CompressibleExponentialLaw< DIM > Class Template Reference

#include <CompressibleExponentialLaw.hpp>

Inheritance diagram for CompressibleExponentialLaw< DIM >:

Inheritance graph
[legend]
Collaboration diagram for CompressibleExponentialLaw< DIM >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

 CompressibleExponentialLaw ()
void ComputeStressAndStressDerivative (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE)
double GetA ()
std::vector< std::vector
< double > > 
GetB ()
double GetCompressibilityParam ()

Private Attributes

double mA
std::vector< std::vector
< double > > 
mB
double mCompressibilityParam
c_matrix< double, DIM, DIM > mIdentity


Detailed Description

template<unsigned DIM>
class CompressibleExponentialLaw< DIM >

The compressible exponential material law implemented in

Uysk, Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle, Journal of Elasticity, 2000.

W = a[exp(Q)-1]/2 + C (J ln(J) - J + 1) where Q = sum b_{MN} E_{MN}^2

The exponential term is the same form as in the SchmidCosta law, although the parameters here are those given in the paper cited above, not the same as in the SchmidCosta class.

Note, by default, the fibre direction is assumed to be THE X-DIRECTION, and the sheet direction the Y-DIRECTION (ie sheets in the XY plane). Call SetChangeOfBasisMatrix() before ComputeStressAndStressDerivative(), with the matrix P = [fibre_vec, sheet_vec, normal_vec] if this is not the case.

Definition at line 53 of file CompressibleExponentialLaw.hpp.


Constructor & Destructor Documentation

template<unsigned DIM>
CompressibleExponentialLaw< DIM >::CompressibleExponentialLaw (  )  [inline]


Member Function Documentation

template<unsigned DIM>
void CompressibleExponentialLaw< DIM >::ComputeStressAndStressDerivative ( c_matrix< double, DIM, DIM > &  rC,
c_matrix< double, DIM, DIM > &  rInvC,
double  pressure,
c_matrix< double, DIM, DIM > &  rT,
FourthOrderTensor< DIM, DIM, DIM, DIM > &  rDTdE,
bool  computeDTdE 
) [inline, virtual]

Compute the (2nd Piola Kirchoff) stress T and the stress derivative dT/dE for a given strain.

NOTE: the strain E is not expected to be passed in, instead the Lagrangian deformation tensor C is required (recall, E = 0.5(C-I))

dT/dE is a fourth-order tensor, where dT/dE[M][N][P][Q] = dT^{MN}/dE_{PQ}

Parameters:
rC The Lagrangian deformation tensor (F^T F)
rInvC The inverse of C. Should be computed by the user. (Change this?)
pressure the current pressure
rT the stress will be returned in this parameter
rDTdE the stress derivative will be returned in this parameter, assuming the final parameter is true
computeDTdE a boolean flag saying whether the stress derivative is required or not.

Implements AbstractMaterialLaw< DIM >.

Definition at line 76 of file CompressibleExponentialLaw.cpp.

References AbstractMaterialLaw< DIM >::ComputeTransformedDeformationTensor(), Determinant(), CompressibleExponentialLaw< DIM >::mA, CompressibleExponentialLaw< DIM >::mB, CompressibleExponentialLaw< DIM >::mCompressibilityParam, CompressibleExponentialLaw< DIM >::mIdentity, AbstractMaterialLaw< DIM >::TransformStressAndStressDerivative(), and FourthOrderTensor< DIM1, DIM2, DIM3, DIM4 >::Zero().

template<unsigned DIM>
double CompressibleExponentialLaw< DIM >::GetA (  )  [inline]

Get method for the parameter a

Definition at line 98 of file CompressibleExponentialLaw.hpp.

References CompressibleExponentialLaw< DIM >::mA.

template<unsigned DIM>
std::vector<std::vector<double> > CompressibleExponentialLaw< DIM >::GetB (  )  [inline]

Get method for the parameter b (the values which multiply the strains in Q)

Definition at line 104 of file CompressibleExponentialLaw.hpp.

References CompressibleExponentialLaw< DIM >::mB.

template<unsigned DIM>
double CompressibleExponentialLaw< DIM >::GetCompressibilityParam (  )  [inline]

Get method for compressibility parameter

Definition at line 110 of file CompressibleExponentialLaw.hpp.

References CompressibleExponentialLaw< DIM >::mCompressibilityParam.


Member Data Documentation

template<unsigned DIM>
double CompressibleExponentialLaw< DIM >::mA [private]

template<unsigned DIM>
std::vector<std::vector<double> > CompressibleExponentialLaw< DIM >::mB [private]

template<unsigned DIM>
double CompressibleExponentialLaw< DIM >::mCompressibilityParam [private]

template<unsigned DIM>
c_matrix<double,DIM,DIM> CompressibleExponentialLaw< DIM >::mIdentity [private]


The documentation for this class was generated from the following files:

Generated on Tue May 31 14:33:06 2011 for Chaste by  doxygen 1.5.5