AbstractGeneralizedRushLarsenCardiacCell.cpp

00001 /*
00002 
00003 Copyright (c) 2005-2015, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 /*
00037 Megan E. Marsh, Raymond J. Spiteri
00038 Numerical Simulation Laboratory
00039 University of Saskatchewan
00040 December 2011
00041 Partial support provided by research grants from the National
00042 Science and Engineering Research Council (NSERC) of Canada
00043 and the MITACS/Mprime Canadian Network of Centres of Excellence.
00044 */
00045 
00046 #include "AbstractGeneralizedRushLarsenCardiacCell.hpp"
00047 #include <cassert>
00048 #include <cmath>
00049 #include "Exception.hpp"
00050 #include "OdeSolution.hpp"
00051 #include "TimeStepper.hpp"
00052 
00053 AbstractGeneralizedRushLarsenCardiacCell::AbstractGeneralizedRushLarsenCardiacCell(unsigned numberOfStateVariables,
00054                                                              unsigned voltageIndex,
00055                                                              boost::shared_ptr<AbstractStimulusFunction> pIntracellularStimulus)
00056     : AbstractCardiacCell(boost::shared_ptr<AbstractIvpOdeSolver>(),
00057                           numberOfStateVariables,
00058                           voltageIndex,
00059                           pIntracellularStimulus),
00060       mHasAnalyticJacobian(false)
00061 {
00062     mPartialF.resize(numberOfStateVariables);
00063     mEvalF.resize(numberOfStateVariables);
00064     mYInit.resize(numberOfStateVariables);
00065 }
00066 
00067 AbstractGeneralizedRushLarsenCardiacCell::~AbstractGeneralizedRushLarsenCardiacCell()
00068 {}
00069 
00070 OdeSolution AbstractGeneralizedRushLarsenCardiacCell::Compute(double tStart, double tEnd, double tSamp)
00071 {
00072     // Check length of time interval
00073     if (tSamp < mDt)
00074     {
00075         tSamp = mDt;
00076     }
00077     const unsigned n_steps = (unsigned) floor((tEnd - tStart)/tSamp + 0.5);
00078     assert(fabs(tStart+n_steps*tSamp - tEnd) < 1e-12);
00079     const unsigned n_small_steps = (unsigned) floor(tSamp/mDt+0.5);
00080     assert(fabs(mDt*n_small_steps - tSamp) < 1e-12);
00081 
00082     // Initialise solution store
00083     OdeSolution solutions;
00084     solutions.SetNumberOfTimeSteps(n_steps);
00085     solutions.rGetSolutions().push_back(rGetStateVariables());
00086     solutions.rGetTimes().push_back(tStart);
00087     solutions.SetOdeSystemInformation(this->mpSystemInfo);
00088 
00089     // Loop over time
00090     double v_old, v_new;
00091     double& r_V = rGetStateVariables()[GetVoltageIndex()];
00092     for (unsigned i=0; i<n_steps; i++)
00093     {
00094         double curr_time = tStart;
00095         for (unsigned j=0; j<n_small_steps; j++)
00096         {
00097             curr_time = tStart + i*tSamp + j*mDt;
00098             v_old = r_V;
00099             UpdateTransmembranePotential(curr_time);
00100             v_new = r_V;
00101             r_V = v_old;
00102             ComputeOneStepExceptVoltage(curr_time);
00103             r_V = v_new;
00104             VerifyStateVariables();
00105         }
00106 
00107         // Update solutions
00108         solutions.rGetSolutions().push_back(rGetStateVariables());
00109         solutions.rGetTimes().push_back(curr_time+mDt);
00110     }
00111 
00112     return solutions;
00113 }
00114 
00115 void AbstractGeneralizedRushLarsenCardiacCell::ComputeExceptVoltage(double tStart, double tEnd)
00116 {
00117     SetVoltageDerivativeToZero(true);
00118     TimeStepper stepper(tStart, tEnd, mDt);
00119 
00120     while (!stepper.IsTimeAtEnd())
00121     {
00122         ComputeOneStepExceptVoltage(stepper.GetTime());
00123 
00124 #ifndef NDEBUG
00125         // Check gating variables are still in range
00126         VerifyStateVariables();
00127 #endif // NDEBUG
00128 
00129         stepper.AdvanceOneTimeStep();
00130     }
00131     SetVoltageDerivativeToZero(false);
00132 }
00133 
00134 void AbstractGeneralizedRushLarsenCardiacCell::SolveAndUpdateState(double tStart, double tEnd)
00135 {
00136     TimeStepper stepper(tStart, tEnd, mDt);
00137 
00138     double v_old, v_new;
00139     double& r_V = rGetStateVariables()[GetVoltageIndex()];
00140     while (!stepper.IsTimeAtEnd())
00141     {
00142         v_old = r_V;
00143         UpdateTransmembranePotential(stepper.GetTime());
00144         v_new = r_V;
00145         r_V = v_old;
00146         ComputeOneStepExceptVoltage(stepper.GetTime());
00147         r_V = v_new;
00148         VerifyStateVariables();
00149 
00150         stepper.AdvanceOneTimeStep();
00151     }
00152 }
00153 
00154 bool AbstractGeneralizedRushLarsenCardiacCell::HasAnalyticJacobian() const
00155 {
00156     return mHasAnalyticJacobian;
00157 }
00158 
00159 void AbstractGeneralizedRushLarsenCardiacCell::ForceUseOfNumericalJacobian(bool useNumericalJacobian)
00160 {
00161     if (!useNumericalJacobian)
00162     {
00163         EXCEPTION("Using analytic Jacobian terms for generalised Rush-Larsen is not yet supported.");
00164     }
00165 //    if (!useNumericalJacobian && !mHasAnalyticJacobian)
00166 //    {
00167 //        EXCEPTION("Analytic Jacobian requested, but this ODE system doesn't have one. You can check this with HasAnalyticJacobian().");
00168 //    }
00169     mUseAnalyticJacobian = !useNumericalJacobian;
00170 }

Generated by  doxygen 1.6.2