Chaste Release::3.1
HoneycombVertexMeshGenerator.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "HoneycombVertexMeshGenerator.hpp"
00037 
00038 HoneycombVertexMeshGenerator::HoneycombVertexMeshGenerator(unsigned numElementsAcross,
00039                                                            unsigned numElementsUp,
00040                                                            bool isFlatBottom,
00041                                                            double cellRearrangementThreshold,
00042                                                            double t2Threshold)
00043 {
00044     assert(numElementsAcross > 0);
00045     assert(numElementsUp > 0);
00046     assert(cellRearrangementThreshold > 0.0);
00047     assert(t2Threshold > 0.0);
00048 
00049     std::vector<Node<2>*> nodes;
00050     std::vector<VertexElement<2,2>*>  elements;
00051 
00052     unsigned node_index = 0;
00053     unsigned node_indices[6];
00054     unsigned element_index;
00055 
00056     // Create the nodes, row by row, from the bottom up
00057 
00058     // On the first row we have numElementsAcross nodes, all of which are boundary nodes
00059     for (unsigned i=0; i<numElementsAcross; i++)
00060     {
00061         Node<2>* p_node = new Node<2>(node_index, true, i+0.5, 0);
00062         nodes.push_back(p_node);
00063         node_index++;
00064     }
00065 
00066     /*
00067      * On each interior row we have numElementsAcross+1 nodes. On the second and penultimate
00068      * row all nodes are boundary nodes. On other rows the first and last nodes only
00069      * are boundary nodes.
00070      */
00071     for (unsigned j=1; j<2*numElementsUp+1; j++)
00072     {
00073         for (unsigned i=0; i<=numElementsAcross; i++)
00074         {
00075             double x_coord = ((j%4 == 0)||(j%4 == 3)) ? i+0.5 : i;
00076             double y_coord = (1.5*j - 0.5*(j%2))*0.5/sqrt(3);
00077             bool is_boundary_node = (j==1 || j==2*numElementsUp || i==0 || i==numElementsAcross) ? true : false;
00078 
00079             Node<2>* p_node = new Node<2>(node_index, is_boundary_node, x_coord, y_coord);
00080             nodes.push_back(p_node);
00081             node_index++;
00082         }
00083     }
00084 
00085     /*
00086      * On the last row we have numElementsAcross nodes, all of which are boundary nodes.
00087      */
00088     double y_coord = (1.5*(2*numElementsUp+1) - 0.5*((2*numElementsUp+1)%2))*0.5/sqrt(3);
00089     if (((2*numElementsUp+1)%4 == 0)||((2*numElementsUp+1)%4 == 3))
00090     {
00091         Node<2>* p_node = new Node<2>(node_index, true, 0.5, y_coord);
00092         nodes.push_back(p_node);
00093         node_index++;
00094     }
00095     for (unsigned i=1; i<numElementsAcross; i++)
00096     {
00097         double x_coord = (((2*numElementsUp+1)%4 == 0)||((2*numElementsUp+1)%4 == 3)) ? i+0.5 : i;
00098 
00099         Node<2>* p_node = new Node<2>(node_index, true, x_coord, y_coord);
00100         nodes.push_back(p_node);
00101         node_index++;
00102     }
00103     if (((2*numElementsUp+1)%4 == 1)||((2*numElementsUp+1)%4 == 2))
00104     {
00105         Node<2>* p_node = new Node<2>(node_index, true, numElementsAcross, y_coord);
00106         nodes.push_back(p_node);
00107         node_index++;
00108     }
00109 
00110     /*
00111      * Create the elements. The array node_indices contains the
00112      * global node indices from bottom, going anticlockwise.
00113      */
00114     for (unsigned j=0; j<numElementsUp; j++)
00115     {
00116         for (unsigned i=0; i<numElementsAcross; i++)
00117         {
00118             if (j==0)
00119             {
00120                 node_indices[0] = i;
00121             }
00122             else
00123             {
00124                 node_indices[0] = 2*j*(numElementsAcross+1) - 1*(j%2==0) + i; // different for even/odd rows
00125             }
00126             node_indices[1] = node_indices[0] + numElementsAcross + 1 + 1*(j%2==0 && j>0);
00127             node_indices[2] = node_indices[1] + numElementsAcross + 1;
00128             node_indices[3] = node_indices[2] + numElementsAcross + 1*(j%2==1 && j<numElementsUp-1);
00129             node_indices[4] = node_indices[2] - 1;
00130             node_indices[5] = node_indices[1] - 1;
00131 
00132             std::vector<Node<2>*> element_nodes;
00133             for (unsigned k=0; k<6; k++)
00134             {
00135                element_nodes.push_back(nodes[node_indices[k]]);
00136             }
00137 
00138             element_index = j*numElementsAcross + i;
00139             VertexElement<2,2>* p_element = new VertexElement<2,2>(element_index, element_nodes);
00140             elements.push_back(p_element);
00141         }
00142     }
00143 
00144     mpMesh = new MutableVertexMesh<2,2>(nodes, elements, cellRearrangementThreshold, t2Threshold);
00145 }
00146 
00147 HoneycombVertexMeshGenerator::~HoneycombVertexMeshGenerator()
00148 {
00149     delete mpMesh;
00150 }
00151 
00152 MutableVertexMesh<2,2>* HoneycombVertexMeshGenerator::GetMesh()
00153 {
00154     return mpMesh;
00155 }