
Chaste Developers Tutorial - Version Control with
Git

Martin Robinson

July 7, 2016

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Why Use Version Control?

Figure 1: “Piled Higher and Deeper” by Jorge Cham,
http://www.phdcomics.comMartin Robinson Chaste Developers Tutorial - Version Control with Git

Why Use Version Control?

Version control is better than mailing files back and forth:

Nothing that is committed to version control is ever lost.
As we have this record of who made what changes when, we
know who to ask if we have questions later on, and, if needed
it, revert to a previous version
the version control system automatically notifies users whenever
there’s a conflict between one person’s work and another’s.

Teams are not the only ones to benefit from version control, Version
control is the lab notebook of the digital world.
Not just for software: books, papers, small data sets, . . .

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Version Control

Many different VC software packages
CVS (1986, 1990 in C)
Subversion (2000)
Mercurial (2005)
Git (2005)
. . . many others

What can you use it for?
Text files are best, can see differences between versions
Source code is the #1 use case
Can also use it for documents or presentations (e.g. latex,
beamer, html, markdown)

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Git

Developed in 2005 by the Linux development community for
the Linux kernel project
Features:

Branching and merging
Fast
Distributed
Flexible staging area
Free and open source

http://git-scm.com/
http://git-scm.com/book/en/
Getting-Started-Installing-Git

Martin Robinson Chaste Developers Tutorial - Version Control with Git

http://git-scm.com/
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://git-scm.com/book/en/Getting-Started-Installing-Git

Installing Git

Fedora Linux

$ yum install git

Debian-based distribution (e.g. Ubuntu)

$ apt-get install git

Graphical Mac Git installer at http:
//sourceforge.net/projects/git-osx-installer/

MacPorts

$ sudo port install git +svn +doc +bash_completion +gitweb

Windows
msysGit at http://msysgit.github.io. Use provided
msysGit shell for command line interface
Cygwin at http://www.cygwin.com/

Martin Robinson Chaste Developers Tutorial - Version Control with Git

http://sourceforge.net/projects/git-osx-installer/
http://sourceforge.net/projects/git-osx-installer/
http://msysgit.github.io
http://www.cygwin.com/

Who are you?

Setup your git installation by telling it your name and email

$ git config --global user.name "Firstname Lastname"
$ git config --global user.email "example@maths.ox.ac.uk"

Martin Robinson Chaste Developers Tutorial - Version Control with Git

What is a Repository?

A git repository is a collection of commits arranged in a
sequential or branching network

Figure 2: Series of commits

Martin Robinson Chaste Developers Tutorial - Version Control with Git

What is a Repository?

Each commit contains snapshots of the files that are added,
along with timing, author etc. information

hash: 2c99bbe

Author: martinjrobins

Date: Mon Oct 6 16:26:50

"commit message"
lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

file1 file2

Figure 3: A commit

Martin Robinson Chaste Developers Tutorial - Version Control with Git

What is a Repository?

As well as the commits, branch pointers show the progress of
different branches
The working directory is simply the current set of files in the
user’s local directory
The staging area is where new edits are added in preparation
for creating a new commit

branch

master/HEAD

Staging Area

Working Directory

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

file1 file2

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

file1 file2

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

lakjsdf1234h

file3

Figure 4: A repository

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Creating a Repository

Initiate an empty local repository. Any files already in the
directory need to be added and committed before they included
in the repository history.

$ git init

Clone a remote repository. This can be a directory for a local
repository, or a URL for a remote.

$ git clone <repo>

This will download the repository and create a copy on your
computer. This is a separate local git repository that is linked to the
remote

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Cloning a repository

for example

$ git clone https://server/username/my_git_repo.git

This uses the secure http protocol, might need to authenticate with
a username and password.

$ git clone git@server:path/to/my_git_repo.git

This uses the ssh protocol, to use this you must have an ssh-key
installed on the git server.

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Adding Content

Use ‘git add’ to add a change in the working directory to the
staging area. All changes or new files need to be added to the
staging area before they can be committed (or use the ‘-a’
commit option, see below)

$ git add <file>
$ git add <directory>

Commit all changes in the staging area to the project history

$ git commit
$ git commit -m "your commit message"

Commit all changes in the working directory

$ git commit -a

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Sending Commits to Remote

When you want to send your new commits to the remote, use
the push command.

$ git push

If the branch you are pushing doesn’t yet exist on the remote,
you can use this command to push a new branch

$ git push -u <repo> <branch>

This command pushes the current branch to the remote
repo/branch branch.
The -u option sets up the current branch to track the
repo/branch branch.

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Examining the history

View the repository commit history using the git log command
$ git log

commit 0d5ef743e3c0e58ea92154016ed301c80ab03428
Author: martinjrobins <martinjrobins@gmail.com>
Date: Mon Oct 6 16:47:06 2014 +0100

this is the third commit

commit a0687f67bc59aadde572ca1395bae2dc1ea462b2
Author: martinjrobins <martinjrobins@gmail.com>
Date: Mon Oct 6 16:46:48 2014 +0100

this is the second commit

commit c7245bbb67c23eec849e9bb2097b45e9c4986149
Author: martinjrobins <martinjrobins@gmail.com>
Date: Mon Oct 6 16:46:33 2014 +0100

this is the first commit

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Examining the history

For a brief summary use –oneline
$ git log --oneline

For detailed information of differences between commits use -p
option
$ git log -p

Use the diff command to see the differences between the
working directory and the staging area.

The –staged option shows changes between the staging area
and the last commit.
Use the HEAD pointer to see the changes between the working
directory and the last commit

$ git diff <file>
$ git diff --staged
$ git diff HEAD

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Examining the staging area

Use the git status command to get details of the staging area
and working directory

$ git status

On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: file1.m
#
no changes added to commit (use "git add" and/or "git commit -a")

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Undoing Changes

Reset (not yet added to staging area) to the last committed
version:

$ git checkout <file>

You can amend the current commit (e.g. change commit
message, commit new changes etc)

$ git commit --amend

You can remove a file from the staging area (i.e. after using git
add)

$ git reset HEAD <file>

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Altering your history - Reset versus Revert

You can reset your history (soft reset) and optionally your
working directory (hard reset) to a specified commit:

$ git reset <commit>
$ git reset --hard <commit>

Do not push an altered history to a branch where other devs
are working

You can safely remove a specified commit from the history
using revert. A new commit is made with the necessary
changes

$ git revert <commit>

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Example Workflows

Clone
Chaste Repo

Make edits

commit

Push
to server

Local changes

Figure 5: Minor edits

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Exercise

Go to https://github.com/martinjrobins/exercise and
follow the first exercise, “Exercise 1: Making Commits”

Martin Robinson Chaste Developers Tutorial - Version Control with Git

https://github.com/martinjrobins/exercise

Branching

Branching can be used to:
create/try out a new feature
provide conflict-free parallel editing for multiple team members
separate editing into “stable” and “in development” branches

A branch is simply a pointer to a commit. The current branch
is pointed to by HEAD

branch

master/HEAD

Figure 6: A branch is a pointer
Martin Robinson Chaste Developers Tutorial - Version Control with Git

Branching

master/HEAD

branch/HEAD

master

git checkout -b branch

Figure 7: Creating a new branch

You can create a new branch and switch to it using the
checkout command

$ git checkout -b <branch>

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Branching

master/HEAD

branch/HEAD

master

git checkout -b branch

Figure 8: Creating a new branch

This is shorthand for

$ git branch <branch>
$ git checkout <branch>

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Branching

Make a few new edits to your new branch
$ edit file1.m
$ commit -a -m "added wow new feature"
$ edit file1.m
$ commit -a -m "fixed bugs in new feature"

branch/HEAD

master

Figure 9: new edits to branch

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Branching

You might need to got back to the master branch to make
some corrections
$ git checkout master
$ edit file1.m
$ commit -a -m "fixed a major bug"

master/HEAD

branch

Figure 10: new edits to master

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Merging

Now we have two separate branches, but what if we want to
merge them together?
$ git checkout master
$ git merge branch

branch

master/HEAD

Figure 11: merge branch into master
Martin Robinson Chaste Developers Tutorial - Version Control with Git

Merge Conflict

If there are conflicting edits to file1.m in master and branch, you
might get an error message like so:

$ git merge branch
Auto-merging file1.m
CONFLICT (content): Merge conflict in file1.m
Automatic merge failed; fix conflicts and then commit the result.

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Resolving Merge Conflict

If you open file1.m, you will see standard conflict-resolution
markers like this:

<<<<<<< HEAD
This is the new line in master
=======
This is the new line in branch
>>>>>>> branch

If you want to see which files are still unmerged at any point,
you can use git status to see the current state of the merge
Finally, commit the results of the merge

$ git commit -a -m "merged branch into master"

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Rebaseing

You might not want to create a new commit (e.g. for many
simple merges). Can also use rebase

$ git rebase master

master

a b

a' b'

branch/HEAD

Figure 12: rebase branch onto master

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Example Workflow

Clone
Chaste Repo

Make edits

commit

Push
to server

Make new
feature branch

Merge branch
to develop

Push
to server

(optional) Your new branch will now
be on the server

Give the new branch an identifiable name
based on your own,
e.g. "Martin_Robinson/my_new_feature"

If you no longer need it,
delete your (now) merged branch

Local changes

Figure 13: New features
Martin Robinson Chaste Developers Tutorial - Version Control with Git

Exercise

Go to https://github.com/martinjrobins/exercise and
follow the second exercise, “Exercise 2: Branching and Merging”

Martin Robinson Chaste Developers Tutorial - Version Control with Git

https://github.com/martinjrobins/exercise

Sharing and Collaborating

If other people are making commits to the repository, you can
pull these using

$ git pull

This is short for git fetch; git merge origin/master
(can also use rebasing)

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Conflicts pushing to remote

If you try to push new commits and they conflict with commits
already in the remote repo, you will get an error. Need to then
merge or rebase them:

$ git pull

or

$ git pull --rebase

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Maintaining a feature branch

If you want to avoid a busy master branch or develop a large
feature, best to use a feature branch. e.g.

$ git checkout -b mrobinson/world_peace

If you want to keep this up-to-date with the master branch
you can do periodic rebase-ing

$ git pull
$ git rebase master

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Collaborating on a feature branch

You can push your branch to the remote for backup or to share
with other developers

$ git checkout -b mrobinson/world_peace
$ git push origin mrobinson/world_peace

Other developers can pull your branch using

$ git checkout --track origin/mrobinson/world_peace

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Collaborating on a feature branch

If you and another developer(s) are busy on a branch, you might not
want to be constantly merging your edits. Can setup the branch to
always fetch/rebase instead of fetch/merge by setting the
config parameter branch.<name>.rebase to true.

$ edit .ssh/config

Or you can do it once off using the --rebase option

$ git pull --rebase

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Example Workflow
Clone
Chaste Repo

Make edits

commit

Push
to server

Clone feature
branch

Rebase
new commits

Clone
Chaste Repo

Make edits

commit

Push
to server

Create feature
branch

Merge branch
to develop

Push
to server

Rebase
new commits

Figure 14: Branch Collaboration
Martin Robinson Chaste Developers Tutorial - Version Control with Git

Exercise

Go to https://github.com/martinjrobins/exercise and
follow the third exercise, “Exercise 3: Collaboration”

Martin Robinson Chaste Developers Tutorial - Version Control with Git

https://github.com/martinjrobins/exercise

Chaste Infrastructure

Chaste
History

Chaste

infrastructure_scripts notforrelease_cell_based

Truncated history
(version 3.0)

Full history

Private Projects

AaronS User Projectsairprom Wisc2013 yohan

notforrelease_lung

Figure 15: Chaste Git Repos

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Chaste Git Repo

multiple branches

develop: all development occurs here, starting point for CI
testing
passed_continuous: latest commit that passed continuous
test pack
passed_nightly: latest commit that passed continuous and
nightly test packs
passed_lofty: latest commit that passed continuous,
nightly and lofty test pack
master: latest commit that passed all tests
user_name/feature_name: feature branches created as
needed by developers (can be tested through buildbot web
interface)

Martin Robinson Chaste Developers Tutorial - Version Control with Git

Practicalities

$ git clone -b develop https://chaste.cs.ox.ac.uk/git/chaste.git
$ git clone https://robinsonm@chaste.cs.ox.ac.uk/git/chaste.git

Martin Robinson Chaste Developers Tutorial - Version Control with Git

More info

If there is any command you are unclear about, you can use git
-h to get more information. Or simply google it. . .
Further tutorial can be found online at:

Git documentation and book (http://git-scm.com/doc)
Atlassian tutorials
(https://www.atlassian.com/git/tutorials)
Software Carpentry Foundation
(http://software-carpentry.org/)

Acknowledgements: material for this lecture modified from
links above.

Git book: Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Atlassian tutorials: Creative Commons Attribution 2.5 Australia
License.
Software Carpentry: Creative Commons Attribution Licence
(v4.0)

Martin Robinson Chaste Developers Tutorial - Version Control with Git

http://git-scm.com/doc
https://www.atlassian.com/git/tutorials
http://software-carpentry.org/

