Chaste Release::3.1
|
00001 00002 /* 00003 00004 Copyright (c) 2005-2012, University of Oxford. 00005 All rights reserved. 00006 00007 University of Oxford means the Chancellor, Masters and Scholars of the 00008 University of Oxford, having an administrative office at Wellington 00009 Square, Oxford OX1 2JD, UK. 00010 00011 This file is part of Chaste. 00012 00013 Redistribution and use in source and binary forms, with or without 00014 modification, are permitted provided that the following conditions are met: 00015 * Redistributions of source code must retain the above copyright notice, 00016 this list of conditions and the following disclaimer. 00017 * Redistributions in binary form must reproduce the above copyright notice, 00018 this list of conditions and the following disclaimer in the documentation 00019 and/or other materials provided with the distribution. 00020 * Neither the name of the University of Oxford nor the names of its 00021 contributors may be used to endorse or promote products derived from this 00022 software without specific prior written permission. 00023 00024 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00025 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00026 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00027 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00028 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00029 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00030 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00031 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00032 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00033 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00034 00035 */ 00036 00037 #ifndef ABSTRACTASSEMBLERSOLVERHYBRID_HPP_ 00038 #define ABSTRACTASSEMBLERSOLVERHYBRID_HPP_ 00039 00040 #include "AbstractFeVolumeIntegralAssembler.hpp" 00041 #include "AbstractLinearPdeSolver.hpp" 00042 #include "NaturalNeumannSurfaceTermAssembler.hpp" 00043 00054 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL> 00055 class AbstractAssemblerSolverHybrid 00056 : public AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL> 00057 { 00058 protected: 00059 00064 NaturalNeumannSurfaceTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM> mNaturalNeumannSurfaceTermAssembler; 00065 00067 BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* mpBoundaryConditions; 00068 00069 00070 public: 00071 00079 AbstractAssemblerSolverHybrid(AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh, 00080 BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* pBoundaryConditions, 00081 unsigned numQuadPoints=2) 00082 : AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>(pMesh,numQuadPoints), 00083 mNaturalNeumannSurfaceTermAssembler(pMesh,pBoundaryConditions), 00084 mpBoundaryConditions(pBoundaryConditions) 00085 { 00086 assert(pMesh); 00087 assert(pBoundaryConditions); 00088 } 00089 00093 virtual ~AbstractAssemblerSolverHybrid() 00094 { 00095 } 00096 00109 void SetupGivenLinearSystem(Vec currentSolution, bool computeMatrix, LinearSystem* pLinearSystem); 00110 }; 00111 00112 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL> 00113 void AbstractAssemblerSolverHybrid<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL>::SetupGivenLinearSystem(Vec currentSolution, 00114 bool computeMatrix, 00115 LinearSystem* pLinearSystem) 00116 { 00117 assert(pLinearSystem->rGetLhsMatrix() != NULL); 00118 assert(pLinearSystem->rGetRhsVector() != NULL); 00119 00120 // Assemble the matrix and vector calling methods on AbstractFeVolumeIntegralAssembler 00121 this->SetMatrixToAssemble(pLinearSystem->rGetLhsMatrix()); 00122 this->SetVectorToAssemble(pLinearSystem->rGetRhsVector(), true); 00123 00124 if (currentSolution != NULL) 00125 { 00126 this->SetCurrentSolution(currentSolution); 00127 } 00128 00129 if (computeMatrix) 00130 { 00131 this->Assemble(); 00132 } 00133 else 00134 { 00135 this->AssembleVector(); 00136 } 00137 00138 // Add the Neumann boundary conditions. The boundary conditions put into the BoundaryConditionsContainer 00139 // are assumed to be natural Neumann BCs. 00140 mNaturalNeumannSurfaceTermAssembler.SetVectorToAssemble(pLinearSystem->rGetRhsVector(), false); 00141 mNaturalNeumannSurfaceTermAssembler.Assemble(); 00142 00143 pLinearSystem->FinaliseRhsVector(); 00144 pLinearSystem->SwitchWriteModeLhsMatrix(); 00145 00146 // add Dirichlet BCs 00147 mpBoundaryConditions->ApplyDirichletToLinearProblem(*pLinearSystem, true); 00148 00150 //mpBoundaryConditions->ApplyPeriodicBcsToLinearProblem(*pLinearSystem, true); 00151 00152 pLinearSystem->FinaliseRhsVector(); 00153 pLinearSystem->FinaliseLhsMatrix(); 00154 } 00155 00156 #endif /*ABSTRACTASSEMBLERSOLVERHYBRID_HPP_*/