00001 /* 00002 00003 Copyright (c) 2005-2015, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "CellwiseDataGradient.hpp" 00037 #include "LinearBasisFunction.hpp" 00038 00039 template<unsigned DIM> 00040 c_vector<double, DIM>& CellwiseDataGradient<DIM>::rGetGradient(unsigned nodeIndex) 00041 { 00042 return mGradients[nodeIndex]; 00043 } 00044 00045 template<unsigned DIM> 00046 void CellwiseDataGradient<DIM>::SetupGradients(AbstractCellPopulation<DIM>& rCellPopulation, const std::string& rItemName) 00047 { 00048 MeshBasedCellPopulation<DIM>* pCellPopulation = static_cast<MeshBasedCellPopulation<DIM>*>(&(rCellPopulation)); 00049 TetrahedralMesh<DIM,DIM>& r_mesh = pCellPopulation->rGetMesh(); 00050 00051 // Initialise gradients size 00052 unsigned num_nodes = pCellPopulation->GetNumNodes(); 00053 mGradients.resize(num_nodes, zero_vector<double>(DIM)); 00054 00055 // The constant gradients at each element 00056 std::vector<c_vector<double, DIM> > gradients_on_elements; 00057 unsigned num_elements = r_mesh.GetNumElements(); 00058 gradients_on_elements.resize(num_elements, zero_vector<double>(DIM)); 00059 00060 // The number of elements containing a given node (excl ghost elements) 00061 std::vector<unsigned> num_real_elems_for_node(num_nodes, 0); 00062 00063 for (unsigned elem_index=0; elem_index<num_elements; elem_index++) 00064 { 00065 Element<DIM,DIM>& r_elem = *(r_mesh.GetElement(elem_index)); 00066 00067 // Calculate the basis functions at any point (eg zero) in the element 00068 c_matrix<double, DIM, DIM> jacobian, inverse_jacobian; 00069 double jacobian_det; 00070 r_mesh.GetInverseJacobianForElement(elem_index, jacobian, jacobian_det, inverse_jacobian); 00071 const ChastePoint<DIM> zero_point; 00072 c_matrix<double, DIM, DIM+1> grad_phi; 00073 LinearBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(zero_point, inverse_jacobian, grad_phi); 00074 00075 bool is_ghost_element = false; 00076 00077 for (unsigned node_index=0; node_index<DIM+1; node_index++) 00078 { 00079 unsigned node_global_index = r_elem.GetNodeGlobalIndex(node_index); 00080 00081 // This code is commented because CellData can't deal with ghost nodes see #1975 00082 assert(pCellPopulation->IsGhostNode(node_global_index) == false); 00084 //if (pCellPopulation->IsGhostNode(node_global_index) == true) 00085 //{ 00086 // is_ghost_element = true; 00087 // break; 00088 //} 00089 00090 // If no ghost element, get PDE solution 00091 CellPtr p_cell = pCellPopulation->GetCellUsingLocationIndex(node_global_index); 00092 double pde_solution = p_cell->GetCellData()->GetItem(rItemName); 00093 00094 // Interpolate gradient 00095 for (unsigned i=0; i<DIM; i++) 00096 { 00097 gradients_on_elements[elem_index](i) += pde_solution* grad_phi(i, node_index); 00098 } 00099 } 00100 00101 // Add gradient at element to gradient at node 00102 if (!is_ghost_element) 00103 { 00104 for (unsigned node_index=0; node_index<DIM+1; node_index++) 00105 { 00106 unsigned node_global_index = r_elem.GetNodeGlobalIndex(node_index); 00107 mGradients[node_global_index] += gradients_on_elements[elem_index]; 00108 num_real_elems_for_node[node_global_index]++; 00109 } 00110 } 00111 } 00112 00113 // Divide to obtain average gradient 00114 for (typename AbstractCellPopulation<DIM>::Iterator cell_iter = pCellPopulation->Begin(); 00115 cell_iter != pCellPopulation->End(); 00116 ++cell_iter) 00117 { 00118 unsigned node_global_index = pCellPopulation->GetLocationIndexUsingCell(*cell_iter); 00119 00120 if (!(num_real_elems_for_node[node_global_index] > 0)) 00121 { 00122 NEVER_REACHED; 00123 // This code is commented because CellwiseData Can't deal with ghost nodes so won't ever come into this statement see #1975 00126 //Node<DIM>& this_node = *(pCellPopulation->GetNodeCorrespondingToCell(*cell_iter)); 00127 // 00128 //mGradients[node_global_index] = zero_vector<double>(DIM); 00129 //unsigned num_real_adjacent_nodes = 0; 00130 // 00132 //std::set<Node<DIM>*> real_adjacent_nodes; 00133 //real_adjacent_nodes.clear(); 00134 // 00136 //for (typename Node<DIM>::ContainingElementIterator element_iter = this_node.ContainingElementsBegin(); 00137 // element_iter != this_node.ContainingElementsEnd(); 00138 // ++element_iter) 00139 //{ 00140 // // Then loop over nodes therein 00141 // Element<DIM,DIM>& r_adjacent_elem = *(r_mesh.GetElement(*element_iter)); 00142 // for (unsigned local_node_index=0; local_node_index<DIM+1; local_node_index++) 00143 // { 00144 // unsigned adjacent_node_global_index = r_adjacent_elem.GetNodeGlobalIndex(local_node_index); 00145 // 00146 // // If not a ghost node and not the node we started with 00147 // if ( !(pCellPopulation->IsGhostNode(adjacent_node_global_index)) 00148 // && adjacent_node_global_index != node_global_index ) 00149 // { 00150 // 00151 // // Calculate the contribution of gradient from this node 00152 // Node<DIM>& adjacent_node = *(r_mesh.GetNode(adjacent_node_global_index)); 00153 // 00154 // double this_cell_concentration = CellwiseData<DIM>::Instance()->GetValue(*cell_iter, 0); 00155 // CellPtr p_adjacent_cell = pCellPopulation->GetCellUsingLocationIndex(adjacent_node_global_index); 00156 // double adjacent_cell_concentration = CellwiseData<DIM>::Instance()->GetValue(p_adjacent_cell, 0); 00157 // 00158 // c_vector<double, DIM> gradient_contribution = zero_vector<double>(DIM); 00159 // 00160 // if (fabs(this_cell_concentration-adjacent_cell_concentration) > 100*DBL_EPSILON) 00161 // { 00162 // c_vector<double, DIM> edge_vector = r_mesh.GetVectorFromAtoB(this_node.rGetLocation(), adjacent_node.rGetLocation()); 00163 // double norm_edge_vector = norm_2(edge_vector); 00164 // gradient_contribution = edge_vector 00165 // * (adjacent_cell_concentration - this_cell_concentration) 00166 // / (norm_edge_vector * norm_edge_vector); 00167 // } 00168 // 00169 // mGradients[node_global_index] += gradient_contribution; 00170 // num_real_adjacent_nodes++; 00171 // } 00172 // } 00173 //} 00174 //mGradients[node_global_index] /= num_real_adjacent_nodes; 00175 } 00176 else 00177 { 00178 mGradients[node_global_index] /= num_real_elems_for_node[node_global_index]; 00179 } 00180 } 00181 } 00182 00184 // Explicit instantiation 00186 00187 template class CellwiseDataGradient<1>; 00188 template class CellwiseDataGradient<2>; 00189 template class CellwiseDataGradient<3>;