Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "SimpleLinearEllipticSolver.hpp" 00037 00038 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00039 c_matrix<double, 1*(ELEMENT_DIM+1), 1*(ELEMENT_DIM+1)>SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>:: ComputeMatrixTerm( 00040 c_vector<double, ELEMENT_DIM+1>& rPhi, 00041 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi, 00042 ChastePoint<SPACE_DIM>& rX, 00043 c_vector<double,1>& rU, 00044 c_matrix<double,1,SPACE_DIM>& rGradU, 00045 Element<ELEMENT_DIM,SPACE_DIM>* pElement) 00046 { 00047 c_matrix<double, SPACE_DIM, SPACE_DIM> pde_diffusion_term = mpEllipticPde->ComputeDiffusionTerm(rX); 00048 00049 // This if statement just saves computing phi*phi^T if it is to be multiplied by zero 00050 if (mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)!=0) 00051 { 00052 return prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) ) 00053 - mpEllipticPde->ComputeLinearInUCoeffInSourceTerm(rX,pElement)*outer_prod(rPhi,rPhi); 00054 } 00055 else 00056 { 00057 return prod( trans(rGradPhi), c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>(prod(pde_diffusion_term, rGradPhi)) ); 00058 } 00059 } 00060 00061 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00062 c_vector<double,1*(ELEMENT_DIM+1)> SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm( 00063 c_vector<double, ELEMENT_DIM+1>& rPhi, 00064 c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi, 00065 ChastePoint<SPACE_DIM>& rX, 00066 c_vector<double,1>& rU, 00067 c_matrix<double,1,SPACE_DIM>& rGradU, 00068 Element<ELEMENT_DIM,SPACE_DIM>* pElement) 00069 { 00070 return mpEllipticPde->ComputeConstantInUSourceTerm(rX, pElement) * rPhi; 00071 } 00072 00073 00074 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00075 SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleLinearEllipticSolver( 00076 AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh, 00077 AbstractLinearEllipticPde<ELEMENT_DIM,SPACE_DIM>* pPde, 00078 BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,1>* pBoundaryConditions, 00079 unsigned numQuadPoints) 00080 : AbstractAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1,NORMAL>(pMesh,pBoundaryConditions,numQuadPoints), 00081 AbstractStaticLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>(pMesh) 00082 { 00083 mpEllipticPde = pPde; 00084 } 00085 00086 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM> 00087 void SimpleLinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::InitialiseForSolve(Vec initialSolution) 00088 { 00089 AbstractLinearPdeSolver<ELEMENT_DIM,SPACE_DIM,1>::InitialiseForSolve(initialSolution); 00090 assert(this->mpLinearSystem); 00091 this->mpLinearSystem->SetMatrixIsSymmetric(true); 00092 this->mpLinearSystem->SetKspType("cg"); 00093 } 00094 00096 // Explicit instantiation 00098 00099 template class SimpleLinearEllipticSolver<1,1>; 00100 template class SimpleLinearEllipticSolver<1,2>; 00101 template class SimpleLinearEllipticSolver<1,3>; 00102 template class SimpleLinearEllipticSolver<2,2>; 00103 template class SimpleLinearEllipticSolver<3,3>;