SimpleLinearParabolicSolver.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2010
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 #include "SimpleLinearParabolicSolver.hpp"
00030 
00031 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00032 c_matrix<double, 1*(ELEMENT_DIM+1), 1*(ELEMENT_DIM+1)> SimpleLinearParabolicSolver<ELEMENT_DIM,SPACE_DIM>::ComputeMatrixTerm(
00033         c_vector<double, ELEMENT_DIM+1>& rPhi,
00034         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00035         ChastePoint<SPACE_DIM>& rX,
00036         c_vector<double,1>& rU,
00037         c_matrix<double,1,SPACE_DIM>& rGradU,
00038         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00039 {
00040     c_matrix<double, SPACE_DIM, SPACE_DIM> pde_diffusion_term = mpParabolicPde->ComputeDiffusionTerm(rX, pElement);
00041 
00042     return    prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00043             + this->mDtInverse * mpParabolicPde->ComputeDuDtCoefficientFunction(rX) * outer_prod(rPhi, rPhi);
00044 }
00045 
00046 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00047 c_vector<double,1*(ELEMENT_DIM+1)> SimpleLinearParabolicSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00048         c_vector<double, ELEMENT_DIM+1>& rPhi,
00049         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00050         ChastePoint<SPACE_DIM>& rX,
00051         c_vector<double,1>& rU,
00052         c_matrix<double,1,SPACE_DIM>& rGradU,
00053         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00054 {
00055     return (mpParabolicPde->ComputeSourceTerm(rX, rU(0))
00056             + this->mDtInverse * mpParabolicPde->ComputeDuDtCoefficientFunction(rX) * rU(0)) * rPhi;
00057 }
00058 
00059 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00060 c_vector<double, ELEMENT_DIM>SimpleLinearParabolicSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorSurfaceTerm(
00061         const BoundaryElement<ELEMENT_DIM-1,SPACE_DIM>& rSurfaceElement,
00062         c_vector<double, ELEMENT_DIM>& rPhi,
00063         ChastePoint<SPACE_DIM>& rX)
00064 {
00065     // D_times_gradu_dot_n = [D grad(u)].n, D=diffusion matrix
00066     double D_times_gradu_dot_n = this->mpBoundaryConditions->GetNeumannBCValue(&rSurfaceElement, rX);
00067     return rPhi * D_times_gradu_dot_n;
00068 }
00069 
00070 
00071 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00072 SimpleLinearParabolicSolver<ELEMENT_DIM,SPACE_DIM>::SimpleLinearParabolicSolver(
00073                             AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00074                             AbstractLinearParabolicPde<ELEMENT_DIM,SPACE_DIM>* pPde,
00075                             BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,1>* pBoundaryConditions,
00076                             unsigned numQuadPoints)
00077     : AbstractAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1,NORMAL>(pMesh,pBoundaryConditions,numQuadPoints),
00078       AbstractDynamicLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh)
00079 {
00080     mpParabolicPde = pPde;
00081     this->mMatrixIsConstant = true;
00082 }
00083 
00084 
00086 // Explicit instantiation
00088 
00089 template class SimpleLinearParabolicSolver<1,1>;
00090 template class SimpleLinearParabolicSolver<2,2>;
00091 template class SimpleLinearParabolicSolver<3,3>;

Generated on Mon Nov 1 12:35:24 2010 for Chaste by  doxygen 1.5.5