#include <SimpleNonlinearEllipticSolver.hpp>
Public Member Functions | |
SimpleNonlinearEllipticSolver (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, AbstractNonlinearEllipticPde< SPACE_DIM > *pPde, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *pBoundaryConditions, unsigned numQuadPoints=2) | |
Private Member Functions | |
virtual c_matrix< double, 1 *(ELEMENT_DIM+1), 1 *(ELEMENT_DIM+1)> | ComputeMatrixTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement) |
virtual c_vector< double, 1 *(ELEMENT_DIM+1)> | ComputeVectorTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement) |
virtual c_vector< double, 1 *ELEMENT_DIM > | ComputeVectorSurfaceTerm (const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > &rSurfaceElement, c_vector< double, ELEMENT_DIM > &rPhi, ChastePoint< SPACE_DIM > &rX) |
Private Attributes | |
AbstractNonlinearEllipticPde < SPACE_DIM > * | mpNonlinearEllipticPde |
Definition at line 39 of file SimpleNonlinearEllipticSolver.hpp.
SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::SimpleNonlinearEllipticSolver | ( | AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > * | pMesh, | |
AbstractNonlinearEllipticPde< SPACE_DIM > * | pPde, | |||
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > * | pBoundaryConditions, | |||
unsigned | numQuadPoints = 2 | |||
) | [inline] |
Constructor
pMesh | pointer to the mesh | |
pPde | pointer to the PDE | |
pBoundaryConditions | pointer to the boundary conditions | |
numQuadPoints | number of quadrature points in each dimension to use per element (defaults to 2) |
Definition at line 107 of file SimpleNonlinearEllipticSolver.cpp.
c_matrix< double, 1 *(ELEMENT_DIM+1), 1 *(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeMatrixTerm | ( | c_vector< double, ELEMENT_DIM+1 > & | rPhi, | |
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > & | rGradPhi, | |||
ChastePoint< SPACE_DIM > & | rX, | |||
c_vector< double, 1 > & | rU, | |||
c_matrix< double, 1, SPACE_DIM > & | rGradU, | |||
Element< ELEMENT_DIM, SPACE_DIM > * | pElement | |||
) | [inline, private, virtual] |
This method returns the matrix to be added to element stiffness matrix for a given gauss point. The arguments are the bases, bases gradients, x and current solution computed at the Gauss point. The returned matrix will be multiplied by the gauss weight and jacobian determinent and added to the element stiffness matrix (see AssembleOnElement()).
rPhi | The basis functions, rPhi(i) = phi_i, i=1..numBases | |
rGradPhi | Basis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i) | |
rX | The point in space | |
rU | The unknown as a vector, u(i) = u_i | |
rGradU | The gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j) | |
pElement | Pointer to the element |
Definition at line 33 of file SimpleNonlinearEllipticSolver.cpp.
References SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpNonlinearEllipticPde.
c_vector< double, 1 *(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorTerm | ( | c_vector< double, ELEMENT_DIM+1 > & | rPhi, | |
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > & | rGradPhi, | |||
ChastePoint< SPACE_DIM > & | rX, | |||
c_vector< double, 1 > & | rU, | |||
c_matrix< double, 1, SPACE_DIM > & | rGradU, | |||
Element< ELEMENT_DIM, SPACE_DIM > * | pElement | |||
) | [inline, private, virtual] |
This method returns the vector to be added to element stiffness vector for a given gauss point. The arguments are the bases, x and current solution computed at the Gauss point. The returned vector will be multiplied by the gauss weight and jacobian determinent and added to the element stiffness matrix (see AssembleOnElement()).
rPhi | The basis functions, rPhi(i) = phi_i, i=1..numBases | |
rGradPhi | Basis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i) | |
rX | The point in space | |
rU | The unknown as a vector, u(i) = u_i | |
rGradU | The gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j) | |
pElement | Pointer to the element |
Definition at line 66 of file SimpleNonlinearEllipticSolver.cpp.
References SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpNonlinearEllipticPde.
c_vector< double, 1 *ELEMENT_DIM > SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorSurfaceTerm | ( | const BoundaryElement< ELEMENT_DIM-1, SPACE_DIM > & | rSurfaceElement, | |
c_vector< double, ELEMENT_DIM > & | rPhi, | |||
ChastePoint< SPACE_DIM > & | rX | |||
) | [inline, private, virtual] |
This method returns the vector to be added to element stiffness vector for a given gauss point in BoundaryElement. The arguments are the bases, x and current solution computed at the Gauss point. The returned vector will be multiplied by the gauss weight and jacobian determinent and added to the element stiffness matrix (see AssembleOnElement()).
rSurfaceElement | the element which is being considered. | |
rPhi | The basis functions, rPhi(i) = phi_i, i=1..numBases | |
rX | The point in space |
Reimplemented from AbstractFeObjectAssembler< ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, NONLINEAR >.
Definition at line 96 of file SimpleNonlinearEllipticSolver.cpp.
References AbstractNonlinearAssemblerSolverHybrid< ELEMENT_DIM, SPACE_DIM, 1 >::mpBoundaryConditions.
AbstractNonlinearEllipticPde<SPACE_DIM>* SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpNonlinearEllipticPde [private] |
The PDE to be solved.
Definition at line 43 of file SimpleNonlinearEllipticSolver.hpp.
Referenced by SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeMatrixTerm(), and SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorTerm().