Title here
Summary here
This tutorial was generated from the file projects/CryptProliferationDistribution/test/TestCryptProliferationDistributionLiteratePaper.hpp at revision r25435. Note that the code is given in full at the bottom of the page.
#include <cxxtest/TestSuite.h>
// Must be included before any other cell_based headers
#include "CellBasedSimulationArchiver.hpp"
#include "AbstractCellBasedTestSuite.hpp"
#include "CellBasedEventHandler.hpp"
#include "OffLatticeSimulation.hpp"
#include "VolumeTrackingModifier.hpp"
#include "CryptCellsGenerator.hpp"
#include "CellsGenerator.hpp"
#include "CylindricalHoneycombMeshGenerator.hpp"
#include "CryptCellCycleModel.hpp"
#include "PanethCellProliferativeType.hpp"
#include "TransitCellProliferativeType.hpp"
#include "CellAgesWriter.hpp"
#include "CellVolumesWriter.hpp"
#include "CellProliferativeTypesWriter.hpp"
#include "CellMutationStatesWriter.hpp"
#include "NodeVelocityWriter.hpp"
#include "GeneralisedLinearSpringForce.hpp"
#include "DifferentialAdhesionSpringForce.hpp"
#include "RepulsionForce.hpp"
#include "CellRetainerForce.hpp"
#include "CryptSimulationBoundaryCondition.hpp"
#include "CryptGeometryBoundaryCondition3d.hpp"
#include "MeshBasedCellPopulationWithGhostNodes.hpp"
#include "NodeBasedCellPopulation.hpp"
#include "SloughingCellKiller.hpp"
#include "PlaneBasedCellKiller.hpp"
#include "PetscSetupAndFinalize.hpp"
#include "Debug.hpp"
class TestCryptProliferationDistributionLiteratePaper : public AbstractCellBasedTestSuite
{
private:
double mLastStartTime;
void setUp()
{
mLastStartTime = std::clock();
AbstractCellBasedTestSuite::setUp();
}
void tearDown()
{
double time = std::clock();
double elapsed_time = (time - mLastStartTime)/(CLOCKS_PER_SEC);
std::cout << "Elapsed time: " << elapsed_time << std::endl;
AbstractCellBasedTestSuite::tearDown();
}
public:
void Test3DCrypt() throw (Exception)
{
// Model setup
// 1 - Pedigree
// 2 - Spatial Wnt
// 3 - Spatial Wnt at birth
// 4 - Mutant
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-CCM"));
unsigned cell_proliferation_model = (unsigned) atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-CCM").c_str());
assert(cell_proliferation_model==1 || cell_proliferation_model==2 || cell_proliferation_model==3 || cell_proliferation_model==4);
bool contact_inhibition = CommandLineArguments::Instance()->OptionExists("-CI");
bool wnt_dependent_ccd = CommandLineArguments::Instance()->OptionExists("-WDCCD");
// Sim and sweep Params
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-end_time"));
double end_time = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-end_time").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-min"));
double min_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-min").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-max"));
double max_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-max").c_str());
assert(min_param>=0);
if (cell_proliferation_model ==2 || cell_proliferation_model==3) // i.e wnt dependent
{
assert (max_param<=1);
}
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-num_sweeps"));
double num_sweeps = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-num_sweeps").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-min_CI"));
double min_CI_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-min_CI").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-max_CI"));
double max_CI_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-max_CI").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-num_CI_sweeps"));
double num_CI_sweeps = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-num_CI_sweeps").c_str());
// Crypt Setup
double cell_radius = 3.5;
double crypt_length = 70; //70
double crypt_radius = 8.0/M_PI*6.0; // Choosing same dimensions as for halted migration paper
// For this size domain there are about 75 cells in the bottom hemisphere so this makes about 20% Paneth cells
unsigned num_paneth_cells = 15;//15;
unsigned num_stem_cells = 60;
unsigned num_cells = num_paneth_cells + num_stem_cells;
double stem_retainer_force_magnitude = 7.5*10;
double paneth_retainer_force_magnitude = 7.5*10;
for (unsigned index = 0; index<=num_sweeps; index ++)
{
double param = min_param + (double)index / double(num_sweeps) * (max_param-min_param);
PRINT_3_VARIABLES(cell_proliferation_model,
index,
param);
// Extra code to calculate the generation if Model 1
unsigned upper_max_transit_generations = (unsigned)ceil(param);
unsigned lower_max_transit_generations = (unsigned)floor(param);
double prob_of_upper_max_transit_generations = param - floor(param);
//Sweep over CI param
for (unsigned CIindex = 0; CIindex<=num_CI_sweeps; CIindex ++)
{
double CIparam = min_CI_param + (double)CIindex / double(num_CI_sweeps) * (max_CI_param-min_CI_param);
PRINT_2_VARIABLES(CIindex,CIparam);
// Create some starter nodes
std::vector<Node<3>*> nodes;
for(unsigned node_index= 0; node_index<num_cells; node_index++)
{
double x = crypt_radius/2.0 * sin(node_index*2.0*M_PI/num_cells);
double y = crypt_radius/2.0 * cos(node_index*2.0*M_PI/num_cells);
double z = 0.0;
nodes.push_back(new Node<3>(node_index, false, x, y, z));
}
// Convert this to a NodesOnlyMesh
NodesOnlyMesh<3> mesh;
mesh.ConstructNodesWithoutMesh(nodes,cell_radius*3.0);
MAKE_PTR(PanethCellProliferativeType, p_paneth_type);
// Create cells
std::vector<CellPtr> cells;
CellsGenerator<CryptCellCycleModel, 3> cells_generator;
cells_generator.GenerateBasicRandom(cells, mesh.GetNumNodes());
//Change properties of the ccm
for (unsigned cell_index= 0; cell_index<cells.size(); cell_index++)
{
cells[cell_index]->GetCellData()->SetItem("Radius", cell_radius);
// Specify CCM
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetCellProliferationModel(cell_proliferation_model);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetIsContactInhibitionCellCycleDuration((bool)contact_inhibition);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetIsWntDependentCellCycleDuration((bool)wnt_dependent_ccd);
// Set some default CCD parameters So total CCM is U[10,14] and (U[22,26] at base if variable)
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMDuration(4.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetSDuration(4.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetG2Duration(2.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetTransitCellG1Duration(2.0); // so total CCM is U[10,14] at threshold
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetStemCellG1Duration(14.0); // so total CCM is U[10,14] at base
//Threshold and Generation specific parameters
if (cell_proliferation_model ==1 ) // i.e Pedigree dependent
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetWntThreshold(1.0);
if (RandomNumberGenerator::Instance()->ranf()<prob_of_upper_max_transit_generations)
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(upper_max_transit_generations); // Mutant = MAX_UNSIGNED
}
else
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(lower_max_transit_generations); // Mutant = MAX_UNSIGNED
}
}
else
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetWntThreshold(param);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(UINT_MAX);
}
// Contact Inhibition specific parameters (Mutant, same CI)
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetEquilibriumVolume(M_PI*4.0/3.0*cell_radius*cell_radius*cell_radius);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetQuiescentVolumeFraction(CIparam);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMutantQuiescentVolumeFraction(CIparam);
}
// Make some cells paneth cells
for(unsigned cell_index= 0; cell_index<num_paneth_cells; cell_index++)
{
unsigned index = cell_index * num_cells/num_paneth_cells;
if (index > num_cells)
{
index = num_cells;
}
cells[index]->SetCellProliferativeType(p_paneth_type);
}
// Create cell population
NodeBasedCellPopulation<3> crypt(mesh, cells);
crypt.SetUseVariableRadii(true);
// Output data
crypt.AddCellWriter<CellAgesWriter>();
crypt.AddCellWriter<CellVolumesWriter>();
crypt.AddCellWriter<CellProliferativeTypesWriter>();
crypt.AddCellWriter<CellMutationStatesWriter>();
crypt.AddPopulationWriter<NodeVelocityWriter>();
crypt.SetAbsoluteMovementThreshold(50.0);
// Create an instance of a Wnt concentration NOTE DO THIS BEFORE THE SIMULATION OTHERWISE CELLS CANT INITIALISE
WntConcentration<3>::Instance()->SetType(LINEAR);
WntConcentration<3>::Instance()->SetCellPopulation(crypt);
WntConcentration<3>::Instance()->SetCryptLength(crypt_length);
// Create a contact inhibition simulator
OffLatticeSimulation<3> simulator(crypt);
simulator.SetOutputDivisionLocations(true);
simulator.SetDt(1.0/200.0);
simulator.SetSamplingTimestepMultiple(200);
simulator.SetEndTime(end_time);
// Add Volume Tracking Modifier
MAKE_PTR(VolumeTrackingModifier<3>, p_modifier);
simulator.AddSimulationModifier(p_modifier);
//Create output directory
std::stringstream out;
if (cell_proliferation_model == 1)
{
out << "FitCCM_"<< cell_proliferation_model << "_CI_" << contact_inhibition << "_WDCCD_" << wnt_dependent_ccd << "_MaxGen_" << param << "_CIthresh_" << CIparam;
}
else
{
out << "FitCCM_"<< cell_proliferation_model << "_CI_" << contact_inhibition << "_WDCCD_" << wnt_dependent_ccd << "_WntThresh_" << param << "_CIthresh_" << CIparam;
}
std::string output_directory = "CryptProlifFit/" + out.str();
simulator.SetOutputDirectory(output_directory);
// Create a force law and pass it to the simulation
MAKE_PTR(DifferentialAdhesionSpringForce<3>, p_force);
p_force->SetMeinekeSpringStiffness(30.0); //normally 15.0 but 30 in all CellBased Papers;
p_force->SetCutOffLength(cell_radius*3.0);
simulator.AddForce(p_force);
// Apply a retainer to keep stem and paneth cells at the base of the crypt
MAKE_PTR(CellRetainerForce<3>, p_retainer_force);
p_retainer_force->SetStemCellForceMagnitudeParameter(stem_retainer_force_magnitude);
p_retainer_force->SetPanethCellForceMagnitudeParameter(paneth_retainer_force_magnitude);
simulator.AddForce(p_retainer_force);
// Apply a boundary condition to represent a 3d crypt
MAKE_PTR_ARGS(CryptGeometryBoundaryCondition3d<3>, p_boundary_condition, (&crypt, 0.0));
simulator.AddCellPopulationBoundaryCondition(p_boundary_condition);
// Create cell killer and pass in to crypt simulation
MAKE_PTR_ARGS(PlaneBasedCellKiller<3>, p_cell_killer,(&crypt, crypt_length*unit_vector<double>(3,2), unit_vector<double>(3,2)));
simulator.AddCellKiller(p_cell_killer);
// Run simulation
simulator.Solve();
// Extra Gubbins to get to loop: this is usually done by the SetUp and TearDown methods
WntConcentration<3>::Instance()->Destroy();
SimulationTime::Instance()->Destroy();
SimulationTime::Instance()->SetStartTime(0.0);
}
}
}
};
The full code is given below
TestCryptProliferationDistributionLiteratePaper.hpp
#include <cxxtest/TestSuite.h>
// Must be included before any other cell_based headers
#include "CellBasedSimulationArchiver.hpp"
#include "AbstractCellBasedTestSuite.hpp"
#include "CellBasedEventHandler.hpp"
#include "OffLatticeSimulation.hpp"
#include "VolumeTrackingModifier.hpp"
#include "CryptCellsGenerator.hpp"
#include "CellsGenerator.hpp"
#include "CylindricalHoneycombMeshGenerator.hpp"
#include "CryptCellCycleModel.hpp"
#include "PanethCellProliferativeType.hpp"
#include "TransitCellProliferativeType.hpp"
#include "CellAgesWriter.hpp"
#include "CellVolumesWriter.hpp"
#include "CellProliferativeTypesWriter.hpp"
#include "CellMutationStatesWriter.hpp"
#include "NodeVelocityWriter.hpp"
#include "GeneralisedLinearSpringForce.hpp"
#include "DifferentialAdhesionSpringForce.hpp"
#include "RepulsionForce.hpp"
#include "CellRetainerForce.hpp"
#include "CryptSimulationBoundaryCondition.hpp"
#include "CryptGeometryBoundaryCondition3d.hpp"
#include "MeshBasedCellPopulationWithGhostNodes.hpp"
#include "NodeBasedCellPopulation.hpp"
#include "SloughingCellKiller.hpp"
#include "PlaneBasedCellKiller.hpp"
#include "PetscSetupAndFinalize.hpp"
#include "Debug.hpp"
class TestCryptProliferationDistributionLiteratePaper : public AbstractCellBasedTestSuite
{
private:
double mLastStartTime;
void setUp()
{
mLastStartTime = std::clock();
AbstractCellBasedTestSuite::setUp();
}
void tearDown()
{
double time = std::clock();
double elapsed_time = (time - mLastStartTime)/(CLOCKS_PER_SEC);
std::cout << "Elapsed time: " << elapsed_time << std::endl;
AbstractCellBasedTestSuite::tearDown();
}
public:
void Test3DCrypt() throw (Exception)
{
// Model setup
// 1 - Pedigree
// 2 - Spatial Wnt
// 3 - Spatial Wnt at birth
// 4 - Mutant
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-CCM"));
unsigned cell_proliferation_model = (unsigned) atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-CCM").c_str());
assert(cell_proliferation_model==1 || cell_proliferation_model==2 || cell_proliferation_model==3 || cell_proliferation_model==4);
bool contact_inhibition = CommandLineArguments::Instance()->OptionExists("-CI");
bool wnt_dependent_ccd = CommandLineArguments::Instance()->OptionExists("-WDCCD");
// Sim and sweep Params
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-end_time"));
double end_time = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-end_time").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-min"));
double min_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-min").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-max"));
double max_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-max").c_str());
assert(min_param>=0);
if (cell_proliferation_model ==2 || cell_proliferation_model==3) // i.e wnt dependent
{
assert (max_param<=1);
}
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-num_sweeps"));
double num_sweeps = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-num_sweeps").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-min_CI"));
double min_CI_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-min_CI").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-max_CI"));
double max_CI_param = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-max_CI").c_str());
TS_ASSERT(CommandLineArguments::Instance()->OptionExists("-num_CI_sweeps"));
double num_CI_sweeps = atof(CommandLineArguments::Instance()->GetStringCorrespondingToOption("-num_CI_sweeps").c_str());
// Crypt Setup
double cell_radius = 3.5;
double crypt_length = 70; //70
double crypt_radius = 8.0/M_PI*6.0; // Choosing same dimensions as for halted migration paper
// For this size domain there are about 75 cells in the bottom hemisphere so this makes about 20% Paneth cells
unsigned num_paneth_cells = 15;//15;
unsigned num_stem_cells = 60;
unsigned num_cells = num_paneth_cells + num_stem_cells;
double stem_retainer_force_magnitude = 7.5*10;
double paneth_retainer_force_magnitude = 7.5*10;
for (unsigned index = 0; index<=num_sweeps; index ++)
{
double param = min_param + (double)index / double(num_sweeps) * (max_param-min_param);
PRINT_3_VARIABLES(cell_proliferation_model,
index,
param);
// Extra code to calculate the generation if Model 1
unsigned upper_max_transit_generations = (unsigned)ceil(param);
unsigned lower_max_transit_generations = (unsigned)floor(param);
double prob_of_upper_max_transit_generations = param - floor(param);
//Sweep over CI param
for (unsigned CIindex = 0; CIindex<=num_CI_sweeps; CIindex ++)
{
double CIparam = min_CI_param + (double)CIindex / double(num_CI_sweeps) * (max_CI_param-min_CI_param);
PRINT_2_VARIABLES(CIindex,CIparam);
// Create some starter nodes
std::vector<Node<3>*> nodes;
for(unsigned node_index= 0; node_index<num_cells; node_index++)
{
double x = crypt_radius/2.0 * sin(node_index*2.0*M_PI/num_cells);
double y = crypt_radius/2.0 * cos(node_index*2.0*M_PI/num_cells);
double z = 0.0;
nodes.push_back(new Node<3>(node_index, false, x, y, z));
}
// Convert this to a NodesOnlyMesh
NodesOnlyMesh<3> mesh;
mesh.ConstructNodesWithoutMesh(nodes,cell_radius*3.0);
MAKE_PTR(PanethCellProliferativeType, p_paneth_type);
// Create cells
std::vector<CellPtr> cells;
CellsGenerator<CryptCellCycleModel, 3> cells_generator;
cells_generator.GenerateBasicRandom(cells, mesh.GetNumNodes());
//Change properties of the ccm
for (unsigned cell_index= 0; cell_index<cells.size(); cell_index++)
{
cells[cell_index]->GetCellData()->SetItem("Radius", cell_radius);
// Specify CCM
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetCellProliferationModel(cell_proliferation_model);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetIsContactInhibitionCellCycleDuration((bool)contact_inhibition);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetIsWntDependentCellCycleDuration((bool)wnt_dependent_ccd);
// Set some default CCD parameters So total CCM is U[10,14] and (U[22,26] at base if variable)
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMDuration(4.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetSDuration(4.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetG2Duration(2.0);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetTransitCellG1Duration(2.0); // so total CCM is U[10,14] at threshold
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetStemCellG1Duration(14.0); // so total CCM is U[10,14] at base
//Threshold and Generation specific parameters
if (cell_proliferation_model ==1 ) // i.e Pedigree dependent
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetWntThreshold(1.0);
if (RandomNumberGenerator::Instance()->ranf()<prob_of_upper_max_transit_generations)
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(upper_max_transit_generations); // Mutant = MAX_UNSIGNED
}
else
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(lower_max_transit_generations); // Mutant = MAX_UNSIGNED
}
}
else
{
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetWntThreshold(param);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMaxTransitGenerations(UINT_MAX);
}
// Contact Inhibition specific parameters (Mutant, same CI)
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetEquilibriumVolume(M_PI*4.0/3.0*cell_radius*cell_radius*cell_radius);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetQuiescentVolumeFraction(CIparam);
dynamic_cast<CryptCellCycleModel*>(cells[cell_index]->GetCellCycleModel())->SetMutantQuiescentVolumeFraction(CIparam);
}
// Make some cells paneth cells
for(unsigned cell_index= 0; cell_index<num_paneth_cells; cell_index++)
{
unsigned index = cell_index * num_cells/num_paneth_cells;
if (index > num_cells)
{
index = num_cells;
}
cells[index]->SetCellProliferativeType(p_paneth_type);
}
// Create cell population
NodeBasedCellPopulation<3> crypt(mesh, cells);
crypt.SetUseVariableRadii(true);
// Output data
crypt.AddCellWriter<CellAgesWriter>();
crypt.AddCellWriter<CellVolumesWriter>();
crypt.AddCellWriter<CellProliferativeTypesWriter>();
crypt.AddCellWriter<CellMutationStatesWriter>();
crypt.AddPopulationWriter<NodeVelocityWriter>();
crypt.SetAbsoluteMovementThreshold(50.0);
// Create an instance of a Wnt concentration NOTE DO THIS BEFORE THE SIMULATION OTHERWISE CELLS CANT INITIALISE
WntConcentration<3>::Instance()->SetType(LINEAR);
WntConcentration<3>::Instance()->SetCellPopulation(crypt);
WntConcentration<3>::Instance()->SetCryptLength(crypt_length);
// Create a contact inhibition simulator
OffLatticeSimulation<3> simulator(crypt);
simulator.SetOutputDivisionLocations(true);
simulator.SetDt(1.0/200.0);
simulator.SetSamplingTimestepMultiple(200);
simulator.SetEndTime(end_time);
// Add Volume Tracking Modifier
MAKE_PTR(VolumeTrackingModifier<3>, p_modifier);
simulator.AddSimulationModifier(p_modifier);
//Create output directory
std::stringstream out;
if (cell_proliferation_model == 1)
{
out << "FitCCM_"<< cell_proliferation_model << "_CI_" << contact_inhibition << "_WDCCD_" << wnt_dependent_ccd << "_MaxGen_" << param << "_CIthresh_" << CIparam;
}
else
{
out << "FitCCM_"<< cell_proliferation_model << "_CI_" << contact_inhibition << "_WDCCD_" << wnt_dependent_ccd << "_WntThresh_" << param << "_CIthresh_" << CIparam;
}
std::string output_directory = "CryptProlifFit/" + out.str();
simulator.SetOutputDirectory(output_directory);
// Create a force law and pass it to the simulation
MAKE_PTR(DifferentialAdhesionSpringForce<3>, p_force);
p_force->SetMeinekeSpringStiffness(30.0); //normally 15.0 but 30 in all CellBased Papers;
p_force->SetCutOffLength(cell_radius*3.0);
simulator.AddForce(p_force);
// Apply a retainer to keep stem and paneth cells at the base of the crypt
MAKE_PTR(CellRetainerForce<3>, p_retainer_force);
p_retainer_force->SetStemCellForceMagnitudeParameter(stem_retainer_force_magnitude);
p_retainer_force->SetPanethCellForceMagnitudeParameter(paneth_retainer_force_magnitude);
simulator.AddForce(p_retainer_force);
// Apply a boundary condition to represent a 3d crypt
MAKE_PTR_ARGS(CryptGeometryBoundaryCondition3d<3>, p_boundary_condition, (&crypt, 0.0));
simulator.AddCellPopulationBoundaryCondition(p_boundary_condition);
// Create cell killer and pass in to crypt simulation
MAKE_PTR_ARGS(PlaneBasedCellKiller<3>, p_cell_killer,(&crypt, crypt_length*unit_vector<double>(3,2), unit_vector<double>(3,2)));
simulator.AddCellKiller(p_cell_killer);
// Run simulation
simulator.Solve();
// Extra Gubbins to get to loop: this is usually done by the SetUp and TearDown methods
WntConcentration<3>::Instance()->Destroy();
SimulationTime::Instance()->Destroy();
SimulationTime::Instance()->SetStartTime(0.0);
}
}
}
};