Chaste Release::3.1
CellBasedPdeSolver.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "CellBasedPdeSolver.hpp"
00037 #include "TetrahedralMesh.hpp"
00038 #include "SimpleLinearEllipticSolver.hpp"
00039 #include "GaussianQuadratureRule.hpp"
00040 
00041 template<unsigned DIM>
00042 CellBasedPdeSolver<DIM>::CellBasedPdeSolver(TetrahedralMesh<DIM,DIM>* pMesh,
00043                               AbstractLinearEllipticPde<DIM,DIM>* pPde,
00044                               BoundaryConditionsContainer<DIM,DIM,1>* pBoundaryConditions,
00045                               unsigned numQuadPoints) :
00046         SimpleLinearEllipticSolver<DIM, DIM>(pMesh, pPde, pBoundaryConditions, numQuadPoints)
00047 {
00048 }
00049 
00050 template<unsigned DIM>
00051 CellBasedPdeSolver<DIM>::~CellBasedPdeSolver()
00052 {
00053 }
00054 
00055 template<unsigned DIM>
00056 c_vector<double, 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeVectorTerm(
00057         c_vector<double, DIM+1>& rPhi,
00058         c_matrix<double, DIM, DIM+1>& rGradPhi,
00059         ChastePoint<DIM>& rX,
00060         c_vector<double, 1>& rU,
00061         c_matrix<double, 1, DIM>& rGradU /* not used */,
00062         Element<DIM, DIM>* pElement)
00063 {
00064     return mConstantInUSourceTerm * rPhi;
00065 }
00066 
00067 template<unsigned DIM>
00068 c_matrix<double, 1*(DIM+1), 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeMatrixTerm(
00069         c_vector<double, DIM+1>& rPhi,
00070         c_matrix<double, DIM, DIM+1>& rGradPhi,
00071         ChastePoint<DIM>& rX,
00072         c_vector<double, 1>& rU,
00073         c_matrix<double, 1, DIM>& rGradU,
00074         Element<DIM, DIM>* pElement)
00075 {
00076     c_matrix<double, DIM, DIM> pde_diffusion_term = this->mpEllipticPde->ComputeDiffusionTerm(rX);
00077 
00078     // This if statement just saves computing phi*phi^T if it is to be multiplied by zero
00079     if (mLinearInUCoeffInSourceTerm != 0)
00080     {
00081         return   prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00082                - mLinearInUCoeffInSourceTerm * outer_prod(rPhi,rPhi);
00083     }
00084     else
00085     {
00086         return   prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
00087     }
00088 }
00089 
00090 template<unsigned DIM>
00091 void CellBasedPdeSolver<DIM>::ResetInterpolatedQuantities()
00092 {
00093     mConstantInUSourceTerm = 0;
00094     mLinearInUCoeffInSourceTerm = 0;
00095 }
00096 
00097 template<unsigned DIM>
00098 void CellBasedPdeSolver<DIM>::IncrementInterpolatedQuantities(double phiI, const Node<DIM>* pNode)
00099 {
00100     mConstantInUSourceTerm += phiI * this->mpEllipticPde->ComputeConstantInUSourceTermAtNode(*pNode);
00101     mLinearInUCoeffInSourceTerm += phiI * this->mpEllipticPde->ComputeLinearInUCoeffInSourceTermAtNode(*pNode);
00102 }
00103 
00104 template<unsigned DIM>
00105 void CellBasedPdeSolver<DIM>::InitialiseForSolve(Vec initialSolution)
00106 {
00107     // Linear system created here
00108     SimpleLinearEllipticSolver<DIM,DIM>::InitialiseForSolve(initialSolution);
00109 
00110     this->mpLinearSystem->SetMatrixIsSymmetric(true);
00111 }
00112 
00114 // Explicit instantiation
00116 
00117 template class CellBasedPdeSolver<1>;
00118 template class CellBasedPdeSolver<2>;
00119 template class CellBasedPdeSolver<3>;