00001 /* 00002 00003 Copyright (C) University of Oxford, 2005-2009 00004 00005 University of Oxford means the Chancellor, Masters and Scholars of the 00006 University of Oxford, having an administrative office at Wellington 00007 Square, Oxford OX1 2JD, UK. 00008 00009 This file is part of Chaste. 00010 00011 Chaste is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU Lesser General Public License as published 00013 by the Free Software Foundation, either version 2.1 of the License, or 00014 (at your option) any later version. 00015 00016 Chaste is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 00019 License for more details. The offer of Chaste under the terms of the 00020 License is subject to the License being interpreted in accordance with 00021 English Law and subject to any action against the University of Oxford 00022 being under the jurisdiction of the English Courts. 00023 00024 You should have received a copy of the GNU Lesser General Public License 00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>. 00026 00027 */ 00028 00029 00030 #ifndef IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00031 #define IMPLICITCARDIACMECHANICSASSEMBLER_HPP_ 00032 00033 #include "NonlinearElasticityAssembler.hpp" 00034 #include "QuadraticBasisFunction.hpp" 00035 #include "LinearBasisFunction.hpp" 00036 #include "NhsSystemWithImplicitSolver.hpp" 00037 #include "NashHunterPoleZeroLaw.hpp" 00038 #include "LogFile.hpp" 00039 #include <cfloat> 00040 00041 00050 template<unsigned DIM> 00051 class ImplicitCardiacMechanicsAssembler : public NonlinearElasticityAssembler<DIM> 00052 { 00053 friend class TestImplicitCardiacMechanicsAssembler; 00054 00055 private: 00056 static const unsigned STENCIL_SIZE = NonlinearElasticityAssembler<DIM>::STENCIL_SIZE; 00057 static const unsigned NUM_NODES_PER_ELEMENT = NonlinearElasticityAssembler<DIM>::NUM_NODES_PER_ELEMENT; 00058 static const unsigned NUM_VERTICES_PER_ELEMENT = NonlinearElasticityAssembler<DIM>::NUM_VERTICES_PER_ELEMENT; 00064 std::vector<NhsSystemWithImplicitSolver> mCellMechSystems; 00065 00070 std::vector<double> mLambdaLastTimeStep; 00071 00076 std::vector<double> mLambda; 00077 00079 double mCurrentTime; 00081 double mNextTime; 00083 double mOdeTimestep; 00084 00086 bool mAllocatedMaterialLawMemory; 00087 00089 unsigned mTotalQuadPoints; 00090 00091 public: 00100 ImplicitCardiacMechanicsAssembler(QuadraticMesh<DIM>* pQuadMesh, 00101 std::string outputDirectory, 00102 std::vector<unsigned>& rFixedNodes, 00103 AbstractIncompressibleMaterialLaw<DIM>* pMaterialLaw = NULL); 00104 00108 ~ImplicitCardiacMechanicsAssembler(); 00109 00111 unsigned GetTotalNumQuadPoints(); 00112 00114 GaussianQuadratureRule<DIM>* GetQuadratureRule(); 00115 00122 void SetIntracellularCalciumConcentrations(std::vector<double>& caI); 00123 00131 std::vector<double>& rGetLambda(); 00132 00140 void Solve(double currentTime, double nextTime, double odeTimestep); 00141 00142 00143 private: 00144 00152 void AssembleOnElement(Element<DIM, DIM>& rElement, 00153 c_matrix<double,STENCIL_SIZE,STENCIL_SIZE>& rAElem, 00154 c_matrix<double,STENCIL_SIZE,STENCIL_SIZE>& rAElemPrecond, 00155 c_vector<double,STENCIL_SIZE>& rBElem, 00156 bool assembleResidual, 00157 bool assembleJacobian); 00158 }; 00159 00160 00167 //public: 00168 // std::vector<std::vector<unsigned> > mNodesContainedInElement; 00169 // 00170 // void ComputeElementsContainingNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh) 00171 // { 00172 // assert(DIM==2); 00173 // 00174 // mNodesContainedInElement.resize(this->mpMesh->n_active_cells()); 00175 // 00176 // unsigned element_number = 0; 00177 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00178 // 00179 // while (element_iter!=this->mDofHandler.end()) 00180 // { 00181 // double xmin = element_iter->vertex(0)(0); 00182 // double xmax = element_iter->vertex(1)(0); 00183 // double ymin = element_iter->vertex(0)(1); 00184 // double ymax = element_iter->vertex(3)(1); 00185 // 00186 // assert(element_iter->vertex(2)(0)==xmax); 00187 // assert(element_iter->vertex(2)(1)==ymax); 00188 // 00189 // for(unsigned i=0; i<pOtherMesh->GetNumNodes(); i++) 00190 // { 00191 // double x = pOtherMesh->GetNode(i)->rGetLocation()[0]; 00192 // double y = pOtherMesh->GetNode(i)->rGetLocation()[1]; 00193 // if((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)) 00194 // { 00195 // mNodesContainedInElement[element_number].push_back(i); 00196 // } 00197 // } 00198 // 00199 // element_iter++; 00200 // element_number++; 00201 // } 00202 // } 00203 // 00204 // void WriteLambda(std::string directory, std::string fileName) 00205 // { 00206 // OutputFileHandler handler(directory,false); 00207 // out_stream p_file = handler.OpenOutputFile(fileName); 00208 // 00209 // std::vector<std::vector<double> > quad_point_posns 00210 // = FiniteElasticityTools<DIM>::GetQuadPointPositions(*(this->mpMesh), this->GetNumQuadPointsInEachDimension()); 00211 // 00212 // 00213 // for(unsigned i=0; i<quad_point_posns.size(); i++) 00214 // { 00215 // (*p_file) << quad_point_posns[i][0] << " " << quad_point_posns[i][1] << " " 00216 // << mCellMechSystems[i].GetLambda() << "\n"; 00217 // } 00218 // } 00219 // 00220 // 00221 // void CalculateCinverseAtNodes(TetrahedralMesh<DIM,DIM>* pOtherMesh, std::vector<std::vector<double> >& rValuesAtNodes) 00222 // { 00223 // assert(DIM==2); 00224 // rValuesAtNodes.resize(pOtherMesh->GetNumNodes()); 00225 // 00226 // unsigned element_number = 0; 00227 // 00228 // static QTrapez<DIM> trapezoid_quadrature_formula; //trapeziod rule - values at NODES 00229 // const unsigned n_q_points = trapezoid_quadrature_formula.n_quadrature_points; 00230 // 00231 // FEValues<DIM> fe_values(this->mFeSystem, trapezoid_quadrature_formula, 00232 // UpdateFlags(update_values | 00233 // update_gradients | 00234 // update_q_points | // needed for interpolating u and u' on the quad point 00235 // update_JxW_values)); 00236 // 00237 // std::vector< Vector<double> > local_solution_values(n_q_points); 00238 // std::vector< std::vector< Tensor<1,DIM> > > local_solution_gradients(n_q_points); 00239 // 00240 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00241 // { 00242 // local_solution_values[q_point].reinit(DIM+1); 00243 // local_solution_gradients[q_point].resize(DIM+1); 00244 // } 00245 // 00246 // 00247 // Tensor<2,DIM> identity; 00248 // for (unsigned i=0; i<DIM; i++) 00249 // { 00250 // for (unsigned j=0; j<DIM; j++) 00251 // { 00252 // identity[i][j] = i==j ? 1.0 : 0.0; 00253 // } 00254 // } 00255 // 00256 // typename DoFHandler<DIM>::active_cell_iterator element_iter = this->mDofHandler.begin_active(); 00257 // 00258 // while (element_iter!=this->mDofHandler.end()) 00259 // { 00260 // double xmin = element_iter->vertex(0)(0); 00261 // double xmax = element_iter->vertex(1)(0); 00262 // double ymin = element_iter->vertex(0)(1); 00263 // double ymax = element_iter->vertex(3)(1); 00264 // assert(element_iter->vertex(2)(0)==xmax); 00265 // assert(element_iter->vertex(2)(1)==ymax); 00266 // 00267 // fe_values.reinit(element_iter); // compute fe values for this element 00268 // fe_values.get_function_values(this->mCurrentSolution, local_solution_values); 00269 // fe_values.get_function_grads(this->mCurrentSolution, local_solution_gradients); 00270 // 00271 // std::vector<Point<DIM> > quad_points =fe_values.get_quadrature_points(); 00272 // 00273 // 00274 // AbstractIncompressibleMaterialLaw<DIM>* p_material_law = this->GetMaterialLawForElement(element_iter); 00275 // 00276 // std::vector<Tensor<2,DIM> > inv_C_at_nodes(4);// 4=2^DIM 00277 // 00278 // for (unsigned q_point=0; q_point<n_q_points; q_point++) 00279 // { 00280 // const std::vector< Tensor<1,DIM> >& grad_u_p = local_solution_gradients[q_point]; 00281 // static Tensor<2,DIM> F; 00282 // static Tensor<2,DIM> C; 00283 // 00284 // for (unsigned i=0; i<DIM; i++) 00285 // { 00286 // for (unsigned j=0; j<DIM; j++) 00287 // { 00288 // F[i][j] = identity[i][j] + grad_u_p[i][j]; 00289 // } 00290 // } 00291 // 00292 // C = transpose(F) * F; 00293 // inv_C_at_nodes[q_point] = invert(C); 00294 // } 00295 // 00296 // 00306 // 00307 // 00308 // 00309 // for(unsigned j=0; j<mNodesContainedInElement[element_number].size(); j++) 00310 // { 00311 // unsigned node_num = mNodesContainedInElement[element_number][j]; 00312 // double x = pOtherMesh->GetNode(node_num)->rGetLocation()[0]; 00313 // double y = pOtherMesh->GetNode(node_num)->rGetLocation()[1]; 00314 // 00315 // assert((x>=xmin) && (x<=xmax) && (y>=ymin) && (y<=ymax)); 00316 // double xi = (x-xmin)/(xmax-xmin); 00317 // double eta = (y-ymin)/(ymax-ymin); 00318 // assert((0<=xi) && (x<=1) && (0<=eta) && (eta<=1)); 00319 // 00320 // rValuesAtNodes[node_num][0] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,0); 00321 // rValuesAtNodes[node_num][1] = InterpolateCinverse(xi,eta,inv_C_at_nodes,0,1); 00322 // rValuesAtNodes[node_num][2] = InterpolateCinverse(xi,eta,inv_C_at_nodes,1,1); 00323 // } 00324 // 00325 // 00326 // element_iter++; 00327 // element_number++; 00328 // } 00329 // } 00330 // 00331 // 00332 // double InterpolateCinverse(const double xi, const double eta, 00333 // const std::vector<Tensor<2,DIM> >& inverseCAtNodes, 00334 // unsigned i, unsigned j) 00335 // { 00336 // return inverseCAtNodes[0][i][j] * (1-xi) * (1-eta) 00337 // + inverseCAtNodes[1][i][j] * (1-xi) * eta 00338 // + inverseCAtNodes[2][i][j] * xi * (1-eta) 00339 // + inverseCAtNodes[3][i][j] * xi * eta; 00340 // } 00341 00342 00343 #endif /*IMPLICITCARDIACMECHANICSASSEMBLER_HPP_*/