SimpleLinearEllipticSolver.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2011
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 #include "SimpleLinearEllipticSolver.hpp"
00030 
00031 
00032 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00033 c_matrix<double, 1*(ELEMENT_DIM+1), 1*(ELEMENT_DIM+1)>SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>:: ComputeMatrixTerm(
00034         c_vector<double, ELEMENT_DIM+1>& rPhi,
00035         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00036         ChastePoint<SPACE_DIM>& rX,
00037         c_vector<double,1>& rU,
00038         c_matrix<double,1,SPACE_DIM>& rGradU,
00039         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00040 {
00041     c_matrix<double, SPACE_DIM, SPACE_DIM> pde_diffusion_term = mpEllipticPde->ComputeDiffusionTerm(rX);
00042 
00043     // if statement just saves computing phi*phi^T if it is to be multiplied by zero
00044     if (mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)!=0)
00045     {
00046         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00047                - mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)*outer_prod(rPhi,rPhi);
00048     }
00049     else
00050     {
00051         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
00052     }
00053 }
00054 
00055 
00056 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00057 c_vector<double,1*(ELEMENT_DIM+1)> SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00058         c_vector<double, ELEMENT_DIM+1>& rPhi,
00059         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00060         ChastePoint<SPACE_DIM>& rX,
00061         c_vector<double,1>& rU,
00062         c_matrix<double,1,SPACE_DIM>& rGradU,
00063         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00064 {
00065     return mpEllipticPde->ComputeConstantInUSourceTerm(rX) * rPhi;
00066 }
00067 
00068 
00069 
00070 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00071 c_vector<double, ELEMENT_DIM> SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorSurfaceTerm(
00072             const BoundaryElement<ELEMENT_DIM-1,SPACE_DIM>& rSurfaceElement,
00073             c_vector<double, ELEMENT_DIM>& rPhi,
00074             ChastePoint<SPACE_DIM>& rX)
00075 {
00076     // D_times_gradu_dot_n = [D grad(u)].n, D=diffusion matrix
00077     double D_times_gradu_dot_n = this->mpBoundaryConditions->GetNeumannBCValue(&rSurfaceElement, rX);
00078     return rPhi * D_times_gradu_dot_n;
00079 }
00080 
00081 
00082 
00083 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00084 SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleLinearEllipticSolver(
00085                                   AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00086                                   AbstractLinearEllipticPde<ELEMENT_DIM,SPACE_DIM>* pPde,
00087                                   BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,1>* pBoundaryConditions,
00088                                   unsigned numQuadPoints)
00089         : AbstractAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1,NORMAL>(pMesh,pBoundaryConditions,numQuadPoints),
00090           AbstractStaticLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh)
00091 {
00092     mpEllipticPde = pPde;
00093 }
00094 
00095 
00096 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00097 void SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::InitialiseForSolve(Vec initialSolution)
00098 {
00099     AbstractLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>::InitialiseForSolve(initialSolution);
00100     assert(this->mpLinearSystem);
00101     this->mpLinearSystem->SetMatrixIsSymmetric(true);
00102     this->mpLinearSystem->SetKspType("cg");
00103 }
00104 
00106 // Explicit instantiation
00108 
00109 template class SimpleLinearEllipticSolver<1,1>;
00110 template class SimpleLinearEllipticSolver<1,2>;
00111 template class SimpleLinearEllipticSolver<1,3>;
00112 template class SimpleLinearEllipticSolver<2,2>;
00113 template class SimpleLinearEllipticSolver<3,3>;

Generated on Mon Apr 18 11:35:36 2011 for Chaste by  doxygen 1.5.5