Chaste Release::3.1
|
#include <AbstractIsotropicIncompressibleMaterialLaw.hpp>
Public Member Functions | |
void | ComputeStressAndStressDerivative (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE) |
virtual | ~AbstractIsotropicIncompressibleMaterialLaw () |
double | GetZeroStrainPressure () |
template<> | |
double | GetZeroStrainPressure () |
Protected Member Functions | |
virtual double | Get_dW_dI1 (double I1, double I2)=0 |
virtual double | Get_dW_dI2 (double I1, double I2)=0 |
virtual double | Get_d2W_dI1 (double I1, double I2)=0 |
virtual double | Get_d2W_dI2 (double I1, double I2)=0 |
virtual double | Get_d2W_dI1I2 (double I1, double I2)=0 |
AbstractIsotropicIncompressibleMaterialLaw
An isotropic incompressible hyperelastic material law for finite elastiticy
The law is given by a strain energy function W(I1,I2,I3), where I_i are the principal invariants of C, the Lagrangian deformation tensor. (I1=trace(C), I2=trace(C)^2-trace(C^2), I3=det(C)). Since it is incompressible, the full strain energy has the form W^{full} = W(I_1,I_2) - p/2 C^{-1}
Note: only dimension equals 2 or 3 should be permitted.
Definition at line 55 of file AbstractIsotropicIncompressibleMaterialLaw.hpp.
AbstractIsotropicIncompressibleMaterialLaw< DIM >::~AbstractIsotropicIncompressibleMaterialLaw | ( | ) | [virtual] |
Destructor.
Definition at line 39 of file AbstractIsotropicIncompressibleMaterialLaw.cpp.
void AbstractIsotropicIncompressibleMaterialLaw< DIM >::ComputeStressAndStressDerivative | ( | c_matrix< double, DIM, DIM > & | rC, |
c_matrix< double, DIM, DIM > & | rInvC, | ||
double | pressure, | ||
c_matrix< double, DIM, DIM > & | rT, | ||
FourthOrderTensor< DIM, DIM, DIM, DIM > & | rDTdE, | ||
bool | computeDTdE | ||
) | [virtual] |
Compute the (2nd Piola Kirchoff) stress T and the stress derivative dT/dE for a given strain.
NOTE: the strain E is not expected to be passed in, instead the Lagrangian deformation tensor C is required (recall, E = 0.5(C-I)
dT/dE is a fourth-order tensor, where dT/dE(M,N,P,Q) = dT^{MN}/dE_{PQ}
rC | The Lagrangian deformation tensor (F^T F) |
rInvC | The inverse of C. Should be computed by the user. (Change this?) |
pressure | the current pressure |
rT | the stress will be returned in this parameter |
rDTdE | the stress derivative will be returned in this parameter, assuming the final parameter is true |
computeDTdE | a boolean flag saying whether the stress derivative is required or not. |
This is the implemtation for an isotropic material law, so the stress etc is computed by calling methods returning dW/dI1, dW/dI2 etc.
Implements AbstractMaterialLaw< DIM >.
Definition at line 44 of file AbstractIsotropicIncompressibleMaterialLaw.cpp.
References SecondInvariant(), and Trace().
virtual double AbstractIsotropicIncompressibleMaterialLaw< DIM >::Get_d2W_dI1 | ( | double | I1, |
double | I2 | ||
) | [protected, pure virtual] |
Get the second derivative d^2W/dI1^2.
I1 | first principal invariant of C |
I2 | second principal invariant of C |
Implemented in ExponentialMaterialLaw< DIM >, MooneyRivlinMaterialLaw< DIM >, and PolynomialMaterialLaw3d.
virtual double AbstractIsotropicIncompressibleMaterialLaw< DIM >::Get_d2W_dI1I2 | ( | double | I1, |
double | I2 | ||
) | [protected, pure virtual] |
Get the second derivative d^2W/dI1dI2.
I1 | first principal invariant of C |
I2 | second principal invariant of C |
Implemented in ExponentialMaterialLaw< DIM >, MooneyRivlinMaterialLaw< DIM >, and PolynomialMaterialLaw3d.
virtual double AbstractIsotropicIncompressibleMaterialLaw< DIM >::Get_d2W_dI2 | ( | double | I1, |
double | I2 | ||
) | [protected, pure virtual] |
Get the second derivative d^2W/dI2^2.
I1 | first principal invariant of C |
I2 | second principal invariant of C |
Implemented in ExponentialMaterialLaw< DIM >, MooneyRivlinMaterialLaw< DIM >, and PolynomialMaterialLaw3d.
virtual double AbstractIsotropicIncompressibleMaterialLaw< DIM >::Get_dW_dI1 | ( | double | I1, |
double | I2 | ||
) | [protected, pure virtual] |
Get the first derivative dW/dI1.
I1 | first principal invariant of C |
I2 | second principal invariant of C |
Implemented in ExponentialMaterialLaw< DIM >, MooneyRivlinMaterialLaw< DIM >, and PolynomialMaterialLaw3d.
Referenced by AbstractIsotropicIncompressibleMaterialLaw< 3 >::GetZeroStrainPressure().
virtual double AbstractIsotropicIncompressibleMaterialLaw< DIM >::Get_dW_dI2 | ( | double | I1, |
double | I2 | ||
) | [protected, pure virtual] |
Get the first derivative dW/dI2.
I1 | first principal invariant of C |
I2 | second principal invariant of C |
Implemented in ExponentialMaterialLaw< DIM >, MooneyRivlinMaterialLaw< DIM >, and PolynomialMaterialLaw3d.
Referenced by AbstractIsotropicIncompressibleMaterialLaw< 3 >::GetZeroStrainPressure().
double AbstractIsotropicIncompressibleMaterialLaw< DIM >::GetZeroStrainPressure | ( | ) | [virtual] |
Get the pressure corresponding to E=0, ie corresponding to C=identity
Since T = 2*Get_dW_dI1 identity + 4*Get_dW_dI2 (I1*identity - C) - p inverse(C), this is equal to 2*Get_dW_dI1(3,3) + 4*Get_dW_dI2(3,3) in 3D
Implements AbstractIncompressibleMaterialLaw< DIM >.
double AbstractIsotropicIncompressibleMaterialLaw< 2 >::GetZeroStrainPressure | ( | ) | [virtual] |
Get the pressure corresponding to zero stress given zero strain.
Implements AbstractIncompressibleMaterialLaw< DIM >.
Definition at line 143 of file AbstractIsotropicIncompressibleMaterialLaw.cpp.