Chaste Release::3.1
AbstractIsotropicIncompressibleMaterialLaw.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "AbstractIsotropicIncompressibleMaterialLaw.hpp"
00037 
00038 template<unsigned DIM>
00039 AbstractIsotropicIncompressibleMaterialLaw<DIM>::~AbstractIsotropicIncompressibleMaterialLaw()
00040 {
00041 }
00042 
00043 template<unsigned DIM>
00044 void AbstractIsotropicIncompressibleMaterialLaw<DIM>::ComputeStressAndStressDerivative(
00045         c_matrix<double,DIM,DIM>& rC,
00046         c_matrix<double,DIM,DIM>& rInvC,
00047         double                    pressure,
00048         c_matrix<double,DIM,DIM>& rT,
00049         FourthOrderTensor<DIM,DIM,DIM,DIM>&   rDTdE,
00050         bool                      computeDTdE)
00051 {
00052     /*
00053      * This is covered, but gcov doesn't see this as being covered
00054      * for some reason, maybe because of optimisations.
00055      */
00056     #define COVERAGE_IGNORE
00057     assert((DIM==2) || (DIM==3));
00058     #undef COVERAGE_IGNORE
00059 
00060     static c_matrix<double,DIM,DIM> identity = identity_matrix<double>(DIM);
00061 
00062     double I1 = Trace(rC);
00063     double I2 = SecondInvariant(rC);
00064 
00065     double  w1 = Get_dW_dI1(I1, I2);
00066     double  w2; // only computed if DIM==3
00067 
00068     // Compute stress:  **** See FiniteElementImplementations document. ****
00069     //
00070     //  T = dW_dE
00071     //    = 2 * w1 * dI1_dC_MN   +   2 * w2 * dI1_dC_MN  -  p * invC
00072     //    = 2 * w1 * delta_MN    +   2 * w2 * (I1 delta_MN - C_MN)  -  p * invC
00073     //
00074     //  (where w1 = dW/dI1, etc).
00075 
00076     rT = 2*w1*identity - pressure*rInvC;
00077     if (DIM==3)
00078     {
00079         w2 = Get_dW_dI2(I1, I2);
00080         rT += 2*w2*(I1*identity - rC);
00081     }
00082 
00083     // Compute stress derivative if required:   **** See FiniteElementImplementations document. ****
00084     //
00085     // The stress derivative dT_{MN}/dE_{PQ} is
00086     //
00087     //  dT_dE =    4 * w11 * dI1_dC_MN * dI1_dC_PQ
00088     //           + 4 * w1  * d2I1_dC2
00089     //           + 4 * w22 * dI2_dC_MN * dI2_dC_PQ
00090     //           + 4 * w2  * d2I2_dC2
00091     //           + 4 * w12 * (dI1_dC_MN*dI2_dC_PQ + dI1_dC_PQ*dI2_dC_MN)
00092     //           - 2 * pressure * d_invC_dC;
00093     //
00094     // where
00095     //   dI1_dC_MN = (M==N); // ie delta_{MN}
00096     //   dI1_dC_PQ = (P==Q);
00097     //   d2I1_dC2  = 0;
00098     //
00099     //   dI2_dC_MN = I1*(M==N)-C[M][N];
00100     //   dI2_dC_PQ = I1*(P==Q)-C[P][Q];
00101     //   d2I2_dC2  = (M==N)*(P==Q)-(M==P)*(N==Q);
00102     //
00103     //   d_invC_dC = -invC[M][P]*invC[Q][N];
00104     //
00105     if (computeDTdE)
00106     {
00107         double w11 = Get_d2W_dI1(I1,I2);
00108 
00109         double w12;
00110         double w22;
00111 
00112         if (DIM==3)
00113         {
00114             w22 = Get_d2W_dI2(I1, I2);
00115             w12 = Get_d2W_dI1I2(I1, I2);
00116         }
00117 
00118         for (unsigned M=0; M<DIM; M++)
00119         {
00120             for (unsigned N=0; N<DIM; N++)
00121             {
00122                 for (unsigned P=0; P<DIM; P++)
00123                 {
00124                     for (unsigned Q=0; Q<DIM; Q++)
00125                     {
00126                         rDTdE(M,N,P,Q) =   4 * w11  * (M==N) * (P==Q)
00127                                          + 2 * pressure * rInvC(M,P) * rInvC(Q,N);
00128 
00129                         if (DIM==3)
00130                         {
00131                             rDTdE(M,N,P,Q) +=   4 * w22   * (I1*(M==N) - rC(M,N)) * (I1*(P==Q) - rC(P,Q))
00132                                               + 4 * w2    * ((M==N)*(P==Q) - (M==P)*(N==Q))
00133                                               + 4 * w12 * ((M==N)*(I1*(P==Q) - rC(P,Q)) + (P==Q)*(I1*(M==N) - rC(M,N)));
00134                         }
00135                     }
00136                 }
00137             }
00138         }
00139     }
00140 }
00141 
00142 template<>
00143 double AbstractIsotropicIncompressibleMaterialLaw<2>::GetZeroStrainPressure()
00144 {
00145     return 2*Get_dW_dI1(2,0);
00146 }
00147 
00148 template<>
00149 double AbstractIsotropicIncompressibleMaterialLaw<3>::GetZeroStrainPressure()
00150 {
00151     return 2*Get_dW_dI1(3,3) + 4*Get_dW_dI2(3,3);
00152 }
00153 
00155 // Explicit instantiation
00157 
00158 template class AbstractIsotropicIncompressibleMaterialLaw<2>;
00159 template class AbstractIsotropicIncompressibleMaterialLaw<3>;