Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "AbstractRushLarsenCardiacCell.hpp" 00037 00038 #include <cassert> 00039 #include <cmath> 00040 00041 #include "Exception.hpp" 00042 #include "OdeSolution.hpp" 00043 #include "TimeStepper.hpp" 00044 00045 AbstractRushLarsenCardiacCell::AbstractRushLarsenCardiacCell(unsigned numberOfStateVariables, 00046 unsigned voltageIndex, 00047 boost::shared_ptr<AbstractStimulusFunction> pIntracellularStimulus) 00048 : AbstractCardiacCell(boost::shared_ptr<AbstractIvpOdeSolver>(), 00049 numberOfStateVariables, 00050 voltageIndex, 00051 pIntracellularStimulus) 00052 {} 00053 00054 AbstractRushLarsenCardiacCell::~AbstractRushLarsenCardiacCell() 00055 {} 00056 00057 OdeSolution AbstractRushLarsenCardiacCell::Compute(double tStart, double tEnd, double tSamp) 00058 { 00059 // In this method, we iterate over timesteps, doing the following for each: 00060 // - update V using a forward Euler step 00061 // - do as in ComputeExceptVoltage(t) to update the remaining state variables 00062 // using Rush Larsen method or forward Euler as appropriate 00063 00064 // Check length of time interval 00065 if (tSamp < mDt) 00066 { 00067 tSamp = mDt; 00068 } 00069 const unsigned n_steps = (unsigned) floor((tEnd - tStart)/tSamp + 0.5); 00070 assert(fabs(tStart+n_steps*tSamp - tEnd) < 1e-12); 00071 const unsigned n_small_steps = (unsigned) floor(tSamp/mDt+0.5); 00072 assert(fabs(mDt*n_small_steps - tSamp) < 1e-12); 00073 00074 // Initialise solution store 00075 OdeSolution solutions; 00076 solutions.SetNumberOfTimeSteps(n_steps); 00077 solutions.rGetSolutions().push_back(rGetStateVariables()); 00078 solutions.rGetTimes().push_back(tStart); 00079 solutions.SetOdeSystemInformation(this->mpSystemInfo); 00080 00081 std::vector<double> dy(mNumberOfStateVariables, 0); 00082 std::vector<double> alpha(mNumberOfStateVariables, 0); 00083 std::vector<double> beta(mNumberOfStateVariables, 0); 00084 00085 // Loop over time 00086 for (unsigned i=0; i<n_steps; i++) 00087 { 00088 double curr_time = tStart; 00089 for (unsigned j=0; j<n_small_steps; j++) 00090 { 00091 curr_time = tStart + i*tSamp + j*mDt; 00092 EvaluateEquations(curr_time, dy, alpha, beta); 00093 UpdateTransmembranePotential(dy); 00094 ComputeOneStepExceptVoltage(dy, alpha, beta); 00095 VerifyStateVariables(); 00096 } 00097 00098 // Update solutions 00099 solutions.rGetSolutions().push_back(rGetStateVariables()); 00100 solutions.rGetTimes().push_back(curr_time+mDt); 00101 } 00102 00103 return solutions; 00104 } 00105 00106 void AbstractRushLarsenCardiacCell::ComputeExceptVoltage(double tStart, double tEnd) 00107 { 00108 mSetVoltageDerivativeToZero = true; 00109 TimeStepper stepper(tStart, tEnd, mDt); 00110 00111 std::vector<double> dy(mNumberOfStateVariables, 0); 00112 std::vector<double> alpha(mNumberOfStateVariables, 0); 00113 std::vector<double> beta(mNumberOfStateVariables, 0); 00114 00115 while (!stepper.IsTimeAtEnd()) 00116 { 00117 EvaluateEquations(stepper.GetTime(), dy, alpha, beta); 00118 ComputeOneStepExceptVoltage(dy, alpha, beta); 00119 00120 #ifndef NDEBUG 00121 // Check gating variables are still in range 00122 VerifyStateVariables(); 00123 #endif // NDEBUG 00124 00125 stepper.AdvanceOneTimeStep(); 00126 } 00127 mSetVoltageDerivativeToZero = false; 00128 } 00129 00130 void AbstractRushLarsenCardiacCell::SolveAndUpdateState(double tStart, double tEnd) 00131 { 00132 TimeStepper stepper(tStart, tEnd, mDt); 00133 00134 std::vector<double> dy(mNumberOfStateVariables, 0); 00135 std::vector<double> alpha(mNumberOfStateVariables, 0); 00136 std::vector<double> beta(mNumberOfStateVariables, 0); 00137 00138 while (!stepper.IsTimeAtEnd()) 00139 { 00140 EvaluateEquations(stepper.GetTime(), dy, alpha, beta); 00141 UpdateTransmembranePotential(dy); 00142 ComputeOneStepExceptVoltage(dy, alpha, beta); 00143 VerifyStateVariables(); 00144 00145 stepper.AdvanceOneTimeStep(); 00146 } 00147 } 00148 00149 void AbstractRushLarsenCardiacCell::UpdateTransmembranePotential(const std::vector<double> &rDY) 00150 { 00151 unsigned v_index = GetVoltageIndex(); 00152 rGetStateVariables()[v_index] += mDt*rDY[v_index]; 00153 }