Chaste Release::3.1
SimpleLinearEllipticSolver.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "SimpleLinearEllipticSolver.hpp"
00037 
00038 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00039 c_matrix<double, 1*(ELEMENT_DIM+1), 1*(ELEMENT_DIM+1)>SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>:: ComputeMatrixTerm(
00040         c_vector<double, ELEMENT_DIM+1>& rPhi,
00041         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00042         ChastePoint<SPACE_DIM>& rX,
00043         c_vector<double,1>& rU,
00044         c_matrix<double,1,SPACE_DIM>& rGradU,
00045         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00046 {
00047     c_matrix<double, SPACE_DIM, SPACE_DIM> pde_diffusion_term = mpEllipticPde->ComputeDiffusionTerm(rX);
00048 
00049     // This if statement just saves computing phi*phi^T if it is to be multiplied by zero
00050     if (mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)!=0)
00051     {
00052         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) )
00053                - mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)*outer_prod(rPhi,rPhi);
00054     }
00055     else
00056     {
00057         return   prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) );
00058     }
00059 }
00060 
00061 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00062 c_vector<double,1*(ELEMENT_DIM+1)> SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00063         c_vector<double, ELEMENT_DIM+1>& rPhi,
00064         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00065         ChastePoint<SPACE_DIM>& rX,
00066         c_vector<double,1>& rU,
00067         c_matrix<double,1,SPACE_DIM>& rGradU,
00068         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00069 {
00070     return mpEllipticPde->ComputeConstantInUSourceTerm(rX, pElement) * rPhi;
00071 }
00072 
00073 
00074 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00075 SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleLinearEllipticSolver(
00076                                   AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00077                                   AbstractLinearEllipticPde<ELEMENT_DIM,SPACE_DIM>* pPde,
00078                                   BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,1>* pBoundaryConditions,
00079                                   unsigned numQuadPoints)
00080         : AbstractAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1,NORMAL>(pMesh,pBoundaryConditions,numQuadPoints),
00081           AbstractStaticLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh)
00082 {
00083     mpEllipticPde = pPde;
00084 }
00085 
00086 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00087 void SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::InitialiseForSolve(Vec initialSolution)
00088 {
00089     AbstractLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>::InitialiseForSolve(initialSolution);
00090     assert(this->mpLinearSystem);
00091     this->mpLinearSystem->SetMatrixIsSymmetric(true);
00092     this->mpLinearSystem->SetKspType("cg");
00093 }
00094 
00096 // Explicit instantiation
00098 
00099 template class SimpleLinearEllipticSolver<1,1>;
00100 template class SimpleLinearEllipticSolver<1,2>;
00101 template class SimpleLinearEllipticSolver<1,3>;
00102 template class SimpleLinearEllipticSolver<2,2>;
00103 template class SimpleLinearEllipticSolver<3,3>;