Chaste Release::3.1
AbstractContinuumMechanicsAssembler.hpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #ifndef ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_
00037 #define ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_
00038 
00039 #include "AbstractFeAssemblerInterface.hpp"
00040 #include "QuadraticMesh.hpp"
00041 #include "LinearBasisFunction.hpp"
00042 #include "QuadraticBasisFunction.hpp"
00043 #include "ReplicatableVector.hpp"
00044 #include "DistributedVector.hpp"
00045 #include "PetscTools.hpp"
00046 #include "PetscVecTools.hpp"
00047 #include "PetscMatTools.hpp"
00048 #include "GaussianQuadratureRule.hpp"
00049 
00050 
00084 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
00085 class AbstractContinuumMechanicsAssembler : public AbstractFeAssemblerInterface<CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>
00086 {
00090     static const bool BLOCK_SYMMETRIC_MATRIX = true; //generalise to non-block symmetric matrices later (when needed maybe)
00091 
00093     static const unsigned NUM_VERTICES_PER_ELEMENT = DIM+1;
00094 
00096     static const unsigned NUM_NODES_PER_ELEMENT = (DIM+1)*(DIM+2)/2; // assuming quadratic
00097 
00099     static const unsigned SPATIAL_BLOCK_SIZE_ELEMENTAL = DIM*NUM_NODES_PER_ELEMENT;
00101     static const unsigned PRESSURE_BLOCK_SIZE_ELEMENTAL = NUM_VERTICES_PER_ELEMENT;
00102 
00104     static const unsigned STENCIL_SIZE = DIM*NUM_NODES_PER_ELEMENT + NUM_VERTICES_PER_ELEMENT;
00105 
00106 protected:
00108     QuadraticMesh<DIM>* mpMesh;
00109 
00111     GaussianQuadratureRule<DIM>* mpQuadRule;
00112 
00119     void DoAssemble();
00120 
00121 
00140     virtual c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> ComputeSpatialSpatialMatrixTerm(
00141         c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
00142         c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
00143         c_vector<double,DIM>& rX,
00144         Element<DIM,DIM>* pElement)
00145     {
00146         return zero_matrix<double>(SPATIAL_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL);
00147     }
00148 
00170     virtual c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputeSpatialPressureMatrixTerm(
00171         c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
00172         c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
00173         c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
00174         c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
00175         c_vector<double,DIM>& rX,
00176         Element<DIM,DIM>* pElement)
00177     {
00178         return zero_matrix<double>(SPATIAL_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL);
00179     }
00180 
00181 
00200     virtual c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputePressurePressureMatrixTerm(
00201         c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
00202         c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
00203         c_vector<double,DIM>& rX,
00204         Element<DIM,DIM>* pElement)
00205     {
00206         return zero_matrix<double>(PRESSURE_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL);
00207     }
00208 
00209 
00231     virtual c_vector<double,SPATIAL_BLOCK_SIZE_ELEMENTAL> ComputeSpatialVectorTerm(
00232         c_vector<double, NUM_NODES_PER_ELEMENT>& rQuadPhi,
00233         c_matrix<double, DIM, NUM_NODES_PER_ELEMENT>& rGradQuadPhi,
00234         c_vector<double,DIM>& rX,
00235         Element<DIM,DIM>* pElement)
00236     {
00237         return zero_vector<double>(SPATIAL_BLOCK_SIZE_ELEMENTAL);
00238     }
00239 
00240 
00262     virtual c_vector<double,PRESSURE_BLOCK_SIZE_ELEMENTAL> ComputePressureVectorTerm(
00263             c_vector<double, NUM_VERTICES_PER_ELEMENT>& rLinearPhi,
00264             c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT>& rGradLinearPhi,
00265             c_vector<double,DIM>& rX,
00266             Element<DIM,DIM>* pElement)
00267     {
00268         return zero_vector<double>(PRESSURE_BLOCK_SIZE_ELEMENTAL);
00269     }
00270 
00271 
00272 
00284     void AssembleOnElement(Element<DIM, DIM>& rElement,
00285                            c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElem,
00286                            c_vector<double, STENCIL_SIZE>& rBElem);
00287 
00288 public:
00292     AbstractContinuumMechanicsAssembler(QuadraticMesh<DIM>* pMesh, unsigned numQuadPoints = 3)
00293         : AbstractFeAssemblerInterface<CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>(),
00294           mpMesh(pMesh)
00295     {
00296         assert(pMesh);
00297         mpQuadRule = new GaussianQuadratureRule<DIM>(numQuadPoints);
00298     }
00299 
00300 
00301 //    void SetCurrentSolution(Vec currentSolution);
00302 
00303 
00307     virtual ~AbstractContinuumMechanicsAssembler()
00308     {
00309         delete mpQuadRule;
00310     }
00311 };
00312 
00313 
00315 //template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
00316 //void AbstractContinuumMechanicsAssembler<DIM,CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>::SetCurrentSolution(Vec currentSolution)
00317 //{
00318 //    assert(currentSolution != NULL);
00319 //
00320 //    // Replicate the current solution and store so can be used in AssembleOnElement
00321 //    HeartEventHandler::BeginEvent(HeartEventHandler::COMMUNICATION);
00322 //    mCurrentSolutionOrGuessReplicated.ReplicatePetscVector(currentSolution);
00323 //    HeartEventHandler::EndEvent(HeartEventHandler::COMMUNICATION);
00324 //
00325 //    // The AssembleOnElement type methods will determine if a current solution or
00326 //    // current guess exists by looking at the size of the replicated vector, so
00327 //    // check the size is zero if there isn't a current solution.
00328 //    assert(mCurrentSolutionOrGuessReplicated.GetSize() > 0);
00329 //}
00330 
00331 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
00332 void AbstractContinuumMechanicsAssembler<DIM,CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>::DoAssemble()
00333 {
00334     assert(this->mAssembleMatrix || this->mAssembleVector);
00335     if (this->mAssembleMatrix)
00336     {
00337         if(this->mMatrixToAssemble==NULL)
00338         {
00339             EXCEPTION("Matrix to be assembled has not been set");
00340         }
00341         if( PetscMatTools::GetSize(this->mMatrixToAssemble) != (DIM+1)*mpMesh->GetNumNodes() )
00342         {
00343             EXCEPTION("Matrix provided to be assembled has size " << PetscMatTools::GetSize(this->mMatrixToAssemble) << ", not expected size of " << (DIM+1)*mpMesh->GetNumNodes() << " ((dim+1)*num_nodes)");
00344         }
00345     }
00346 
00347     if (this->mAssembleVector)
00348     {
00349         if(this->mVectorToAssemble==NULL)
00350         {
00351             EXCEPTION("Vector to be assembled has not been set");
00352         }
00353         if( PetscVecTools::GetSize(this->mVectorToAssemble) != (DIM+1)*mpMesh->GetNumNodes() )
00354         {
00355             EXCEPTION("Vector provided to be assembled has size " << PetscVecTools::GetSize(this->mVectorToAssemble) << ", not expected size of " << (DIM+1)*mpMesh->GetNumNodes() << " ((dim+1)*num_nodes)");
00356         }
00357     }
00358 
00359     // Zero the matrix/vector if it is to be assembled
00360     if (this->mAssembleVector && this->mZeroVectorBeforeAssembly)
00361     {
00362         // Note PetscVecTools::Finalise(this->mVectorToAssemble); on an unused matrix
00363         // would "compress" data and make any pre-allocated entries redundant.
00364         PetscVecTools::Zero(this->mVectorToAssemble);
00365     }
00366     if (this->mAssembleMatrix && this->mZeroMatrixBeforeAssembly)
00367     {
00368         // Note PetscMatTools::Finalise(this->mMatrixToAssemble); on an unused matrix
00369         // would "compress" data and make any pre-allocated entries redundant.
00370         PetscMatTools::Zero(this->mMatrixToAssemble);
00371     }
00372 
00373     c_matrix<double, STENCIL_SIZE, STENCIL_SIZE> a_elem = zero_matrix<double>(STENCIL_SIZE,STENCIL_SIZE);
00374     c_vector<double, STENCIL_SIZE> b_elem = zero_vector<double>(STENCIL_SIZE);
00375 
00376 
00377     // Loop over elements
00378     for (typename AbstractTetrahedralMesh<DIM, DIM>::ElementIterator iter = mpMesh->GetElementIteratorBegin();
00379          iter != mpMesh->GetElementIteratorEnd();
00380          ++iter)
00381     {
00382         Element<DIM, DIM>& r_element = *iter;
00383 
00384         // Test for ownership first, since it's pointless to test the criterion on something which we might know nothing about.
00385         if ( r_element.GetOwnership() == true  /*&& ElementAssemblyCriterion(r_element)==true*/ )
00386         {
00387             #define COVERAGE_IGNORE
00388             // note: if assemble matrix only
00389             if(CommandLineArguments::Instance()->OptionExists("-mech_very_verbose") && this->mAssembleMatrix)
00390             {
00391                 std::cout << "\r[" << PetscTools::GetMyRank() << "]: Element " << r_element.GetIndex() << " of " << mpMesh->GetNumElements() << std::flush;
00392             }
00393             #undef COVERAGE_IGNORE
00394 
00395 
00396             AssembleOnElement(r_element, a_elem, b_elem);
00397 
00398             // Note that a different ordering is used for the elemental matrix compared to the global matrix.
00399             // See comments about ordering above.
00400             unsigned p_indices[STENCIL_SIZE];
00401             // Work out the mapping for spatial terms
00402             for (unsigned i=0; i<NUM_NODES_PER_ELEMENT; i++)
00403             {
00404                 for (unsigned j=0; j<DIM; j++)
00405                 {
00406                     // DIM+1 on the right-hand side here is the problem dimension
00407                     p_indices[DIM*i+j] = (DIM+1)*r_element.GetNodeGlobalIndex(i) + j;
00408                 }
00409             }
00410             // Work out the mapping for pressure terms
00411             for (unsigned i=0; i<NUM_VERTICES_PER_ELEMENT; i++)
00412             {
00413                 p_indices[DIM*NUM_NODES_PER_ELEMENT + i] = (DIM+1)*r_element.GetNodeGlobalIndex(i)+DIM;
00414             }
00415 
00416 
00417             if (this->mAssembleMatrix)
00418             {
00419                 PetscMatTools::AddMultipleValues<STENCIL_SIZE>(this->mMatrixToAssemble, p_indices, a_elem);
00420             }
00421 
00422             if (this->mAssembleVector)
00423             {
00424                 PetscVecTools::AddMultipleValues<STENCIL_SIZE>(this->mVectorToAssemble, p_indices, b_elem);
00425             }
00426         }
00427     }
00428 }
00429 
00430 template<unsigned DIM, bool CAN_ASSEMBLE_VECTOR, bool CAN_ASSEMBLE_MATRIX>
00431 void AbstractContinuumMechanicsAssembler<DIM,CAN_ASSEMBLE_VECTOR,CAN_ASSEMBLE_MATRIX>::AssembleOnElement(Element<DIM, DIM>& rElement,
00432                                                                                                          c_matrix<double, STENCIL_SIZE, STENCIL_SIZE >& rAElem,
00433                                                                                                          c_vector<double, STENCIL_SIZE>& rBElem)
00434 {
00435     static c_matrix<double,DIM,DIM> jacobian;
00436     static c_matrix<double,DIM,DIM> inverse_jacobian;
00437     double jacobian_determinant;
00438 
00439     mpMesh->GetInverseJacobianForElement(rElement.GetIndex(), jacobian, jacobian_determinant, inverse_jacobian);
00440 
00441     if (this->mAssembleMatrix)
00442     {
00443         rAElem.clear();
00444     }
00445 
00446     if (this->mAssembleVector)
00447     {
00448         rBElem.clear();
00449     }
00450 
00451 
00452     // Allocate memory for the basis functions values and derivative values
00453     static c_vector<double, NUM_VERTICES_PER_ELEMENT> linear_phi;
00454     static c_vector<double, NUM_NODES_PER_ELEMENT> quad_phi;
00455     static c_matrix<double, DIM, NUM_NODES_PER_ELEMENT> grad_quad_phi;
00456     static c_matrix<double, DIM, NUM_VERTICES_PER_ELEMENT> grad_linear_phi;
00457 
00458     c_vector<double,DIM> body_force;
00459 
00460     // Loop over Gauss points
00461     for (unsigned quadrature_index=0; quadrature_index < mpQuadRule->GetNumQuadPoints(); quadrature_index++)
00462     {
00463         double wJ = jacobian_determinant * mpQuadRule->GetWeight(quadrature_index);
00464         const ChastePoint<DIM>& quadrature_point = mpQuadRule->rGetQuadPoint(quadrature_index);
00465 
00466         // Set up basis function info
00467         LinearBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, linear_phi);
00468         QuadraticBasisFunction<DIM>::ComputeBasisFunctions(quadrature_point, quad_phi);
00469         QuadraticBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(quadrature_point, inverse_jacobian, grad_quad_phi);
00470         LinearBasisFunction<DIM>::ComputeTransformedBasisFunctionDerivatives(quadrature_point, inverse_jacobian, grad_linear_phi);
00471 
00472         // interpolate X (ie physical location of this quad point).
00473         c_vector<double,DIM> X = zero_vector<double>(DIM);
00474         for (unsigned vertex_index=0; vertex_index<NUM_VERTICES_PER_ELEMENT; vertex_index++)
00475         {
00476             for(unsigned j=0; j<DIM; j++)
00477             {
00478                 X(j) += linear_phi(vertex_index)*rElement.GetNode(vertex_index)->rGetLocation()(j);
00479             }
00480         }
00481 
00482         if(this->mAssembleVector)
00483         {
00484             c_vector<double,SPATIAL_BLOCK_SIZE_ELEMENTAL> b_spatial
00485                 = ComputeSpatialVectorTerm(quad_phi, grad_quad_phi, X, &rElement);
00486             c_vector<double,PRESSURE_BLOCK_SIZE_ELEMENTAL> b_pressure = ComputePressureVectorTerm(linear_phi, grad_linear_phi, X, &rElement);
00487 
00488             for (unsigned i=0; i<SPATIAL_BLOCK_SIZE_ELEMENTAL; i++)
00489             {
00490                 rBElem(i) += b_spatial(i)*wJ;
00491             }
00492 
00493 
00494             for (unsigned i=0; i<PRESSURE_BLOCK_SIZE_ELEMENTAL; i++)
00495             {
00496                 rBElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i) += b_pressure(i)*wJ;
00497             }
00498         }
00499 
00500 
00501         if(this->mAssembleMatrix)
00502         {
00503             c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> a_spatial_spatial
00504                 = ComputeSpatialSpatialMatrixTerm(quad_phi, grad_quad_phi, X, &rElement);
00505 
00506             c_matrix<double,SPATIAL_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> a_spatial_pressure
00507                 = ComputeSpatialPressureMatrixTerm(quad_phi, grad_quad_phi, linear_phi, grad_linear_phi, X, &rElement);
00508 
00509             c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,SPATIAL_BLOCK_SIZE_ELEMENTAL> a_pressure_spatial;
00510             if(!BLOCK_SYMMETRIC_MATRIX)
00511             {
00512                 NEVER_REACHED; // to-come: non-mixed problems
00513                 //a_pressure_spatial = ComputeSpatialPressureMatrixTerm(quad_phi, grad_quad_phi, lin_phi, grad_lin_phi, x, &rElement);
00514             }
00515 
00516             c_matrix<double,PRESSURE_BLOCK_SIZE_ELEMENTAL,PRESSURE_BLOCK_SIZE_ELEMENTAL> a_pressure_pressure
00517                 = ComputePressurePressureMatrixTerm(linear_phi, grad_linear_phi, X, &rElement);
00518 
00519             for (unsigned i=0; i<SPATIAL_BLOCK_SIZE_ELEMENTAL; i++)
00520             {
00521                 for(unsigned j=0; j<SPATIAL_BLOCK_SIZE_ELEMENTAL; j++)
00522                 {
00523                     rAElem(i,j) += a_spatial_spatial(i,j)*wJ;
00524                 }
00525 
00526                 for(unsigned j=0; j<PRESSURE_BLOCK_SIZE_ELEMENTAL; j++)
00527                 {
00528                     rAElem(i, SPATIAL_BLOCK_SIZE_ELEMENTAL + j) += a_spatial_pressure(i,j)*wJ;
00529                 }
00530             }
00531 
00532             for(unsigned i=0; i<PRESSURE_BLOCK_SIZE_ELEMENTAL; i++)
00533             {
00534                 if(BLOCK_SYMMETRIC_MATRIX)
00535                 {
00536                     for(unsigned j=0; j<SPATIAL_BLOCK_SIZE_ELEMENTAL; j++)
00537                     {
00538                         rAElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i, j) += a_spatial_pressure(j,i)*wJ;
00539                     }
00540                 }
00541                 else
00542                 {
00543                     NEVER_REACHED; // to-come: non-mixed problems
00544                 }
00545 
00546                 for(unsigned j=0; j<PRESSURE_BLOCK_SIZE_ELEMENTAL; j++)
00547                 {
00548                     rAElem(SPATIAL_BLOCK_SIZE_ELEMENTAL + i, SPATIAL_BLOCK_SIZE_ELEMENTAL + j) += a_pressure_pressure(i,j)*wJ;
00549                 }
00550             }
00551         }
00552     }
00553 }
00554 
00555 
00556 #endif // ABSTRACTCONTINUUMMECHANICSASSEMBLER_HPP_