Chaste  Release::2017.1
CellBasedEllipticPdeSolver.cpp
1 /*
2 
3 Copyright (c) 2005-2017, University of Oxford.
4 All rights reserved.
5 
6 University of Oxford means the Chancellor, Masters and Scholars of the
7 University of Oxford, having an administrative office at Wellington
8 Square, Oxford OX1 2JD, UK.
9 
10 This file is part of Chaste.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright notice,
15  this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright notice,
17  this list of conditions and the following disclaimer in the documentation
18  and/or other materials provided with the distribution.
19  * Neither the name of the University of Oxford nor the names of its
20  contributors may be used to endorse or promote products derived from this
21  software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 
36 #include "CellBasedEllipticPdeSolver.hpp"
37 
38 template<unsigned DIM>
41  BoundaryConditionsContainer<DIM,DIM,1>* pBoundaryConditions)
42  : SimpleLinearEllipticSolver<DIM, DIM>(pMesh, pPde, pBoundaryConditions)
43 {
44 }
45 
46 template<unsigned DIM>
48 {
49 }
50 
51 template<unsigned DIM>
53  c_vector<double, DIM+1>& rPhi,
54  c_matrix<double, DIM, DIM+1>& rGradPhi,
55  ChastePoint<DIM>& rX,
56  c_vector<double, 1>& rU,
57  c_matrix<double, 1, DIM>& rGradU /* not used */,
58  Element<DIM, DIM>* pElement)
59 {
60  return mConstantInUSourceTerm * rPhi;
61 }
62 
63 template<unsigned DIM>
64 c_matrix<double, 1*(DIM+1), 1*(DIM+1)> CellBasedEllipticPdeSolver<DIM>::ComputeMatrixTerm(
65  c_vector<double, DIM+1>& rPhi,
66  c_matrix<double, DIM, DIM+1>& rGradPhi,
67  ChastePoint<DIM>& rX,
68  c_vector<double, 1>& rU,
69  c_matrix<double, 1, DIM>& rGradU,
70  Element<DIM, DIM>* pElement)
71 {
72  c_matrix<double, DIM, DIM> pde_diffusion_term = this->mpEllipticPde->ComputeDiffusionTerm(rX);
73 
74  // This if statement just saves computing phi*phi^T if it is to be multiplied by zero
76  {
77  return prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
78  - mLinearInUCoeffInSourceTerm * outer_prod(rPhi,rPhi);
79  }
80  else
81  {
82  return prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
83  }
84 }
85 
86 template<unsigned DIM>
88 {
91 }
92 
93 template<unsigned DIM>
95 {
96  mConstantInUSourceTerm += phiI * this->mpEllipticPde->ComputeConstantInUSourceTermAtNode(*pNode);
97  mLinearInUCoeffInSourceTerm += phiI * this->mpEllipticPde->ComputeLinearInUCoeffInSourceTermAtNode(*pNode);
98 }
99 
100 template<unsigned DIM>
102 {
103  // Linear system created here
105 
107 }
108 
109 // Explicit instantiation
110 template class CellBasedEllipticPdeSolver<1>;
111 template class CellBasedEllipticPdeSolver<2>;
112 template class CellBasedEllipticPdeSolver<3>;
CellBasedEllipticPdeSolver(TetrahedralMesh< DIM, DIM > *pMesh, AbstractLinearEllipticPde< DIM, DIM > *pPde, BoundaryConditionsContainer< DIM, DIM, 1 > *pBoundaryConditions)
Definition: Node.hpp:58
void IncrementInterpolatedQuantities(double phiI, const Node< DIM > *pNode)
void InitialiseForSolve(Vec initialSolution=nullptr)
virtual c_vector< double, 1 *(DIM+1)> ComputeVectorTerm(c_vector< double, DIM+1 > &rPhi, c_matrix< double, DIM, DIM+1 > &rGradPhi, ChastePoint< DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, DIM > &rGradU, Element< DIM, DIM > *pElement)
void InitialiseForSolve(Vec initialSolution)
void SetMatrixIsSymmetric(bool isSymmetric=true)
AbstractLinearEllipticPde< ELEMENT_DIM, SPACE_DIM > * mpEllipticPde
virtual c_matrix< double, 1 *(DIM+1), 1 *(DIM+1)> ComputeMatrixTerm(c_vector< double, DIM+1 > &rPhi, c_matrix< double, DIM, DIM+1 > &rGradPhi, ChastePoint< DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, DIM > &rGradU, Element< DIM, DIM > *pElement)