SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM > Class Template Reference

#include <SimpleLinearEllipticSolver.hpp>

Inheritance diagram for SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >:

Inheritance graph
[legend]
Collaboration diagram for SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 SimpleLinearEllipticSolver (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, AbstractLinearEllipticPde< ELEMENT_DIM, SPACE_DIM > *pPde, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *pBoundaryConditions, unsigned numQuadPoints=2)
void InitialiseForSolve (Vec initialSolution=NULL)

Protected Member Functions

virtual c_matrix< double,
1 *(ELEMENT_DIM+1),
1 *(ELEMENT_DIM+1)> 
ComputeMatrixTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement)
virtual c_vector< double,
1 *(ELEMENT_DIM+1)> 
ComputeVectorTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement)
virtual c_vector< double,
ELEMENT_DIM > 
ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX)
void SetupLinearSystem (Vec currentSolution, bool computeMatrix)

Protected Attributes

AbstractLinearEllipticPde
< ELEMENT_DIM, SPACE_DIM > * 
mpEllipticPde


Detailed Description

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
class SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >

SimpleLinearEllipticSolver

Solver for solving AbstractLinearEllipticPdes.

Definition at line 45 of file SimpleLinearEllipticSolver.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::SimpleLinearEllipticSolver ( AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *  pMesh,
AbstractLinearEllipticPde< ELEMENT_DIM, SPACE_DIM > *  pPde,
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *  pBoundaryConditions,
unsigned  numQuadPoints = 2 
) [inline]

Constructor.

Parameters:
pMesh pointer to the mesh
pPde pointer to the PDE
pBoundaryConditions pointer to the boundary conditions
numQuadPoints number of quadrature points (defaults to 2)

Definition at line 84 of file SimpleLinearEllipticSolver.cpp.

References SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpEllipticPde.


Member Function Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_matrix< double, 1 *(ELEMENT_DIM+1), 1 *(ELEMENT_DIM+1)> SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeMatrixTerm ( c_vector< double, ELEMENT_DIM+1 > &  rPhi,
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &  rGradPhi,
ChastePoint< SPACE_DIM > &  rX,
c_vector< double, 1 > &  rU,
c_matrix< double, 1, SPACE_DIM > &  rGradU,
Element< ELEMENT_DIM, SPACE_DIM > *  pElement 
) [inline, protected, virtual]

The term to be added to the element stiffness matrix:

grad_phi[row] . ( pde_diffusion_term * grad_phi[col])

Parameters:
rPhi The basis functions, rPhi(i) = phi_i, i=1..numBases
rGradPhi Basis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i)
rX The point in space
rU The unknown as a vector, u(i) = u_i
rGradU The gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j)
pElement Pointer to the element

Definition at line 33 of file SimpleLinearEllipticSolver.cpp.

References SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpEllipticPde.

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_vector< double, 1 *(ELEMENT_DIM+1)> SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorTerm ( c_vector< double, ELEMENT_DIM+1 > &  rPhi,
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &  rGradPhi,
ChastePoint< SPACE_DIM > &  rX,
c_vector< double, 1 > &  rU,
c_matrix< double, 1, SPACE_DIM > &  rGradU,
Element< ELEMENT_DIM, SPACE_DIM > *  pElement 
) [inline, protected, virtual]

The term arising from boundary conditions to be added to the element stiffness vector.

Parameters:
rPhi The basis functions, rPhi(i) = phi_i, i=1..numBases
rGradPhi Basis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i)
rX The point in space
rU The unknown as a vector, u(i) = u_i
rGradU The gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j)
pElement Pointer to the element

Definition at line 57 of file SimpleLinearEllipticSolver.cpp.

References SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpEllipticPde.

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_vector< double, ELEMENT_DIM > SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorSurfaceTerm ( const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &  rSurfaceElement,
c_vector< double, ELEMENT_DIM > &  rPhi,
ChastePoint< SPACE_DIM > &  rX 
) [inline, protected, virtual]

This method returns the vector to be added to element stiffness vector for a given gauss point in BoundaryElement. The arguments are the bases, x and current solution computed at the Gauss point. The returned vector will be multiplied by the gauss weight and jacobian determinent and added to the element stiffness matrix (see AssembleOnElement()).

Parameters:
rSurfaceElement the element which is being considered.
rPhi The basis functions, rPhi(i) = phi_i, i=1..numBases
rX The point in space

Reimplemented from AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >.

Definition at line 71 of file SimpleLinearEllipticSolver.cpp.

References AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL >::mpBoundaryConditions.

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
void SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::SetupLinearSystem ( Vec  currentSolution,
bool  computeMatrix 
) [inline, protected, virtual]

Delegate to AbstractAssemblerSolverHybrid::SetupGivenLinearSystem.

Parameters:
currentSolution The current solution which can be used in setting up the linear system if needed (NULL if there isn't a current solution)
computeMatrix Whether to compute the LHS matrix of the linear system (mainly for dynamic solves).

Implements AbstractLinearPdeSolver< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >.

Definition at line 116 of file SimpleLinearEllipticSolver.hpp.

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
void SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::InitialiseForSolve ( Vec  initialSolution = NULL  )  [inline, virtual]

Overloaded InitaliseForSolve() which just calls the base class but also sets the matrix as symmetric and sets Conjugate Gradients as the solver

Parameters:
initialSolution initialSolution (used in base class version of this method)

Reimplemented from AbstractLinearPdeSolver< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >.

Reimplemented in CellBasedSimulationWithPdesAssembler< DIM >.

Definition at line 97 of file SimpleLinearEllipticSolver.cpp.

References AbstractLinearPdeSolver< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::InitialiseForSolve(), AbstractLinearPdeSolver< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM >::mpLinearSystem, LinearSystem::SetKspType(), and LinearSystem::SetMatrixIsSymmetric().

Referenced by CellBasedSimulationWithPdesAssembler< DIM >::InitialiseForSolve().


Member Data Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
AbstractLinearEllipticPde<ELEMENT_DIM,SPACE_DIM>* SimpleLinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpEllipticPde [protected]


The documentation for this class was generated from the following files:

Generated on Mon Nov 1 12:37:19 2010 for Chaste by  doxygen 1.5.5