Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "MathsCustomFunctions.hpp" 00037 00038 #include <cmath> 00039 #include <iostream> 00040 00041 double SmallPow(double x, unsigned exponent) 00042 { 00043 switch (exponent) 00044 { 00045 case 0: 00046 { 00047 return 1.0; 00048 } 00049 case 1: 00050 { 00051 return x; 00052 } 00053 case 2: 00054 { 00055 return x*x; 00056 } 00057 case 3: 00058 { 00059 return x*x*x; 00060 } 00061 default: 00062 { 00063 if (exponent % 2 == 0) 00064 { 00065 // Even power 00066 double partial_answer = SmallPow(x, exponent/2); 00067 return partial_answer*partial_answer; 00068 } 00069 else 00070 { 00071 // Odd power 00072 return SmallPow(x, exponent-1)*x; 00073 } 00074 } 00075 } 00076 } 00077 00078 bool Divides(double smallerNumber, double largerNumber) 00079 { 00080 double remainder = fmod(largerNumber, smallerNumber); 00081 /* 00082 * Is the remainder close to zero? Note that the comparison is scaled 00083 * with respect to the larger of the numbers. 00084 */ 00085 if (remainder < DBL_EPSILON*largerNumber) 00086 { 00087 return true; 00088 } 00089 /* 00090 * Is the remainder close to smallerNumber? Note that the comparison 00091 * is scaled with respect to the larger of the numbers. 00092 */ 00093 if (fabs(remainder-smallerNumber) < DBL_EPSILON*largerNumber) 00094 { 00095 return true; 00096 } 00097 00098 return false; 00099 } 00100 00101 bool CompareDoubles::IsNearZero(double number, double tolerance) 00102 { 00103 return fabs(number) <= fabs(tolerance); 00104 } 00105 00111 double SafeDivide(double number, double divisor) 00112 { 00113 // Avoid overflow 00114 if (divisor < 1.0 && number > divisor*DBL_MAX) 00115 { 00116 return DBL_MAX; 00117 } 00118 00119 // Avoid underflow 00120 if (number == 0.0 || (divisor > 1.0 && number < divisor*DBL_MIN)) 00121 { 00122 return 0.0; 00123 } 00124 00125 return number/divisor; 00126 00127 } 00128 00129 bool CompareDoubles::WithinRelativeTolerance(double number1, double number2, double tolerance) 00130 { 00131 double difference = fabs(number1 - number2); 00132 double d1 = SafeDivide(difference, fabs(number1)); 00133 double d2 = SafeDivide(difference, fabs(number2)); 00134 00135 return d1 <= tolerance && d2 <= tolerance; 00136 } 00137 00138 bool CompareDoubles::WithinAbsoluteTolerance(double number1, double number2, double tolerance) 00139 { 00140 return fabs(number1 - number2) <= tolerance; 00141 } 00142 00143 bool CompareDoubles::WithinAnyTolerance(double number1, double number2, double relTol, double absTol, bool printError) 00144 { 00145 bool ok = WithinAbsoluteTolerance(number1, number2, absTol) || WithinRelativeTolerance(number1, number2, relTol); 00146 if (printError && !ok) 00147 { 00148 std::cout << "CompareDoubles::WithinAnyTolerance: " << number1 << " and " << number2 00149 << " differ by more than relative tolerance of " << relTol 00150 << " and absolute tolerance of " << absTol << std::endl; 00151 } 00152 return ok; 00153 } 00154 00155 bool CompareDoubles::WithinTolerance(double number1, double number2, double tolerance, bool toleranceIsAbsolute) 00156 { 00157 bool ok; 00158 if (toleranceIsAbsolute) 00159 { 00160 ok = WithinAbsoluteTolerance(number1, number2, tolerance); 00161 } 00162 else 00163 { 00164 ok = WithinRelativeTolerance(number1, number2, tolerance); 00165 } 00166 if (!ok) 00167 { 00168 std::cout << "CompareDoubles::WithinTolerance: " << number1 << " and " << number2 00169 << " differ by more than " << (toleranceIsAbsolute ? "absolute" : "relative") 00170 << " tolerance of " << tolerance << std::endl; 00171 } 00172 return ok; 00173 } 00174 00175 double CompareDoubles::Difference(double number1, double number2, bool toleranceIsAbsolute) 00176 { 00177 if (toleranceIsAbsolute) 00178 { 00179 return fabs(number1 - number2); 00180 } 00181 else 00182 { 00183 double difference = fabs(number1 - number2); 00184 double d1 = SafeDivide(difference, fabs(number1)); 00185 double d2 = SafeDivide(difference, fabs(number2)); 00186 return d1 > d2 ? d1 : d2; 00187 } 00188 }