Chaste Release::3.1
AbstractAssemblerSolverHybrid.hpp
00001 
00002 /*
00003 
00004 Copyright (c) 2005-2012, University of Oxford.
00005 All rights reserved.
00006 
00007 University of Oxford means the Chancellor, Masters and Scholars of the
00008 University of Oxford, having an administrative office at Wellington
00009 Square, Oxford OX1 2JD, UK.
00010 
00011 This file is part of Chaste.
00012 
00013 Redistribution and use in source and binary forms, with or without
00014 modification, are permitted provided that the following conditions are met:
00015  * Redistributions of source code must retain the above copyright notice,
00016    this list of conditions and the following disclaimer.
00017  * Redistributions in binary form must reproduce the above copyright notice,
00018    this list of conditions and the following disclaimer in the documentation
00019    and/or other materials provided with the distribution.
00020  * Neither the name of the University of Oxford nor the names of its
00021    contributors may be used to endorse or promote products derived from this
00022    software without specific prior written permission.
00023 
00024 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00025 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00026 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00027 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00028 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00029 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00030 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00031 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00033 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00034 
00035 */
00036 
00037 #ifndef ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
00038 #define ABSTRACTASSEMBLERSOLVERHYBRID_HPP_
00039 
00040 #include "AbstractFeVolumeIntegralAssembler.hpp"
00041 #include "AbstractLinearPdeSolver.hpp"
00042 #include "NaturalNeumannSurfaceTermAssembler.hpp"
00043 
00054 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
00055 class AbstractAssemblerSolverHybrid
00056    : public AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>
00057 {
00058 protected:
00059 
00064     NaturalNeumannSurfaceTermAssembler<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM> mNaturalNeumannSurfaceTermAssembler;
00065 
00067     BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* mpBoundaryConditions;
00068 
00069 
00070 public:
00071 
00079     AbstractAssemblerSolverHybrid(AbstractTetrahedralMesh<ELEMENT_DIM,SPACE_DIM>* pMesh,
00080                                   BoundaryConditionsContainer<ELEMENT_DIM,SPACE_DIM,PROBLEM_DIM>* pBoundaryConditions,
00081                                   unsigned numQuadPoints=2)
00082         : AbstractFeVolumeIntegralAssembler<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, true, true, INTERPOLATION_LEVEL>(pMesh,numQuadPoints),
00083           mNaturalNeumannSurfaceTermAssembler(pMesh,pBoundaryConditions),
00084           mpBoundaryConditions(pBoundaryConditions)
00085     {
00086         assert(pMesh);
00087         assert(pBoundaryConditions);
00088     }
00089 
00093     virtual ~AbstractAssemblerSolverHybrid()
00094     {
00095     }
00096 
00109     void SetupGivenLinearSystem(Vec currentSolution, bool computeMatrix, LinearSystem* pLinearSystem);
00110 };
00111 
00112 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM, unsigned PROBLEM_DIM, InterpolationLevel INTERPOLATION_LEVEL>
00113 void AbstractAssemblerSolverHybrid<ELEMENT_DIM, SPACE_DIM, PROBLEM_DIM, INTERPOLATION_LEVEL>::SetupGivenLinearSystem(Vec currentSolution,
00114                                                                                                                      bool computeMatrix,
00115                                                                                                                      LinearSystem* pLinearSystem)
00116 {
00117     assert(pLinearSystem->rGetLhsMatrix() != NULL);
00118     assert(pLinearSystem->rGetRhsVector() != NULL);
00119 
00120     // Assemble the matrix and vector calling methods on AbstractFeVolumeIntegralAssembler
00121     this->SetMatrixToAssemble(pLinearSystem->rGetLhsMatrix());
00122     this->SetVectorToAssemble(pLinearSystem->rGetRhsVector(), true);
00123 
00124     if (currentSolution != NULL)
00125     {
00126         this->SetCurrentSolution(currentSolution);
00127     }
00128 
00129     if (computeMatrix)
00130     {
00131         this->Assemble();
00132     }
00133     else
00134     {
00135         this->AssembleVector();
00136     }
00137 
00138     // Add the Neumann boundary conditions. The boundary conditions put into the BoundaryConditionsContainer
00139     // are assumed to be natural Neumann BCs.
00140     mNaturalNeumannSurfaceTermAssembler.SetVectorToAssemble(pLinearSystem->rGetRhsVector(), false);
00141     mNaturalNeumannSurfaceTermAssembler.Assemble();
00142 
00143     pLinearSystem->FinaliseRhsVector();
00144     pLinearSystem->SwitchWriteModeLhsMatrix();
00145 
00146     // add Dirichlet BCs
00147     mpBoundaryConditions->ApplyDirichletToLinearProblem(*pLinearSystem, true);
00148 
00150     //mpBoundaryConditions->ApplyPeriodicBcsToLinearProblem(*pLinearSystem, true);
00151 
00152     pLinearSystem->FinaliseRhsVector();
00153     pLinearSystem->FinaliseLhsMatrix();
00154 }
00155 
00156 #endif /*ABSTRACTASSEMBLERSOLVERHYBRID_HPP_*/