SchmidCostaExponentialLaw2d.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2011
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 #include "SchmidCostaExponentialLaw2d.hpp"
00030 
00031 SchmidCostaExponentialLaw2d::SchmidCostaExponentialLaw2d()
00032 {
00033     mA = 0.221;    // kiloPascals, presumably, although the paper doesn't say.
00034                    // gives results matching Pole-zero anyway.
00035                    // Obtained from Table 1 of Schmid reference (see class doxygen), the mu (mean) value.
00036 
00037     double bff = 42.5; // dimensionless
00038     double bfs = 11.0; // dimensionless
00039     double bss = 18.6; // dimensionless
00040 
00041     mB.resize(2);
00042     mB[0].resize(2);
00043     mB[1].resize(2);
00044 
00045     mB[0][0] = bff;
00046     mB[0][1] = bfs;
00047     mB[1][0] = bfs;
00048     mB[1][1] = bss;
00049 
00050     for (unsigned M=0; M<2; M++)
00051     {
00052         for (unsigned N=0; N<2; N++)
00053         {
00054             mIdentity(M,N) = M==N ? 1.0 : 0.0;
00055         }
00056     }
00057 }
00058 
00059 void SchmidCostaExponentialLaw2d::ComputeStressAndStressDerivative(c_matrix<double,2,2>& rC,
00060                                                                    c_matrix<double,2,2>& rInvC,
00061                                                                    double                pressure,
00062                                                                    c_matrix<double,2,2>& rT,
00063                                                                    FourthOrderTensor<2,2,2,2>& rDTdE,
00064                                                                    bool                  computeDTdE)
00065 {
00066     static c_matrix<double,2,2> C_transformed;
00067     static c_matrix<double,2,2> invC_transformed;
00068 
00069     // The material law parameters are set up assuming the fibre direction is (1,0,0)
00070     // and sheet direction is (0,1,0), so we have to transform C,inv(C),and T.
00071     // Let P be the change-of-basis matrix P = (\mathbf{m}_f, \mathbf{m}_s, \mathbf{m}_n).
00072     // The transformed C for the fibre/sheet basis is C* = P^T C P.
00073     // We then compute T* = T*(C*), and then compute T = P T* P^T.
00074 
00075     ComputeTransformedDeformationTensor(rC, rInvC, C_transformed, invC_transformed);
00076 
00077     // Compute T*
00078 
00079     c_matrix<double,2,2> E = 0.5*(C_transformed - mIdentity);
00080 
00081     double Q = 0;
00082     for (unsigned M=0; M<2; M++)
00083     {
00084         for (unsigned N=0; N<2; N++)
00085         {
00086             Q += mB[M][N]*E(M,N)*E(M,N);
00087         }
00088     }
00089 
00090     double multiplier = mA*exp(Q)/2;
00091     rDTdE.Zero();
00092 
00093     for (unsigned M=0; M<2; M++)
00094     {
00095         for (unsigned N=0; N<2; N++)
00096         {
00097             rT(M,N) = multiplier*mB[M][N]*E(M,N) - pressure*invC_transformed(M,N);
00098 
00099             if (computeDTdE)
00100             {
00101                 for (unsigned P=0; P<2; P++)
00102                 {
00103                     for (unsigned Q=0; Q<2; Q++)
00104                     {
00105                         rDTdE(M,N,P,Q) =   multiplier * mB[M][N] * (M==P)*(N==Q)
00106                                         +  2*multiplier*mB[M][N]*mB[P][Q]*E(M,N)*E(P,Q)
00107                                         +  2*pressure*invC_transformed(M,P)*invC_transformed(Q,N);
00108                     }
00109                 }
00110             }
00111         }
00112     }
00113 
00114     // Now do:   T = P T* P^T   and   dTdE_{MNPQ}  =  P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
00115     this->TransformStressAndStressDerivative(rT, rDTdE, computeDTdE);
00116 }
00117 
00118 double SchmidCostaExponentialLaw2d::GetA()
00119 {
00120     return mA;
00121 }
00122 
00123 std::vector<std::vector<double> > SchmidCostaExponentialLaw2d::GetB()
00124 {
00125     return mB;
00126 }
00127 
00128 double SchmidCostaExponentialLaw2d::GetZeroStrainPressure()
00129 {
00130     return 0.0;
00131 }
Generated on Thu Dec 22 13:00:05 2011 for Chaste by  doxygen 1.6.3