Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "ExplicitCardiacMechanicsSolver.hpp" 00037 #include "Nash2004ContractionModel.hpp" 00038 #include "Kerchoffs2003ContractionModel.hpp" 00039 #include "NonPhysiologicalContractionModel.hpp" 00040 #include "FakeBathContractionModel.hpp" 00041 00042 template<class ELASTICITY_SOLVER,unsigned DIM> 00043 ExplicitCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>::ExplicitCardiacMechanicsSolver(ContractionModelName contractionModelName, 00044 QuadraticMesh<DIM>& rQuadMesh, 00045 ElectroMechanicsProblemDefinition<DIM>& rProblemDefinition, 00046 std::string outputDirectory) 00047 : AbstractCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>(rQuadMesh, 00048 contractionModelName, 00049 rProblemDefinition, 00050 outputDirectory) 00051 { 00052 00053 } 00054 00055 00056 00057 template<class ELASTICITY_SOLVER,unsigned DIM> 00058 void ExplicitCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>::InitialiseContractionModels(ContractionModelName contractionModelName) 00059 { 00060 for(std::map<unsigned,DataAtQuadraturePoint>::iterator iter = this->mQuadPointToDataAtQuadPointMap.begin(); 00061 iter != this->mQuadPointToDataAtQuadPointMap.end(); 00062 iter++) 00063 { 00064 AbstractContractionModel* p_contraction_model; 00065 00066 if (iter->second.Active == true) 00067 { 00068 //tissue node 00069 switch(contractionModelName) 00070 { 00071 case NONPHYSIOL1: 00072 case NONPHYSIOL2: 00073 case NONPHYSIOL3: 00074 { 00075 unsigned option = (contractionModelName==NONPHYSIOL1 ? 1 : (contractionModelName==NONPHYSIOL2? 2 : 3)); 00076 p_contraction_model = new NonPhysiologicalContractionModel(option); 00077 break; 00078 } 00079 case NASH2004: //stretch dependent, will this work with explicit?? 00080 { 00081 p_contraction_model = new Nash2004ContractionModel; 00082 break; 00083 } 00084 case KERCHOFFS2003: //stretch dependent, will this work with explicit? Answer: can be unstable 00085 { 00086 p_contraction_model = new Kerchoffs2003ContractionModel; 00087 break; 00088 } 00089 default: 00090 { 00091 EXCEPTION("Unknown or stretch-rate-dependent contraction model"); 00092 } 00093 } 00094 00095 iter->second.ContractionModel = p_contraction_model; 00096 } 00097 else 00098 { 00099 //bath 00100 p_contraction_model = new FakeBathContractionModel; 00101 iter->second.ContractionModel = p_contraction_model; 00102 } 00103 } 00104 } 00105 00106 template<class ELASTICITY_SOLVER,unsigned DIM> 00107 ExplicitCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>::~ExplicitCardiacMechanicsSolver() 00108 { 00109 } 00110 00111 template<class ELASTICITY_SOLVER,unsigned DIM> 00112 void ExplicitCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>::GetActiveTensionAndTensionDerivs(double currentFibreStretch, 00113 unsigned currentQuadPointGlobalIndex, 00114 bool assembleJacobian, 00115 double& rActiveTension, 00116 double& rDerivActiveTensionWrtLambda, 00117 double& rDerivActiveTensionWrtDLambdaDt) 00118 { 00119 // The iterator should be pointing to the right place (note: it is incremented at the end of this method) 00120 // This iterator is used so that we don't have to search the map 00121 assert(this->mMapIterator->first==currentQuadPointGlobalIndex); 00122 DataAtQuadraturePoint& r_data_at_quad_point = this->mMapIterator->second; 00123 00124 // the active tensions have already been computed for each contraction model, so can 00125 // return it straightaway.. 00126 rActiveTension = r_data_at_quad_point.ContractionModel->GetActiveTension(); 00127 00128 // these are unset 00129 rDerivActiveTensionWrtLambda = 0.0; 00130 rDerivActiveTensionWrtDLambdaDt = 0.0; 00131 00132 // store the value of given for this quad point, so that it can be used when computing 00133 // the active tension at the next timestep 00134 r_data_at_quad_point.Stretch = currentFibreStretch; 00135 00136 // increment the iterator 00137 this->mMapIterator++; 00138 if(this->mMapIterator==this->mQuadPointToDataAtQuadPointMap.end()) 00139 { 00140 this->mMapIterator = this->mQuadPointToDataAtQuadPointMap.begin(); 00141 } 00142 00143 } 00144 00145 template<class ELASTICITY_SOLVER,unsigned DIM> 00146 void ExplicitCardiacMechanicsSolver<ELASTICITY_SOLVER,DIM>::Solve(double time, double nextTime, double odeTimestep) 00147 { 00148 assert(time < nextTime); 00149 this->mCurrentTime = time; 00150 this->mNextTime = nextTime; 00151 this->mOdeTimestep = odeTimestep; 00152 00153 // assemble the residual again so that mStretches is set (in GetActiveTensionAndTensionDerivs) 00154 // using the current deformation. 00155 this->AssembleSystem(true,false); 00156 00157 // integrate contraction models 00158 for(std::map<unsigned,DataAtQuadraturePoint>::iterator iter = this->mQuadPointToDataAtQuadPointMap.begin(); 00159 iter != this->mQuadPointToDataAtQuadPointMap.end(); 00160 iter++) 00161 { 00162 AbstractContractionModel* p_contraction_model = iter->second.ContractionModel; 00163 double stretch = iter->second.Stretch; 00164 p_contraction_model->SetStretchAndStretchRate(stretch, 0.0 /*dlam_dt*/); 00165 p_contraction_model->RunAndUpdate(time, nextTime, odeTimestep); 00166 } 00167 00168 // solve 00169 ELASTICITY_SOLVER::Solve(); 00170 } 00171 00172 00173 00174 template class ExplicitCardiacMechanicsSolver<IncompressibleNonlinearElasticitySolver<2>,2>; 00175 template class ExplicitCardiacMechanicsSolver<IncompressibleNonlinearElasticitySolver<3>,3>; 00176 template class ExplicitCardiacMechanicsSolver<CompressibleNonlinearElasticitySolver<2>,2>; 00177 template class ExplicitCardiacMechanicsSolver<CompressibleNonlinearElasticitySolver<3>,3>;