00001 /* 00002 00003 Copyright (c) 2005-2015, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "OdeLinearSystemSolver.hpp" 00037 #include "PetscTools.hpp" 00038 #include "ReplicatableVector.hpp" 00039 00040 OdeLinearSystemSolver::OdeLinearSystemSolver(unsigned systemSize, double timeStep) 00041 : mLinearSystem(systemSize) 00042 { 00043 assert(timeStep > 0.0); 00044 mTimeStep = timeStep; 00045 00046 // Initialise vectors to zero 00047 mCurrentSolution = PetscTools::CreateAndSetVec(systemSize, 0.0); 00048 mForceVector = PetscTools::CreateAndSetVec(systemSize, 0.0); 00049 } 00050 00051 OdeLinearSystemSolver::~OdeLinearSystemSolver() 00052 { 00053 PetscTools::Destroy(mCurrentSolution); 00054 PetscTools::Destroy(mForceVector); 00055 } 00056 00057 double OdeLinearSystemSolver::GetTimeStep() 00058 { 00059 return mTimeStep; 00060 } 00061 00062 Mat& OdeLinearSystemSolver::rGetLhsMatrix() 00063 { 00064 return mLinearSystem.rGetLhsMatrix(); 00065 } 00066 00067 Vec& OdeLinearSystemSolver::rGetForceVector() 00068 { 00069 return mForceVector; 00070 } 00071 00072 void OdeLinearSystemSolver::SetInitialConditionVector(Vec initialConditionsVector) 00073 { 00074 VecCopy(initialConditionsVector, mCurrentSolution); 00075 } 00076 00077 Vec OdeLinearSystemSolver::SolveOneTimeStep() 00078 { 00079 // Compute the product of the LHS matrix and the current solution vector, 00080 // setting the answer to be the RHS vector 00081 MatMult(mLinearSystem.rGetLhsMatrix(), mCurrentSolution, mLinearSystem.rGetRhsVector()); 00082 00083 // Add timestep multipled by force vector 00084 PetscVecTools::AddScaledVector(mLinearSystem.rGetRhsVector(), mForceVector, mTimeStep); 00085 00086 // avoid memory leaks 00087 PetscTools::Destroy(mCurrentSolution); 00088 00089 // Having constructed the RHS vector, solve the resulting linear system... 00090 mCurrentSolution = mLinearSystem.Solve(); 00091 00092 return mCurrentSolution; 00093 }