00001 /* 00002 00003 Copyright (C) University of Oxford, 2005-2011 00004 00005 University of Oxford means the Chancellor, Masters and Scholars of the 00006 University of Oxford, having an administrative office at Wellington 00007 Square, Oxford OX1 2JD, UK. 00008 00009 This file is part of Chaste. 00010 00011 Chaste is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU Lesser General Public License as published 00013 by the Free Software Foundation, either version 2.1 of the License, or 00014 (at your option) any later version. 00015 00016 Chaste is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 00019 License for more details. The offer of Chaste under the terms of the 00020 License is subject to the License being interpreted in accordance with 00021 English Law and subject to any action against the University of Oxford 00022 being under the jurisdiction of the English Courts. 00023 00024 You should have received a copy of the GNU Lesser General Public License 00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>. 00026 00027 */ 00028 00029 #include "OdeLinearSystemSolver.hpp" 00030 #include "PetscTools.hpp" 00031 #include "ReplicatableVector.hpp" 00032 00033 OdeLinearSystemSolver::OdeLinearSystemSolver(unsigned systemSize, double timeStep) 00034 : mLinearSystem(systemSize) 00035 { 00036 assert(timeStep > 0.0); 00037 mTimeStep = timeStep; 00038 00039 // Initialise vectors to zero 00040 mCurrentSolution = PetscTools::CreateAndSetVec(systemSize, 0.0); 00041 mForceVector = PetscTools::CreateAndSetVec(systemSize, 0.0); 00042 } 00043 00044 OdeLinearSystemSolver::~OdeLinearSystemSolver() 00045 { 00046 VecDestroy(mCurrentSolution); 00047 VecDestroy(mForceVector); 00048 } 00049 00050 double OdeLinearSystemSolver::GetTimeStep() 00051 { 00052 return mTimeStep; 00053 } 00054 00055 Mat& OdeLinearSystemSolver::rGetLhsMatrix() 00056 { 00057 return mLinearSystem.rGetLhsMatrix(); 00058 } 00059 00060 Vec& OdeLinearSystemSolver::rGetForceVector() 00061 { 00062 return mForceVector; 00063 } 00064 00065 void OdeLinearSystemSolver::SetInitialConditionVector(Vec initialConditionsVector) 00066 { 00067 VecCopy(initialConditionsVector, mCurrentSolution); 00068 } 00069 00070 Vec OdeLinearSystemSolver::SolveOneTimeStep() 00071 { 00072 // Compute the product of the LHS matrix and the current solution vector, 00073 // setting the answer to be the RHS vector 00074 MatMult(mLinearSystem.rGetLhsMatrix(), mCurrentSolution, mLinearSystem.rGetRhsVector()); 00075 00076 // Add timestep multipled by force vector 00077 PetscVecTools::AddScaledVector(mLinearSystem.rGetRhsVector(), mForceVector, mTimeStep); 00078 00079 // avoid memory leaks 00080 VecDestroy(mCurrentSolution); 00081 00082 // Having constructed the RHS vector, solve the resulting linear system... 00083 mCurrentSolution = mLinearSystem.Solve(); 00084 00085 return mCurrentSolution; 00086 }