00001 /* 00002 00003 Copyright (C) University of Oxford, 2005-2009 00004 00005 University of Oxford means the Chancellor, Masters and Scholars of the 00006 University of Oxford, having an administrative office at Wellington 00007 Square, Oxford OX1 2JD, UK. 00008 00009 This file is part of Chaste. 00010 00011 Chaste is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU Lesser General Public License as published 00013 by the Free Software Foundation, either version 2.1 of the License, or 00014 (at your option) any later version. 00015 00016 Chaste is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 00019 License for more details. The offer of Chaste under the terms of the 00020 License is subject to the License being interpreted in accordance with 00021 English Law and subject to any action against the University of Oxford 00022 being under the jurisdiction of the English Courts. 00023 00024 You should have received a copy of the GNU Lesser General Public License 00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>. 00026 00027 */ 00028 00029 00030 #include "RungeKutta2IvpOdeSolver.hpp" 00031 00032 void RungeKutta2IvpOdeSolver::CalculateNextYValue(AbstractOdeSystem* pAbstractOdeSystem, 00033 double timeStep, 00034 double time, 00035 std::vector<double>& rCurrentYValues, 00036 std::vector<double>& rNextYValues) 00037 { 00038 /* 00039 * Apply Runge-Kutta 2nd order method for each timestep in AbstractOneStepIvpSolver. 00040 * Calculates a vector containing the next Y value from the current one for each 00041 * equation in the system. 00042 */ 00043 00044 const unsigned num_equations = pAbstractOdeSystem->GetNumberOfStateVariables(); 00045 00046 std::vector<double> k1(num_equations); 00047 std::vector<double>& dy = rNextYValues; // re-use memory 00048 00049 // Work out k1 00050 pAbstractOdeSystem->EvaluateYDerivatives(time, rCurrentYValues, dy); 00051 00052 for (unsigned i=0; i<num_equations; i++) 00053 { 00054 k1[i] = timeStep*dy[i]; 00055 k1[i] = k1[i]/2.0 + rCurrentYValues[i]; 00056 } 00057 00058 // Work out k2 and new solution 00059 pAbstractOdeSystem->EvaluateYDerivatives(time+timeStep/2.0, k1, dy); 00060 for (unsigned i=0; i<num_equations; i++) 00061 { 00062 rNextYValues[i] = rCurrentYValues[i] + timeStep*dy[i]; 00063 } 00064 }