AbstractAssemblerSolverHybrid.hpp

00001 
00002 /*
00003 
00004 Copyright (C) University of Oxford, 2005-2011
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Chaste is free software: you can redistribute it and/or modify it
00013 under the terms of the GNU Lesser General Public License as published
00014 by the Free Software Foundation, either version 2.1 of the License, or
00015 (at your option) any later version.
00016 
00017 Chaste is distributed in the hope that it will be useful, but WITHOUT
00018 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00019 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00020 License for more details. The offer of Chaste under the terms of the
00021 License is subject to the License being interpreted in accordance with
00022 English Law and subject to any action against the University of Oxford
00023 being under the jurisdiction of the English Courts.
00024 
00025 You should have received a copy of the GNU Lesser General Public License
00026 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00027 
00028 */
00029 
00030 #ifndef ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
00031 #define ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
00032 
00033 #include "AbstractFeVolumeIntegralAssembler.hpp"
00034 #include "AbstractLinearPdeSolver.hpp"
00035 #include "NaturalNeumannSurfaceTermAssembler.hpp"
00036 
00047 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
00048 class AbstractAssemblerSolverHybrid
00049    : public AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>
00050 {
00051 protected:
00052 
00057     NaturalNeumannSurfaceTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM> mNaturalNeumannSurfaceTermAssembler;
00058 
00060     BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* mpBoundaryConditions;
00061 
00062 
00063 public:
00064 
00072     AbstractAssemblerSolverHybrid(AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00073                                   BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* pBoundaryConditions,
00074                                   unsigned numQuadPoints=2)
00075         : AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>(pMesh,numQuadPoints),
00076           mNaturalNeumannSurfaceTermAssembler(pMesh,pBoundaryConditions),
00077           mpBoundaryConditions(pBoundaryConditions)
00078     {
00079         assert(pMesh);
00080         assert(pBoundaryConditions);
00081     }
00082 
00086     virtual ~AbstractAssemblerSolverHybrid()
00087     {
00088     }
00089 
00102     void SetupGivenLinearSystem(Vec currentSolution, bool computeMatrix, LinearSystem* pLinearSystem);
00103 };
00104 
00105 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
00106 void AbstractAssemblerSolverHybrid<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL>::SetupGivenLinearSystem(Vec currentSolution,
00107                                                                                                                      bool computeMatrix,
00108                                                                                                                      LinearSystem* pLinearSystem)
00109 {
00110     assert(pLinearSystem->rGetLhsMatrix() != NULL);
00111     assert(pLinearSystem->rGetRhsVector() != NULL);
00112 
00113     // Assemble the matrix and vector calling methods on AbstractFeVolumeIntegralAssembler
00114     this->SetMatrixToAssemble(pLinearSystem->rGetLhsMatrix());
00115     this->SetVectorToAssemble(pLinearSystem->rGetRhsVector(), true);
00116 
00117     if (currentSolution != NULL)
00118     {
00119         this->SetCurrentSolution(currentSolution);
00120     }
00121 
00122     if (computeMatrix)
00123     {
00124         this->Assemble();
00125     }
00126     else
00127     {
00128         this->AssembleVector();
00129     }
00130 
00131     // Add the Neumann boundary conditions. The boundary conditions put into the BoundaryConditionsContainer
00132     // are assumed to be natural Neumann BCs.
00133     mNaturalNeumannSurfaceTermAssembler.SetVectorToAssemble(pLinearSystem->rGetRhsVector(), false);
00134     mNaturalNeumannSurfaceTermAssembler.Assemble();
00135 
00136     pLinearSystem->FinaliseRhsVector();
00137     pLinearSystem->SwitchWriteModeLhsMatrix();
00138 
00139     // add Dirichlet BCs
00140     mpBoundaryConditions->ApplyDirichletToLinearProblem(*pLinearSystem, true);
00141 
00142     pLinearSystem->FinaliseRhsVector();
00143     pLinearSystem->FinaliseLhsMatrix();
00144 }
00145 
00146 #endif /*ABSTRACTASSEMBLERSOLVERHYBRID_HPP_*/
Generated on Thu Dec 22 13:00:17 2011 for Chaste by  doxygen 1.6.3