#include <AbstractAssemblerSolverHybrid.hpp>
Public Member Functions | |
AbstractAssemblerSolverHybrid (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > *pBoundaryConditions, unsigned numQuadPoints=2) | |
virtual | ~AbstractAssemblerSolverHybrid () |
void | SetupGivenLinearSystem (Vec currentSolution, bool computeMatrix, LinearSystem *pLinearSystem) |
See SimpleLinearEllipticSolver for an example.
Definition at line 47 of file AbstractAssemblerSolverHybrid.hpp.
AbstractAssemblerSolverHybrid< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL >::AbstractAssemblerSolverHybrid | ( | AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > * | pMesh, | |
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM > * | pBoundaryConditions, | |||
unsigned | numQuadPoints = 2 | |||
) | [inline] |
Constructor
pMesh | pointer to the mesh | |
pBoundaryConditions | pointer to the boundary conditions. Can be NULL, to allow concrete assembler-solver to, say, create standard boundary conditions its constructor, and then set it. If so, the concrete solver must make sure it calls this->SetApplyNeummanBoundaryConditionsToVector(p_bcc); | |
numQuadPoints | number of quadrature points in each dimension to use per element (defaults to 2) |
Definition at line 59 of file AbstractAssemblerSolverHybrid.hpp.
virtual AbstractAssemblerSolverHybrid< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL >::~AbstractAssemblerSolverHybrid | ( | ) | [inline, virtual] |
Destructor
Definition at line 73 of file AbstractAssemblerSolverHybrid.hpp.
void AbstractAssemblerSolverHybrid< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL >::SetupGivenLinearSystem | ( | Vec | currentSolution, | |
bool | computeMatrix, | |||
LinearSystem * | pLinearSystem | |||
) | [inline] |
Implementation of AbstractLinearPdeSolver::SetupLinearSystem, using the assembler that this class also inherits from. Concrete classes inheriting from both this class and AbstractLinearPdeSolver can then have a one-line implementation of AbstractLinearPdeSolver::SetupLinearSystem which calls this method.
currentSolution | The current solution which can be used in setting up the linear system if needed (NULL if there isn't a current solution) | |
computeMatrix | Whether to compute the LHS matrix of the linear system (mainly for dynamic solves) | |
pLinearSystem | The linear system to set up. |
Definition at line 95 of file AbstractAssemblerSolverHybrid.hpp.
References AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::Assemble(), LinearSystem::AssembleFinalLhsMatrix(), LinearSystem::AssembleIntermediateLhsMatrix(), LinearSystem::AssembleRhsVector(), AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::AssembleVector(), AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::mpBoundaryConditions, LinearSystem::rGetLhsMatrix(), LinearSystem::rGetRhsVector(), AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::SetCurrentSolution(), AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::SetMatrixToAssemble(), and AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::SetVectorToAssemble().