Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "CellBasedPdeSolver.hpp" 00037 #include "TetrahedralMesh.hpp" 00038 #include "SimpleLinearEllipticSolver.hpp" 00039 #include "GaussianQuadratureRule.hpp" 00040 00041 template<unsigned DIM> 00042 CellBasedPdeSolver<DIM>::CellBasedPdeSolver(TetrahedralMesh<DIM,DIM>* pMesh, 00043 AbstractLinearEllipticPde<DIM,DIM>* pPde, 00044 BoundaryConditionsContainer<DIM,DIM,1>* pBoundaryConditions, 00045 unsigned numQuadPoints) : 00046 SimpleLinearEllipticSolver<DIM, DIM>(pMesh, pPde, pBoundaryConditions, numQuadPoints) 00047 { 00048 } 00049 00050 template<unsigned DIM> 00051 CellBasedPdeSolver<DIM>::~CellBasedPdeSolver() 00052 { 00053 } 00054 00055 template<unsigned DIM> 00056 c_vector<double, 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeVectorTerm( 00057 c_vector<double, DIM+1>& rPhi, 00058 c_matrix<double, DIM, DIM+1>& rGradPhi, 00059 ChastePoint<DIM>& rX, 00060 c_vector<double, 1>& rU, 00061 c_matrix<double, 1, DIM>& rGradU /* not used */, 00062 Element<DIM, DIM>* pElement) 00063 { 00064 return mConstantInUSourceTerm * rPhi; 00065 } 00066 00067 template<unsigned DIM> 00068 c_matrix<double, 1*(DIM+1), 1*(DIM+1)> CellBasedPdeSolver<DIM>::ComputeMatrixTerm( 00069 c_vector<double, DIM+1>& rPhi, 00070 c_matrix<double, DIM, DIM+1>& rGradPhi, 00071 ChastePoint<DIM>& rX, 00072 c_vector<double, 1>& rU, 00073 c_matrix<double, 1, DIM>& rGradU, 00074 Element<DIM, DIM>* pElement) 00075 { 00076 c_matrix<double, DIM, DIM> pde_diffusion_term = this->mpEllipticPde->ComputeDiffusionTerm(rX); 00077 00078 // This if statement just saves computing phi*phi^T if it is to be multiplied by zero 00079 if (mLinearInUCoeffInSourceTerm != 0) 00080 { 00081 return prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) ) 00082 - mLinearInUCoeffInSourceTerm * outer_prod(rPhi,rPhi); 00083 } 00084 else 00085 { 00086 return prod( trans(rGradPhi), c_matrix<double, DIM, DIM+1>(prod(pde_diffusion_term, rGradPhi)) ); 00087 } 00088 } 00089 00090 template<unsigned DIM> 00091 void CellBasedPdeSolver<DIM>::ResetInterpolatedQuantities() 00092 { 00093 mConstantInUSourceTerm = 0; 00094 mLinearInUCoeffInSourceTerm = 0; 00095 } 00096 00097 template<unsigned DIM> 00098 void CellBasedPdeSolver<DIM>::IncrementInterpolatedQuantities(double phiI, const Node<DIM>* pNode) 00099 { 00100 mConstantInUSourceTerm += phiI * this->mpEllipticPde->ComputeConstantInUSourceTermAtNode(*pNode); 00101 mLinearInUCoeffInSourceTerm += phiI * this->mpEllipticPde->ComputeLinearInUCoeffInSourceTermAtNode(*pNode); 00102 } 00103 00104 template<unsigned DIM> 00105 void CellBasedPdeSolver<DIM>::InitialiseForSolve(Vec initialSolution) 00106 { 00107 // Linear system created here 00108 SimpleLinearEllipticSolver<DIM,DIM>::InitialiseForSolve(initialSolution); 00109 00110 this->mpLinearSystem->SetMatrixIsSymmetric(true); 00111 } 00112 00114 // Explicit instantiation 00116 00117 template class CellBasedPdeSolver<1>; 00118 template class CellBasedPdeSolver<2>; 00119 template class CellBasedPdeSolver<3>;