SimpleLinearEllipticSolver.cpp

00001 /*
00002 
00003 Copyright (C) University of Oxford, 2005-2011
00004 
00005 University of Oxford means the Chancellor, Masters and Scholars of the
00006 University of Oxford, having an administrative office at Wellington
00007 Square, Oxford OX1 2JD, UK.
00008 
00009 This file is part of Chaste.
00010 
00011 Chaste is free software: you can redistribute it and/or modify it
00012 under the terms of the GNU Lesser General Public License as published
00013 by the Free Software Foundation, either version 2.1 of the License, or
00014 (at your option) any later version.
00015 
00016 Chaste is distributed in the hope that it will be useful, but WITHOUT
00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
00018 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
00019 License for more details. The offer of Chaste under the terms of the
00020 License is subject to the License being interpreted in accordance with
00021 English Law and subject to any action against the University of Oxford
00022 being under the jurisdiction of the English Courts.
00023 
00024 You should have received a copy of the GNU Lesser General Public License
00025 along with Chaste. If not, see <http://www.gnu.org/licenses/>.
00026 
00027 */
00028 
00029 #include "SimpleLinearEllipticSolver.hpp"
00030 
00031 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00032 c_matrix<double, 1*(ELEMENT_DIM+1), 1*(ELEMENT_DIM+1)>SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>:: ComputeMatrixTerm(
00033         c_vector<double, ELEMENT_DIM+1>& rPhi,
00034         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00035         ChastePoint<SPACE_DIM>& rX,
00036         c_vector<double,1>& rU,
00037         c_matrix<double,1,SPACE_DIM>& rGradU,
00038         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00039 {
00040     c_matrix<double, SPACE_DIM, SPACE_DIM> pde_diffusion_term = mpEllipticPde->ComputeDiffusionTerm(rX);
00041 
00042     // This if statement just saves computing phi*phi^T if it is to be multiplied by zero
00043     if (mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)!=0)
00044     {
00045         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00046                - mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)*outer_prod(rPhi,rPhi);
00047     }
00048     else
00049     {
00050         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
00051     }
00052 }
00053 
00054 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00055 c_vector<double,1*(ELEMENT_DIM+1)> SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00056         c_vector<double, ELEMENT_DIM+1>& rPhi,
00057         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00058         ChastePoint<SPACE_DIM>& rX,
00059         c_vector<double,1>& rU,
00060         c_matrix<double,1,SPACE_DIM>& rGradU,
00061         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00062 {
00063     return mpEllipticPde->ComputeConstantInUSourceTerm(rX, pElement) * rPhi;
00064 }
00065 
00066 
00067 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00068 SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleLinearEllipticSolver(
00069                                   AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00070                                   AbstractLinearEllipticPde<ELEMENT_DIM,SPACE_DIM>* pPde,
00071                                   BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,1>* pBoundaryConditions,
00072                                   unsigned numQuadPoints)
00073         : AbstractAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1,NORMAL>(pMesh,pBoundaryConditions,numQuadPoints),
00074           AbstractStaticLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh)
00075 {
00076     mpEllipticPde = pPde;
00077 }
00078 
00079 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00080 void SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::InitialiseForSolve(Vec initialSolution)
00081 {
00082     AbstractLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>::InitialiseForSolve(initialSolution);
00083     assert(this->mpLinearSystem);
00084     this->mpLinearSystem->SetMatrixIsSymmetric(true);
00085     this->mpLinearSystem->SetKspType("cg");
00086 }
00087 
00089 // Explicit instantiation
00091 
00092 template class SimpleLinearEllipticSolver<1,1>;
00093 template class SimpleLinearEllipticSolver<1,2>;
00094 template class SimpleLinearEllipticSolver<1,3>;
00095 template class SimpleLinearEllipticSolver<2,2>;
00096 template class SimpleLinearEllipticSolver<3,3>;
Generated on Thu Dec 22 13:00:17 2011 for Chaste by  doxygen 1.6.3