SimpleNonlinearEllipticAssembler.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2010
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 
00030 #include "SimpleNonlinearEllipticAssembler.hpp"
00031 
00032 
00033 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00034 SimpleNonlinearEllipticAssembler<ELEMENT_DIM, SPACE_DIM>::SimpleNonlinearEllipticAssembler(
00035             AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>* pMesh,
00036             AbstractNonlinearEllipticPde<SPACE_DIM>* pPde,
00037             BoundaryConditionsContainer<ELEMENT_DIM, SPACE_DIM, 1>* pBoundaryConditions,
00038             unsigned numQuadPoints)
00039     : AbstractAssembler<ELEMENT_DIM,SPACE_DIM,1>(),
00040       SimpleNonlinearEllipticAssembler<ELEMENT_DIM, SPACE_DIM>::BaseClassType(numQuadPoints)
00041 {
00042     // if this is run with SPACE_DIM != ELEMENT_DIM the class has to be checked -
00043     // lots of places where should be using SPACE_DIM not ELEMENT_DIM??
00044     assert(SPACE_DIM==ELEMENT_DIM);
00045 
00046     assert(pMesh!=NULL);
00047     assert(pPde!=NULL);
00048     assert(pBoundaryConditions!=NULL);
00049 
00050     // Store data structures
00051     this->SetMesh(pMesh);
00052     mpNonlinearEllipticPde = pPde;
00053     this->SetBoundaryConditionsContainer(pBoundaryConditions);
00054 }
00055 
00056 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00057 c_matrix<double,1*(ELEMENT_DIM+1),1*(ELEMENT_DIM+1)>
00058     SimpleNonlinearEllipticAssembler<ELEMENT_DIM, SPACE_DIM>::ComputeMatrixTerm(
00059             c_vector<double, ELEMENT_DIM+1>& rPhi,
00060             c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00061             ChastePoint<SPACE_DIM>& rX,
00062             c_vector<double,1>& rU,
00063             c_matrix<double,1,SPACE_DIM>& rGradU,
00064             Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00065 {
00066     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> ret;
00067 
00069     c_matrix<double, ELEMENT_DIM, ELEMENT_DIM> f_of_u = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00070     c_matrix<double, ELEMENT_DIM, ELEMENT_DIM> f_of_u_prime = mpNonlinearEllipticPde->ComputeDiffusionTermPrime(rX, rU(0));
00071 
00072     // LinearSourceTerm(x)  not needed as it is a constant wrt u
00073     double forcing_term_prime = mpNonlinearEllipticPde->ComputeNonlinearSourceTermPrime(rX, rU(0));
00074 
00075     // note rGradU is a 1 by SPACE_DIM matrix, the 1 representing the dimension of
00076     // u (ie in this problem the unknown is a scalar). rGradU0 is rGradU as a vector
00077     matrix_row< c_matrix<double, 1, SPACE_DIM> > rGradU0(rGradU, 0);
00078     c_vector<double, SPACE_DIM> temp1 = prod(f_of_u_prime, rGradU0);
00079     c_vector<double, ELEMENT_DIM+1> temp1a = prod(temp1, rGradPhi);
00080 
00081     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values1 = outer_prod(temp1a, rPhi);
00082     c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp2 = prod(f_of_u, rGradPhi);
00083     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values2 = prod(trans(rGradPhi), temp2);
00084     c_vector<double, ELEMENT_DIM+1> integrand_values3 = forcing_term_prime * rPhi;
00085 
00086     ret = integrand_values1 + integrand_values2 - outer_prod( scalar_vector<double>(ELEMENT_DIM+1), integrand_values3);
00087 
00088     return ret;
00089 }
00090 
00091 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00092 c_vector<double,1*(ELEMENT_DIM+1)>
00093     SimpleNonlinearEllipticAssembler<ELEMENT_DIM, SPACE_DIM>::ComputeVectorTerm(
00094             c_vector<double, ELEMENT_DIM+1>& rPhi,
00095             c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00096             ChastePoint<SPACE_DIM>& rX,
00097             c_vector<double,1>& rU,
00098             c_matrix<double,1,SPACE_DIM>& rGradU,
00099             Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00100 {
00101     c_vector<double, 1*(ELEMENT_DIM+1)> ret;
00102 
00103     //c_vector<double, SPACE_DIM> gradU = prod(grad_phi, Ui);
00104 
00105     // For solving NonlinearEllipticEquation
00106     // which should be defined in/by NonlinearEllipticEquation.hpp:
00107     // d/dx [f(U,x) du/dx ] = -g
00108     // where g(x,U) is the forcing term
00109     double ForcingTerm = mpNonlinearEllipticPde->ComputeLinearSourceTerm(rX);
00110     ForcingTerm += mpNonlinearEllipticPde->ComputeNonlinearSourceTerm(rX, rU(0));
00111     //make RHS general: consists of linear and nonlinear source terms
00112 
00113     c_matrix<double, ELEMENT_DIM, ELEMENT_DIM> FOfU = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00114 
00115     // note rGradU is a 1 by SPACE_DIM matrix, the 1 representing the dimension of
00116     // u (ie in this problem the unknown is a scalar). rGradU0 is rGradU as a vector.
00117     matrix_row< c_matrix<double, 1, SPACE_DIM> > rGradU0(rGradU, 0);
00118     c_vector<double, ELEMENT_DIM+1> integrand_values1 =
00119         prod(c_vector<double, ELEMENT_DIM>(prod(rGradU0, FOfU)), rGradPhi);
00120 
00121     ret = integrand_values1 - (ForcingTerm * rPhi);
00122     return ret;
00123 }
00124 
00125 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00126 c_vector<double, 1*ELEMENT_DIM>
00127     SimpleNonlinearEllipticAssembler<ELEMENT_DIM, SPACE_DIM>::ComputeVectorSurfaceTerm(
00128             const BoundaryElement<ELEMENT_DIM-1,SPACE_DIM>& rSurfaceElement,
00129             c_vector<double, ELEMENT_DIM>& rPhi,
00130             ChastePoint<SPACE_DIM>& rX)
00131 {
00132     double Dgradu_dot_n = this->mpBoundaryConditions->GetNeumannBCValue(&rSurfaceElement, rX);
00133 
00134     // I'm not sure why we want -phi, but it seems to work:)
00135     return  (-Dgradu_dot_n)* rPhi;
00136 }
00137 
00138 
00139 
00141 // Explicit instantiation
00143 
00144 template class SimpleNonlinearEllipticAssembler<1,1>;
00145 template class SimpleNonlinearEllipticAssembler<2,2>;
00146 template class SimpleNonlinearEllipticAssembler<3,3>;

Generated by  doxygen 1.6.2