Chaste Release::3.1
AbstractRushLarsenCardiacCell.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "AbstractRushLarsenCardiacCell.hpp"
00037 
00038 #include <cassert>
00039 #include <cmath>
00040 
00041 #include "Exception.hpp"
00042 #include "OdeSolution.hpp"
00043 #include "TimeStepper.hpp"
00044 
00045 AbstractRushLarsenCardiacCell::AbstractRushLarsenCardiacCell(unsigned numberOfStateVariables,
00046                                                              unsigned voltageIndex,
00047                                                              boost::shared_ptr<AbstractStimulusFunction> pIntracellularStimulus)
00048     : AbstractCardiacCell(boost::shared_ptr<AbstractIvpOdeSolver>(),
00049                           numberOfStateVariables,
00050                           voltageIndex,
00051                           pIntracellularStimulus)
00052 {}
00053 
00054 AbstractRushLarsenCardiacCell::~AbstractRushLarsenCardiacCell()
00055 {}
00056 
00057 OdeSolution AbstractRushLarsenCardiacCell::Compute(double tStart, double tEnd, double tSamp)
00058 {
00059     // In this method, we iterate over timesteps, doing the following for each:
00060     //   - update V using a forward Euler step
00061     //   - do as in ComputeExceptVoltage(t) to update the remaining state variables
00062     //     using Rush Larsen method or forward Euler as appropriate
00063 
00064     // Check length of time interval
00065     if (tSamp < mDt)
00066     {
00067         tSamp = mDt;
00068     }
00069     const unsigned n_steps = (unsigned) floor((tEnd - tStart)/tSamp + 0.5);
00070     assert(fabs(tStart+n_steps*tSamp - tEnd) < 1e-12);
00071     const unsigned n_small_steps = (unsigned) floor(tSamp/mDt+0.5);
00072     assert(fabs(mDt*n_small_steps - tSamp) < 1e-12);
00073 
00074     // Initialise solution store
00075     OdeSolution solutions;
00076     solutions.SetNumberOfTimeSteps(n_steps);
00077     solutions.rGetSolutions().push_back(rGetStateVariables());
00078     solutions.rGetTimes().push_back(tStart);
00079     solutions.SetOdeSystemInformation(this->mpSystemInfo);
00080 
00081     std::vector<double> dy(mNumberOfStateVariables, 0);
00082     std::vector<double> alpha(mNumberOfStateVariables, 0);
00083     std::vector<double> beta(mNumberOfStateVariables, 0);
00084 
00085     // Loop over time
00086     for (unsigned i=0; i<n_steps; i++)
00087     {
00088         double curr_time = tStart;
00089         for (unsigned j=0; j<n_small_steps; j++)
00090         {
00091             curr_time = tStart + i*tSamp + j*mDt;
00092             EvaluateEquations(curr_time, dy, alpha, beta);
00093             UpdateTransmembranePotential(dy);
00094             ComputeOneStepExceptVoltage(dy, alpha, beta);
00095             VerifyStateVariables();
00096         }
00097 
00098         // Update solutions
00099         solutions.rGetSolutions().push_back(rGetStateVariables());
00100         solutions.rGetTimes().push_back(curr_time+mDt);
00101     }
00102 
00103     return solutions;
00104 }
00105 
00106 void AbstractRushLarsenCardiacCell::ComputeExceptVoltage(double tStart, double tEnd)
00107 {
00108     mSetVoltageDerivativeToZero = true;
00109     TimeStepper stepper(tStart, tEnd, mDt);
00110 
00111     std::vector<double> dy(mNumberOfStateVariables, 0);
00112     std::vector<double> alpha(mNumberOfStateVariables, 0);
00113     std::vector<double> beta(mNumberOfStateVariables, 0);
00114 
00115     while (!stepper.IsTimeAtEnd())
00116     {
00117         EvaluateEquations(stepper.GetTime(), dy, alpha, beta);
00118         ComputeOneStepExceptVoltage(dy, alpha, beta);
00119 
00120 #ifndef NDEBUG
00121         // Check gating variables are still in range
00122         VerifyStateVariables();
00123 #endif // NDEBUG
00124 
00125         stepper.AdvanceOneTimeStep();
00126     }
00127     mSetVoltageDerivativeToZero = false;
00128 }
00129 
00130 void AbstractRushLarsenCardiacCell::SolveAndUpdateState(double tStart, double tEnd)
00131 {
00132     TimeStepper stepper(tStart, tEnd, mDt);
00133 
00134     std::vector<double> dy(mNumberOfStateVariables, 0);
00135     std::vector<double> alpha(mNumberOfStateVariables, 0);
00136     std::vector<double> beta(mNumberOfStateVariables, 0);
00137 
00138     while (!stepper.IsTimeAtEnd())
00139     {
00140         EvaluateEquations(stepper.GetTime(), dy, alpha, beta);
00141         UpdateTransmembranePotential(dy);
00142         ComputeOneStepExceptVoltage(dy, alpha, beta);
00143         VerifyStateVariables();
00144 
00145         stepper.AdvanceOneTimeStep();
00146     }
00147 }
00148 
00149 void AbstractRushLarsenCardiacCell::UpdateTransmembranePotential(const std::vector<double> &rDY)
00150 {
00151     unsigned v_index = GetVoltageIndex();
00152     rGetStateVariables()[v_index] += mDt*rDY[v_index];
00153 }