.maxitems * m->triangles.itembytes +
15695            m->subsegs.maxitems * m->subsegs.itembytes +
15696            m->viri.maxitems * m->viri.itembytes +
15697            m->badsubsegs.maxitems * m->badsubsegs.itembytes +
15698            m->badtriangles.maxitems * m->badtriangles.itembytes +
15699            m->flipstackers.maxitems * m->flipstackers.itembytes +
15700            m->splaynodes.maxitems * m->splaynodes.itembytes);
15701 
15702     printf("Algorithmic statistics:\n\n");
15703     if (!b->weighted) {
15704       printf("  Number of incircle tests: %ld\n", m->incirclecount);
15705     } else {
15706       printf("  Number of 3D orientation tests: %ld\n", m->orient3dcount);
15707     }
15708     printf("  Number of 2D orientation tests: %ld\n", m->counterclockcount);
15709     if (m->hyperbolacount > 0) {
15710       printf("  Number of right-of-hyperbola tests: %ld\n",
15711              m->hyperbolacount);
15712     }
15713     if (m->circletopcount > 0) {
15714       printf("  Number of circle top computations: %ld\n",
15715              m->circletopcount);
15716     }
15717     if (m->circumcentercount > 0) {
15718       printf("  Number of triangle circumcenter computations: %ld\n",
15719              m->circumcentercount);
15720     }
15721     printf("\n");
15722   }
15723 }
15724 
15725 /*****************************************************************************/
15726 /*                                                                           */
15727 /*  main() or triangulate()   Gosh, do everything.                           */
15728 /*                                                                           */
15729 /*  The sequence is roughly as follows.  Many of these steps can be skipped, */
15730 /*  depending on the command line switches.                                  */
15731 /*                                                                           */
15732 /*  - Initialize constants and parse the command line.                       */
15733 /*  - Read the vertices from a file and either                               */
15734 /*    - triangulate them (no -r), or                                         */
15735 /*    - read an old mesh from files and reconstruct it (-r).                 */
15736 /*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
15737 /*      hull (-c).                                                           */
15738 /*  - Read the holes (-p), regional attributes (-pA), and regional area      */
15739 /*      constraints (-pa).  Carve the holes and concavities, and spread the  */
15740 /*      regional attributes and area constraints.                            */
15741 /*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
15742 /*      Also enforce the conforming Delaunay property (-q and -a).           */
15743 /*  - Compute the number of edges in the resulting mesh.                     */
15744 /*  - Promote the mesh's linear triangles to higher order elements (-o).     */
15745 /*  - Write the output files and print the statistics.                       */
15746 /*  - Check the consistency and Delaunay property of the mesh (-C).          */
15747 /*                                                                           */
15748 /*****************************************************************************/
15749 
15750 #ifdef TRILIBRARY
15751 
15752 #ifdef ANSI_DECLARATORS
15753 void triangulate(char *triswitches, struct triangulateio *in,
15754                  struct triangulateio *out, struct triangulateio *vorout)
15755 #else /* not ANSI_DECLARATORS */
15756 void triangulate(triswitches, in, out, vorout)
15757 char *triswitches;
15758 struct triangulateio *in;
15759 struct triangulateio *out;
15760 struct triangulateio *vorout;
15761 #endif /* not ANSI_DECLARATORS */
15762 
15763 #else /* not TRILIBRARY */
15764 
15765 #ifdef ANSI_DECLARATORS
15766 int main(int argc, char **argv)
15767 #else /* not ANSI_DECLARATORS */
15768 int main(argc, argv)
15769 int argc;
15770 char **argv;
15771 #endif /* not ANSI_DECLARATORS */
15772 
15773 #endif /* not TRILIBRARY */
15774 
15775 {
15776   struct mesh m;
15777   struct behavior b;
15778   REAL *holearray;                                        /* Array of holes. */
15779   REAL *regionarray;   /* Array of regional attributes and area constraints. */
15780 #ifndef TRILIBRARY
15781   FILE* polyfile;
15782 #endif /* not TRILIBRARY */
15783 #ifndef NO_TIMER
15784   /* Variables for timing the performance of Triangle.  The types are */
15785   /*   defined in sys/time.h.                                         */
15786   struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
15787   struct timezone tz;
15788 #endif /* not NO_TIMER */
15789 
15790 #ifndef NO_TIMER
15791   gettimeofday(&tv0, &tz);
15792 #endif /* not NO_TIMER */
15793 
15794   triangleinit(&m);
15795 #ifdef TRILIBRARY
15796   parsecommandline(1, &triswitches, &b);
15797 #else /* not TRILIBRARY */
15798   parsecommandline(argc, argv, &b);
15799 #endif /* not TRILIBRARY */
15800   m.steinerleft = b.steiner;
15801 
15802 #ifdef TRILIBRARY
15803   transfernodes(&m, &b, in->pointlist, in->pointattributelist,
15804                 in->pointmarkerlist, in->numberofpoints,
15805                 in->numberofpointattributes);
15806 #else /* not TRILIBRARY */
15807   readnodes(&m, &b, b.innodefilename, b.inpolyfilename, &polyfile);
15808 #endif /* not TRILIBRARY */
15809 
15810 #ifndef NO_TIMER
15811   if (!b.quiet) {
15812     gettimeofday(&tv1, &tz);
15813   }
15814 #endif /* not NO_TIMER */
15815 
15816 #ifdef CDT_ONLY
15817   m.hullsize = delaunay(&m, &b);                /* Triangulate the vertices. */
15818 #else /* not CDT_ONLY */
15819   if (b.refine) {
15820     /* Read and reconstruct a mesh. */
15821 #ifdef TRILIBRARY
15822     m.hullsize = reconstruct(&m, &b, in->trianglelist,
15823                              in->triangleattributelist, in->trianglearealist,
15824                              in->numberoftriangles, in->numberofcorners,
15825                              in->numberoftriangleattributes,
15826                              in->segmentlist, in->segmentmarkerlist,
15827                              in->numberofsegments);
15828 #else /* not TRILIBRARY */
15829     m.hullsize = reconstruct(&m, &b, b.inelefilename, b.areafilename,
15830                              b.inpolyfilename, polyfile);
15831 #endif /* not TRILIBRARY */
15832   } else {
15833     m.hullsize = delaunay(&m, &b);              /* Triangulate the vertices. */
15834   }
15835 #endif /* not CDT_ONLY */
15836 
15837 #ifndef NO_TIMER
15838   if (!b.quiet) {
15839     gettimeofday(&tv2, &tz);
15840     if (b.refine) {
15841       printf("Mesh reconstruction");
15842     } else {
15843       printf("Delaunay");
15844     }
15845     printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec) +
15846            (tv2.tv_usec - tv1.tv_usec) / 1000l);
15847   }
15848 #endif /* not NO_TIMER */
15849 
15850   /* Ensure that no vertex can be mistaken for a triangular bounding */
15851   /*   box vertex in insertvertex().                                 */
15852   m.infvertex1 = (vertex) NULL;
15853   m.infvertex2 = (vertex) NULL;
15854   m.infvertex3 = (vertex) NULL;
15855 
15856   if (b.usesegments) {
15857     m.checksegments = 1;                /* Segments will be introduced next. */
15858     if (!b.refine) {
15859       /* Insert PSLG segments and/or convex hull segments. */
15860 #ifdef TRILIBRARY
15861       formskeleton(&m, &b, in->segmentlist,
15862                    in->segmentmarkerlist, in->numberofsegments);
15863 #else /* not TRILIBRARY */
15864       formskeleton(&m, &b, polyfile, b.inpolyfilename);
15865 #endif /* not TRILIBRARY */
15866     }
15867   }
15868 
15869 #ifndef NO_TIMER
15870   if (!b.quiet) {
15871     gettimeofday(&tv3, &tz);
15872     if (b.usesegments && !b.refine) {
15873       printf("Segment milliseconds:  %ld\n",
15874              1000l * (tv3.tv_sec - tv2.tv_sec) +
15875              (tv3.tv_usec - tv2.tv_usec) / 1000l);
15876     }
15877   }
15878 #endif /* not NO_TIMER */
15879 
15880   if (b.poly && (m.triangles.items > 0)) {
15881 #ifdef TRILIBRARY
15882     holearray = in->holelist;
15883     m.holes = in->numberofholes;
15884     regionarray = in->regionlist;
15885     m.regions = in->numberofregions;
15886 #else /* not TRILIBRARY */
15887     readholes(&m, &b, polyfile, b.inpolyfilename, &holearray, &m.holes,
15888               &regionarray, &m.regions);
15889 #endif /* not TRILIBRARY */
15890     if (!b.refine) {
15891       /* Carve out holes and concavities. */
15892       carveholes(&m, &b, holearray, m.holes, regionarray, m.regions);
15893     }
15894   } else {
15895     /* Without a PSLG, there can be no holes or regional attributes   */
15896     /*   or area constraints.  The following are set to zero to avoid */
15897     /*   an accidental free() later.                                  */
15898     m.holes = 0;
15899     m.regions = 0;
15900   }
15901 
15902 #ifndef NO_TIMER
15903   if (!b.quiet) {
15904     gettimeofday(&tv4, &tz);
15905     if (b.poly && !b.refine) {
15906       printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec) +
15907              (tv4.tv_usec - tv3.tv_usec) / 1000l);
15908     }
15909   }
15910 #endif /* not NO_TIMER */
15911 
15912 #ifndef CDT_ONLY
15913   if (b.quality && (m.triangles.items > 0)) {
15914     enforcequality(&m, &b);           /* Enforce angle and area constraints. */
15915   }
15916 #endif /* not CDT_ONLY */
15917 
15918 #ifndef NO_TIMER
15919   if (!b.quiet) {
15920     gettimeofday(&tv5, &tz);
15921 #ifndef CDT_ONLY
15922     if (b.quality) {
15923       printf("Quality milliseconds:  %ld\n",
15924              1000l * (tv5.tv_sec - tv4.tv_sec) +
15925              (tv5.tv_usec - tv4.tv_usec) / 1000l);
15926     }
15927 #endif /* not CDT_ONLY */
15928   }
15929 #endif /* not NO_TIMER */
15930 
15931   /* Calculate the number of edges. */
15932   m.edges = (3l * m.triangles.items + m.hullsize) / 2l;
15933 
15934   if (b.order > 1) {
15935     highorder(&m, &b);       /* Promote elements to higher polynomial order. */
15936   }
15937   if (!b.quiet) {
15938     printf("\n");
15939   }
15940 
15941 #ifdef TRILIBRARY
15942   if (b.jettison) {
15943     out->numberofpoints = m.vertices.items - m.undeads;
15944   } else {
15945     out->numberofpoints = m.vertices.items;
15946   }
15947   out->numberofpointattributes = m.nextras;
15948   out->numberoftriangles = m.triangles.items;
15949   out->numberofcorners = (b.order + 1) * (b.order + 2) / 2;
15950   out->numberoftriangleattributes = m.eextras;
15951   out->numberofedges = m.edges;
15952   if (b.usesegments) {
15953     out->numberofsegments = m.subsegs.items;
15954   } else {
15955     out->numberofsegments = m.hullsize;
15956   }
15957   if (vorout != (struct triangulateio *) NULL) {
15958     vorout->numberofpoints = m.triangles.items;
15959     vorout->numberofpointattributes = m.nextras;
15960     vorout->numberofedges = m.edges;
15961   }
15962 #endif /* TRILIBRARY */
15963   /* If not using iteration numbers, don't write a .node file if one was */
15964   /*   read, because the original one would be overwritten!              */
15965   if (b.nonodewritten || (b.noiterationnum && m.readnodefile)) {
15966     if (!b.quiet) {
15967 #ifdef TRILIBRARY
15968       printf("NOT writing vertices.\n");
15969 #else /* not TRILIBRARY */
15970       printf("NOT writing a .node file.\n");
15971 #endif /* not TRILIBRARY */
15972     }
15973     numbernodes(&m, &b);         /* We must remember to number the vertices. */
15974   } else {
15975     /* writenodes() numbers the vertices too. */
15976 #ifdef TRILIBRARY
15977     writenodes(&m, &b, &out->pointlist, &out->pointattributelist,
15978                &out->pointmarkerlist);
15979 #else /* not TRILIBRARY */
15980     writenodes(&m, &b, b.outnodefilename, argc, argv);
15981 #endif /* TRILIBRARY */
15982   }
15983   if (b.noelewritten) {
15984     if (!b.quiet) {
15985 #ifdef TRILIBRARY
15986       printf("NOT writing triangles.\n");
15987 #else /* not TRILIBRARY */
15988       printf("NOT writing an .ele file.\n");
15989 #endif /* not TRILIBRARY */
15990     }
15991   } else {
15992 #ifdef TRILIBRARY
15993     writeelements(&m, &b, &out->trianglelist, &out->triangleattributelist);
15994 #else /* not TRILIBRARY */
15995     writeelements(&m, &b, b.outelefilename, argc, argv);
15996 #endif /* not TRILIBRARY */
15997   }
15998   /* The -c switch (convex switch) causes a PSLG to be written */
15999   /*   even if none was read.                                  */
16000   if (b.poly || b.convex) {
16001     /* If not using iteration numbers, don't overwrite the .poly file. */
16002     if (b.nopolywritten || b.noiterationnum) {
16003       if (!b.quiet) {
16004 #ifdef TRILIBRARY
16005         printf("NOT writing segments.\n");
16006 #else /* not TRILIBRARY */
16007         printf("NOT writing a .poly file.\n");
16008 #endif /* not TRILIBRARY */
16009       }
16010     } else {
16011 #ifdef TRILIBRARY
16012       writepoly(&m, &b, &out->segmentlist, &out->segmentmarkerlist);
16013       out->numberofholes = m.holes;
16014       out->numberofregions = m.regions;
16015       if (b.poly) {
16016         out->holelist = in->holelist;
16017         out->regionlist = in->regionlist;
16018       } else {
16019         out->holelist = (REAL *) NULL;
16020         out->regionlist = (REAL *) NULL;
16021       }
16022 #else /* not TRILIBRARY */
16023       writepoly(&m, &b, b.outpolyfilename, holearray, m.holes, regionarray,
16024                 m.regions, argc, argv);
16025 #endif /* not TRILIBRARY */
16026     }
16027   }
16028 #ifndef TRILIBRARY
16029 #ifndef CDT_ONLY
16030   if (m.regions > 0) {
16031     trifree((VOID *) regionarray);
16032   }
16033 #endif /* not CDT_ONLY */
16034   if (m.holes > 0) {
16035     trifree((VOID *) holearray);
16036   }
16037   if (b.geomview) {
16038     writeoff(&m, &b, b.offfilename, argc, argv);
16039   }
16040 #endif /* not TRILIBRARY */
16041   if (b.edgesout) {
16042 #ifdef TRILIBRARY
16043     writeedges(&m, &b, &out->edgelist, &out->edgemarkerlist);
16044 #else /* not TRILIBRARY */
16045     writeedges(&m, &b, b.edgefilename, argc, argv);
16046 #endif /* not TRILIBRARY */
16047   }
16048   if (b.voronoi) {
16049 #ifdef TRILIBRARY
16050     writevoronoi(&m, &b, &vorout->pointlist, &vorout->pointattributelist,
16051                  &vorout->pointmarkerlist, &vorout->edgelist,
16052                  &vorout->edgemarkerlist, &vorout->normlist);
16053 #else /* not TRILIBRARY */
16054     writevoronoi(&m, &b, b.vnodefilename, b.vedgefilename, argc, argv);
16055 #endif /* not TRILIBRARY */
16056   }
16057   if (b.neighbors) {
16058 #ifdef TRILIBRARY
16059     writeneighbors(&m, &b, &out->neighborlist);
16060 #else /* not TRILIBRARY */
16061     writeneighbors(&m, &b, b.neighborfilename, argc, argv);
16062 #endif /* not TRILIBRARY */
16063   }
16064 
16065   if (!b.quiet) {
16066 #ifndef NO_TIMER
16067     gettimeofday(&tv6, &tz);
16068     printf("\nOutput milliseconds:  %ld\n",
16069            1000l * (tv6.tv_sec - tv5.tv_sec) +
16070            (tv6.tv_usec - tv5.tv_usec) / 1000l);
16071     printf("Total running milliseconds:  %ld\n",
16072            1000l * (tv6.tv_sec - tv0.tv_sec) +
16073            (tv6.tv_usec - tv0.tv_usec) / 1000l);
16074 #endif /* not NO_TIMER */
16075 
16076     statistics(&m, &b);
16077   }
16078 
16079 #ifndef REDUCED
16080   if (b.docheck) {
16081     checkmesh(&m, &b);
16082     checkdelaunay(&m, &b);
16083   }
16084 #endif /* not REDUCED */
16085 
16086   triangledeinit(&m, &b);
16087 #ifndef TRILIBRARY
16088   return 0;
16089 #endif /* not TRILIBRARY */
16090 }

Generated by  doxygen 1.6.2