On this page This tutorial was generated from the file projects/CaDiffusion/test/TestCaDiffusionLiteratePaper.hpp at revision r27328.
Note that the code is given in full at the bottom of the page.
Ca^2+^ Channel Re-localization to Plasma-Membrane Microdomains Strengthens Activation of Ca^2+^-Dependent Nuclear Gene Expression# Code to accompany the paper Samanta et al. 2015 .
Code Walkthrough# The following wiki page provides a walk-through of the Chaste code
that was used to perform the simulations in this paper.
First we include some header files:
#include <cxxtest/TestSuite.h>
#include "GmshMeshReader.hpp"
#include "UblasIncludes.hpp"
//#include "SimpleLinearEllipticSolver.hpp"
#include "SimpleLinearParabolicSolver.hpp"
#include "TetrahedralMesh.hpp"
#include "BoundaryConditionsContainer.hpp"
#include "ConstBoundaryCondition.hpp"
#include "OutputFileHandler.hpp"
#include "RandomNumberGenerator.hpp"
#include "PetscSetupAndFinalize.hpp"
Set up a diffusion equation with a source term# d[Ca]/dt = D_Ca Laplacian([Ca]) + Q
[Ca] in units of uM
D_Ca = 300 (nm)^2^/us
integral of Q per ion channel’s worth of elements over which is to be applied = 2.5133e4 uM / us
template < unsigned SPACE_DIM >
class DiffusionEquationWithSourceTerm : public AbstractLinearParabolicPde < SPACE_DIM >
{
private :
const std :: vector < c_vector < double , SPACE_DIM > >& mrChannelLocations ;
/** The elements that are source elements */
std :: vector < std :: vector < unsigned > > mElementsEachChannel ;
std :: vector < double > mConcentrationSourcePerUnitVolume ; // in units of uM / us
public :
DiffusionEquationWithSourceTerm ( AbstractTetrahedralMesh < SPACE_DIM , SPACE_DIM >* pMesh ,
const std :: vector < c_vector < double , SPACE_DIM > >& rChannelLocations )
: AbstractLinearParabolicPde < SPACE_DIM > (),
mrChannelLocations ( rChannelLocations )
{
// We're going to work out the total volume of the elements that are going to have a source term
// in them here.
std :: vector < double > source_volumes ( mrChannelLocations . size (), 0.0 );
mConcentrationSourcePerUnitVolume . resize ( mrChannelLocations . size ());
mElementsEachChannel . resize ( mrChannelLocations . size ());
// Make a list of elements that we are going to say are source elements.
for ( typename TetrahedralMesh < SPACE_DIM , SPACE_DIM >:: ElementIterator elt_iter = pMesh -> GetElementIteratorBegin ();
elt_iter != pMesh -> GetElementIteratorEnd ();
++ elt_iter )
{
// Decide whether this should be classed as a source element or not.
c_vector < double , SPACE_DIM > location = elt_iter -> CalculateCentroid ();
for ( unsigned channel = 0 ; channel < mrChannelLocations . size (); channel ++ )
{
if ( norm_2 ( location - mrChannelLocations [ channel ]) <= 3.0 ) // If centroid is within 3nm of channel say it is a source.
{
//std::cout << "Source Element Recorded\n";
// Make a note of this element
mElementsEachChannel [ channel ]. push_back ( elt_iter -> GetIndex ());
// And add its volume to the total volume of source.
c_matrix < double , 3 , 3 > jacob ;
double det ;
elt_iter -> CalculateJacobian ( jacob , det );
source_volumes [ channel ] += elt_iter -> GetVolume ( det );
//std::cout << "Total source volume[" << channel << "] = " << source_volumes[channel] << "\n";
}
}
}
// This number is magical and should not be changed unless ion current changed.
const double total_source_required = 2.5133e4 ; // Fiddly conversion from ionic current in single channel.
for ( unsigned channel = 0 ; channel < mrChannelLocations . size (); channel ++ )
{
mConcentrationSourcePerUnitVolume [ channel ] = total_source_required / source_volumes [ channel ];
}
}
double ComputeSourceTerm ( const ChastePoint < SPACE_DIM >& rPoint ,
double u ,
Element < SPACE_DIM , SPACE_DIM >* pElement )
{
for ( unsigned channel = 0 ; channel < mElementsEachChannel . size (); channel ++ )
{
if ( std :: find ( mElementsEachChannel [ channel ]. begin (), mElementsEachChannel [ channel ]. end (), pElement -> GetIndex ())
!= mElementsEachChannel [ channel ]. end ())
{
return mConcentrationSourcePerUnitVolume [ channel ];
}
}
return 0.0 ;
}
The Diffusion constant for calcium is 300 um^2^ / s
This is equivalent to
300 (nm)^2^ / us
c_matrix < double , SPACE_DIM , SPACE_DIM > ComputeDiffusionTerm ( const ChastePoint < SPACE_DIM >& rPoint ,
Element < SPACE_DIM , SPACE_DIM >* pElement = NULL )
{
const double diffusion_constant = 300 ; // Units : 3000 (nm)^2/us
return diffusion_constant * identity_matrix < double > ( SPACE_DIM );
}
double ComputeDuDtCoefficientFunction ( const ChastePoint < SPACE_DIM >& rPoint )
{
return 1.0 ;
}
};
Test class and method to look at Calcium diffusion# class TestCaDiffusion : public CxxTest :: TestSuite
{
public :
We will solve
du/dt = div(grad u) + u, in 3d, with boundary conditions Ca=0 on the boundary, and initial
conditions Ca=0. *
Our units throughout this are:
distance : nanometers nm
time : microseconds us
void TestSolvingDiffusionEquationForCalcium () throw ( Exception )
{
TetrahedralMesh < 3 , 3 > mesh ;
Either a 3D Disc shaped thing, centred at (0,0,0), radius 10, and height 1.5.
N.B. We’re in slightly odd units of 10 nm or 1e-8 m (!)
Note a coarse version of the mesh is provided to test simulations, but the ones in
the paper were run on the refined version included here:
bool disc = true ;
if ( disc )
{
GmshMeshReader < 3 , 3 > gmsh_reader ( "projects/CaDiffusion/test/meshes/CaDiffusion.msh" ); // for accurate solution
//GmshMeshReader<3,3> gmsh_reader("projects/CaDiffusion/test/meshes/CaDiffusionCoarse.msh"); // for quick estimate
mesh . ConstructFromMeshReader ( gmsh_reader );
}
Or a square slab of membrane we construct on the fly
Create a 20 by 20 by 1.5 mesh in 3D, this time using the
[ConstructRegularSlabMesh](https://github.com/Chaste/trac_archive/wiki/Construct-Regular-Slab-Mesh)
method on the mesh. The first parameter is the cartesian space-step
and the other three parameters are the width, height and depth of the mesh.
else
{
mesh . ConstructRegularSlabMesh ( 0.25 , 20.0 , 20.0 , 1.5 );
mesh . Translate ( - 10.0 , - 10.0 , 0.0 ); // Centre it in x-y plane at origin
}
mesh . Scale ( 10 , 10 , 10 ); // To get into units of nm, radius 100nm, height 15nm.
Create some ion channel locations
double z_location = 15.0 ; //nm - on the top / outer membrane.
std :: vector < c_vector < double , 3u > > channel_locations ;
// Create ion channels in a pentagon shape.
{
// 6.3 nm is the closest the channel pores could ever get from structures
// 9.6 nm is a value that was just published (Pemi et al. PNAS (2015) Nanoscale patterning of STIM1 and Orai1 during store-operated Ca entry)
// 47.5 nm is the mean nearest neighbour
// 88.5 nm is the mean between any two points (unlikely to be this spread).
double inter_channel_spacing = 9.6 ;
double pentagon_circumradius = ( 1.0 / 10.0 ) * ( sqrt ( 50.0 + 10.0 * sqrt ( 5.0 ))) * inter_channel_spacing ;
std :: cout << "Circumradius = " << pentagon_circumradius << std :: endl ;
// co-ordinates of a pentagon's vertices
double c1 = pentagon_circumradius * ( cos ( 2.0 * M_PI / 5.0 ));
double c2 = pentagon_circumradius * ( cos ( M_PI / 5.0 ));
double s1 = pentagon_circumradius * ( sin ( 2.0 * M_PI / 5.0 ));
double s2 = pentagon_circumradius * ( sin ( 4.0 * M_PI / 5.0 ));
c_vector < double , 3u > location ;
location [ 0 ] = pentagon_circumradius ;
location [ 1 ] = 0.0 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = c1 ;
location [ 1 ] = s1 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = - c2 ;
location [ 1 ] = s2 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = - c2 ;
location [ 1 ] = - s2 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = c1 ;
location [ 1 ] = - s1 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
}
Create the PDE object (defined above)
DiffusionEquationWithSourceTerm < 3u > pde ( & mesh , channel_locations );
Create a new boundary conditions container and specify u=0.0 on the boundary.
BoundaryConditionsContainer < 3u , 3u , 1u > bcc ; // Templated over element dim, space dim, problem dim.
ConstBoundaryCondition < 3u >* p_bc_for_Ca = new ConstBoundaryCondition < 3u > ( 0.0 );
for ( TetrahedralMesh < 3u , 3u >:: BoundaryNodeIterator node_iter = mesh . GetBoundaryNodeIteratorBegin ();
node_iter != mesh . GetBoundaryNodeIteratorEnd ();
++ node_iter )
{
double x = ( * node_iter ) -> rGetLocation ()[ 0 ];
double y = ( * node_iter ) -> rGetLocation ()[ 1 ];
//double z = (*node_iter)->rGetLocation()[2];
if ( disc )
{
// If we are on the rim of the disc
if ( x * x + y * y >= 100 * 100 - 1e-6 )
{
bcc . AddDirichletBoundaryCondition ( * node_iter , p_bc_for_Ca , 0 );
}
}
else
{
// If we are on the edge of a slab
if ( fabs ( x + 100 ) < 1e-6 || fabs ( x - 100 ) < 1e-6 || fabs ( y + 100 ) < 1e-6 || fabs ( y - 100 ) < 1e-6 )
{
bcc . AddDirichletBoundaryCondition ( * node_iter , p_bc_for_Ca , 0 );
}
}
}
SimpleLinearParabolicSolver < 3 , 3 > solver ( & mesh , & pde , & bcc );
For parabolic problems, initial conditions are also needed. The solver will expect
a PETSc vector, where the i-th entry is the initial solution at node i, to be passed
in. To create this PETSc
, we will use a helper function in the
[PetscTools](https://chaste.cs.ox.ac.uk/public-docs/classPetscTools.html)
class to create a
of size num_nodes, with each entry set to 0.0. Then we
set the initial condition on the solver.
Vec initial_condition = PetscTools :: CreateAndSetVec ( mesh . GetNumNodes (), 0.0 );
solver . SetInitialCondition ( initial_condition );
Next define the start time, end time, and timestep, and set them.
double t_start = 0 ; // micro seconds
double t_end = 1 ; // micro seconds
double dt = 0.001 ; // micro seconds
solver . SetTimes ( t_start , t_end );
solver . SetTimeStep ( dt );
solver . SetOutputDirectoryAndPrefix ( "CaDiffusion/time_dependent" , "results" );
solver . SetOutputToVtk ( true );
Vec result = solver . Solve ();
// Write a copy of the mesh to examine in a different format.
TrianglesMeshWriter < 3 , 3 > writer ( "CaDiffusion/mesh" , "disc" , false );
writer . WriteFilesUsingMesh ( mesh );
All PETSc vectors should be destroyed when they are no longer needed.
PetscTools :: Destroy ( initial_condition );
PetscTools :: Destroy ( result );
}
};
Code# The full code is given below
File name TestCaDiffusionLiteratePaper.hpp
# #include <cxxtest/TestSuite.h>
#include "GmshMeshReader.hpp"
#include "UblasIncludes.hpp"
//#include "SimpleLinearEllipticSolver.hpp"
#include "SimpleLinearParabolicSolver.hpp"
#include "TetrahedralMesh.hpp"
#include "BoundaryConditionsContainer.hpp"
#include "ConstBoundaryCondition.hpp"
#include "OutputFileHandler.hpp"
#include "RandomNumberGenerator.hpp"
#include "PetscSetupAndFinalize.hpp"
template < unsigned SPACE_DIM >
class DiffusionEquationWithSourceTerm : public AbstractLinearParabolicPde < SPACE_DIM >
{
private :
const std :: vector < c_vector < double , SPACE_DIM > >& mrChannelLocations ;
/** The elements that are source elements */
std :: vector < std :: vector < unsigned > > mElementsEachChannel ;
std :: vector < double > mConcentrationSourcePerUnitVolume ; // in units of uM / us
public :
DiffusionEquationWithSourceTerm ( AbstractTetrahedralMesh < SPACE_DIM , SPACE_DIM >* pMesh ,
const std :: vector < c_vector < double , SPACE_DIM > >& rChannelLocations )
: AbstractLinearParabolicPde < SPACE_DIM > (),
mrChannelLocations ( rChannelLocations )
{
// We're going to work out the total volume of the elements that are going to have a source term
// in them here.
std :: vector < double > source_volumes ( mrChannelLocations . size (), 0.0 );
mConcentrationSourcePerUnitVolume . resize ( mrChannelLocations . size ());
mElementsEachChannel . resize ( mrChannelLocations . size ());
// Make a list of elements that we are going to say are source elements.
for ( typename TetrahedralMesh < SPACE_DIM , SPACE_DIM >:: ElementIterator elt_iter = pMesh -> GetElementIteratorBegin ();
elt_iter != pMesh -> GetElementIteratorEnd ();
++ elt_iter )
{
// Decide whether this should be classed as a source element or not.
c_vector < double , SPACE_DIM > location = elt_iter -> CalculateCentroid ();
for ( unsigned channel = 0 ; channel < mrChannelLocations . size (); channel ++ )
{
if ( norm_2 ( location - mrChannelLocations [ channel ]) <= 3.0 ) // If centroid is within 3nm of channel say it is a source.
{
//std::cout << "Source Element Recorded\n";
// Make a note of this element
mElementsEachChannel [ channel ]. push_back ( elt_iter -> GetIndex ());
// And add its volume to the total volume of source.
c_matrix < double , 3 , 3 > jacob ;
double det ;
elt_iter -> CalculateJacobian ( jacob , det );
source_volumes [ channel ] += elt_iter -> GetVolume ( det );
//std::cout << "Total source volume[" << channel << "] = " << source_volumes[channel] << "\n";
}
}
}
// This number is magical and should not be changed unless ion current changed.
const double total_source_required = 2.5133e4 ; // Fiddly conversion from ionic current in single channel.
for ( unsigned channel = 0 ; channel < mrChannelLocations . size (); channel ++ )
{
mConcentrationSourcePerUnitVolume [ channel ] = total_source_required / source_volumes [ channel ];
}
}
double ComputeSourceTerm ( const ChastePoint < SPACE_DIM >& rPoint ,
double u ,
Element < SPACE_DIM , SPACE_DIM >* pElement )
{
for ( unsigned channel = 0 ; channel < mElementsEachChannel . size (); channel ++ )
{
if ( std :: find ( mElementsEachChannel [ channel ]. begin (), mElementsEachChannel [ channel ]. end (), pElement -> GetIndex ())
!= mElementsEachChannel [ channel ]. end ())
{
return mConcentrationSourcePerUnitVolume [ channel ];
}
}
return 0.0 ;
}
c_matrix < double , SPACE_DIM , SPACE_DIM > ComputeDiffusionTerm ( const ChastePoint < SPACE_DIM >& rPoint ,
Element < SPACE_DIM , SPACE_DIM >* pElement = NULL )
{
const double diffusion_constant = 300 ; // Units : 3000 (nm)^2/us
return diffusion_constant * identity_matrix < double > ( SPACE_DIM );
}
double ComputeDuDtCoefficientFunction ( const ChastePoint < SPACE_DIM >& rPoint )
{
return 1.0 ;
}
};
class TestCaDiffusion : public CxxTest :: TestSuite
{
public :
void TestSolvingDiffusionEquationForCalcium () throw ( Exception )
{
TetrahedralMesh < 3 , 3 > mesh ;
bool disc = true ;
if ( disc )
{
GmshMeshReader < 3 , 3 > gmsh_reader ( "projects/CaDiffusion/test/meshes/CaDiffusion.msh" ); // for accurate solution
//GmshMeshReader<3,3> gmsh_reader("projects/CaDiffusion/test/meshes/CaDiffusionCoarse.msh"); // for quick estimate
mesh . ConstructFromMeshReader ( gmsh_reader );
}
else
{
mesh . ConstructRegularSlabMesh ( 0.25 , 20.0 , 20.0 , 1.5 );
mesh . Translate ( - 10.0 , - 10.0 , 0.0 ); // Centre it in x-y plane at origin
}
mesh . Scale ( 10 , 10 , 10 ); // To get into units of nm, radius 100nm, height 15nm.
double z_location = 15.0 ; //nm - on the top / outer membrane.
std :: vector < c_vector < double , 3u > > channel_locations ;
// Create ion channels in a pentagon shape.
{
// 6.3 nm is the closest the channel pores could ever get from structures
// 9.6 nm is a value that was just published (Pemi et al. PNAS (2015) Nanoscale patterning of STIM1 and Orai1 during store-operated Ca entry)
// 47.5 nm is the mean nearest neighbour
// 88.5 nm is the mean between any two points (unlikely to be this spread).
double inter_channel_spacing = 9.6 ;
double pentagon_circumradius = ( 1.0 / 10.0 ) * ( sqrt ( 50.0 + 10.0 * sqrt ( 5.0 ))) * inter_channel_spacing ;
std :: cout << "Circumradius = " << pentagon_circumradius << std :: endl ;
// co-ordinates of a pentagon's vertices
double c1 = pentagon_circumradius * ( cos ( 2.0 * M_PI / 5.0 ));
double c2 = pentagon_circumradius * ( cos ( M_PI / 5.0 ));
double s1 = pentagon_circumradius * ( sin ( 2.0 * M_PI / 5.0 ));
double s2 = pentagon_circumradius * ( sin ( 4.0 * M_PI / 5.0 ));
c_vector < double , 3u > location ;
location [ 0 ] = pentagon_circumradius ;
location [ 1 ] = 0.0 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = c1 ;
location [ 1 ] = s1 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = - c2 ;
location [ 1 ] = s2 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = - c2 ;
location [ 1 ] = - s2 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
location [ 0 ] = c1 ;
location [ 1 ] = - s1 ;
location [ 2 ] = z_location ;
channel_locations . push_back ( location );
}
DiffusionEquationWithSourceTerm < 3u > pde ( & mesh , channel_locations );
BoundaryConditionsContainer < 3u , 3u , 1u > bcc ; // Templated over element dim, space dim, problem dim.
ConstBoundaryCondition < 3u >* p_bc_for_Ca = new ConstBoundaryCondition < 3u > ( 0.0 );
for ( TetrahedralMesh < 3u , 3u >:: BoundaryNodeIterator node_iter = mesh . GetBoundaryNodeIteratorBegin ();
node_iter != mesh . GetBoundaryNodeIteratorEnd ();
++ node_iter )
{
double x = ( * node_iter ) -> rGetLocation ()[ 0 ];
double y = ( * node_iter ) -> rGetLocation ()[ 1 ];
//double z = (*node_iter)->rGetLocation()[2];
if ( disc )
{
// If we are on the rim of the disc
if ( x * x + y * y >= 100 * 100 - 1e-6 )
{
bcc . AddDirichletBoundaryCondition ( * node_iter , p_bc_for_Ca , 0 );
}
}
else
{
// If we are on the edge of a slab
if ( fabs ( x + 100 ) < 1e-6 || fabs ( x - 100 ) < 1e-6 || fabs ( y + 100 ) < 1e-6 || fabs ( y - 100 ) < 1e-6 )
{
bcc . AddDirichletBoundaryCondition ( * node_iter , p_bc_for_Ca , 0 );
}
}
}
SimpleLinearParabolicSolver < 3 , 3 > solver ( & mesh , & pde , & bcc );
Vec initial_condition = PetscTools :: CreateAndSetVec ( mesh . GetNumNodes (), 0.0 );
solver . SetInitialCondition ( initial_condition );
double t_start = 0 ; // micro seconds
double t_end = 1 ; // micro seconds
double dt = 0.001 ; // micro seconds
solver . SetTimes ( t_start , t_end );
solver . SetTimeStep ( dt );
solver . SetOutputDirectoryAndPrefix ( "CaDiffusion/time_dependent" , "results" );
solver . SetOutputToVtk ( true );
Vec result = solver . Solve ();
// Write a copy of the mesh to examine in a different format.
TrianglesMeshWriter < 3 , 3 > writer ( "CaDiffusion/mesh" , "disc" , false );
writer . WriteFilesUsingMesh ( mesh );
PetscTools :: Destroy ( initial_condition );
PetscTools :: Destroy ( result );
}
};