Chaste Release::3.1
AbstractMaterialLaw.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "AbstractMaterialLaw.hpp"
00037 
00038 template<unsigned DIM>
00039 AbstractMaterialLaw<DIM>::AbstractMaterialLaw()
00040     : mpChangeOfBasisMatrix(NULL)
00041 {
00042 }
00043 
00044 template<unsigned DIM>
00045 void AbstractMaterialLaw<DIM>::ComputeCauchyStress(c_matrix<double,DIM,DIM>& rF,
00046                                                    double pressure,
00047                                                    c_matrix<double,DIM,DIM>& rSigma)
00048 {
00049     double detF = Determinant(rF);
00050 
00051     c_matrix<double,DIM,DIM> C = prod(trans(rF), rF);
00052     c_matrix<double,DIM,DIM> invC = Inverse(C);
00053 
00054     c_matrix<double,DIM,DIM> T;
00055 
00056     static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
00057 
00058     ComputeStressAndStressDerivative(C, invC, pressure, T, dTdE, false);
00059 
00060     /*
00061      * Looping is probably more eficient then doing rSigma = (1/detF)*rF*T*transpose(rF),
00062      * which doesn't seem to compile anyway, as rF is a Tensor<2,DIM> and T is a
00063      * SymmetricTensor<2,DIM>.
00064      */
00065     for (unsigned i=0; i<DIM; i++)
00066     {
00067         for (unsigned j=0; j<DIM; j++)
00068         {
00069             rSigma(i,j) = 0.0;
00070             for (unsigned M=0; M<DIM; M++)
00071             {
00072                 for (unsigned N=0; N<DIM; N++)
00073                 {
00074                     rSigma(i,j) += rF(i,M)*T(M,N)*rF(j,N);
00075                 }
00076             }
00077             rSigma(i,j) /= detF;
00078         }
00079     }
00080 }
00081 
00082 template<unsigned DIM>
00083 void AbstractMaterialLaw<DIM>::Compute1stPiolaKirchoffStress(c_matrix<double,DIM,DIM>& rF,
00084                                                              double pressure,
00085                                                              c_matrix<double,DIM,DIM>& rS)
00086 {
00087     c_matrix<double,DIM,DIM> C = prod(trans(rF), rF);
00088     c_matrix<double,DIM,DIM> invC = Inverse(C);
00089 
00090     c_matrix<double,DIM,DIM> T;
00091 
00092     static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
00093 
00094     ComputeStressAndStressDerivative(C, invC, pressure, T, dTdE, false);
00095 
00096     rS = prod(T, trans(rF));
00097 }
00098 
00099 template<unsigned DIM>
00100 void AbstractMaterialLaw<DIM>::Compute2ndPiolaKirchoffStress(c_matrix<double,DIM,DIM>& rC,
00101                                                              double pressure,
00102                                                              c_matrix<double,DIM,DIM>& rT)
00103 {
00104     c_matrix<double,DIM,DIM> invC = Inverse(rC);
00105 
00106     static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
00107 
00108     ComputeStressAndStressDerivative(rC, invC, pressure, rT, dTdE, false);
00109 }
00110 
00111 template<unsigned DIM>
00112 void AbstractMaterialLaw<DIM>::ScaleMaterialParameters(double scaleFactor)
00113 {
00114     #define COVERAGE_IGNORE
00115     EXCEPTION("[the material law you are using]::ScaleMaterialParameters() has not been implemented\n");
00116     #undef COVERAGE_IGNORE
00117 }
00118 
00119 template<unsigned DIM>
00120 void AbstractMaterialLaw<DIM>::SetChangeOfBasisMatrix(c_matrix<double,DIM,DIM>& rChangeOfBasisMatrix)
00121 {
00122     mpChangeOfBasisMatrix = &rChangeOfBasisMatrix;
00123 }
00124 
00125 template<unsigned DIM>
00126 void AbstractMaterialLaw<DIM>::ResetToNoChangeOfBasisMatrix()
00127 {
00128     mpChangeOfBasisMatrix = NULL;
00129 }
00130 
00131 template<unsigned DIM>
00132 void AbstractMaterialLaw<DIM>::ComputeTransformedDeformationTensor(c_matrix<double,DIM,DIM>& rC, c_matrix<double,DIM,DIM>& rInvC,
00133                                                                    c_matrix<double,DIM,DIM>& rCTransformed, c_matrix<double,DIM,DIM>& rInvCTransformed)
00134 {
00135     // Writing the local coordinate system as fibre/sheet/normal, as in cardiac problems..
00136 
00137     // Let P be the change-of-basis matrix P = (\mathbf{m}_f, \mathbf{m}_s, \mathbf{m}_n).
00138     // The transformed C for the fibre/sheet basis is C* = P^T C P.
00139     if (mpChangeOfBasisMatrix)
00140     {
00141         // C* = P^T C P, and ditto inv(C)
00142         rCTransformed = prod(trans(*mpChangeOfBasisMatrix),(c_matrix<double,DIM,DIM>)prod(rC,*mpChangeOfBasisMatrix));         // C*    = P^T C    P
00143         rInvCTransformed = prod(trans(*mpChangeOfBasisMatrix),(c_matrix<double,DIM,DIM>)prod(rInvC,*mpChangeOfBasisMatrix));   // invC* = P^T invC P
00144     }
00145     else
00146     {
00147         rCTransformed = rC;
00148         rInvCTransformed = rInvC;
00149     }
00150 }
00151 
00152 template<unsigned DIM>
00153 void AbstractMaterialLaw<DIM>::TransformStressAndStressDerivative(c_matrix<double,DIM,DIM>& rT,
00154                                                                   FourthOrderTensor<DIM,DIM,DIM,DIM>& rDTdE,
00155                                                                   bool transformDTdE)
00156 {
00157     //  T = P T* P^T   and   dTdE_{MNPQ}  =  P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
00158     if (mpChangeOfBasisMatrix)
00159     {
00160         static c_matrix<double,DIM,DIM> T_transformed_times_Ptrans;
00161         T_transformed_times_Ptrans = prod(rT, trans(*mpChangeOfBasisMatrix));
00162 
00163         rT = prod(*mpChangeOfBasisMatrix, T_transformed_times_Ptrans);  // T = P T* P^T
00164 
00165         // dTdE_{MNPQ}  =  P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
00166         if (transformDTdE)
00167         {
00168             static FourthOrderTensor<DIM,DIM,DIM,DIM> temp;
00169             temp.template SetAsContractionOnFirstDimension<DIM>(*mpChangeOfBasisMatrix, rDTdE);
00170             rDTdE.template SetAsContractionOnSecondDimension<DIM>(*mpChangeOfBasisMatrix, temp);
00171             temp.template SetAsContractionOnThirdDimension<DIM>(*mpChangeOfBasisMatrix, rDTdE);
00172             rDTdE.template SetAsContractionOnFourthDimension<DIM>(*mpChangeOfBasisMatrix, temp);
00173         }
00174     }
00175 }
00176 
00178 // Explicit instantiation
00180 
00181 //template class AbstractMaterialLaw<1>;
00182 template class AbstractMaterialLaw<2>;
00183 template class AbstractMaterialLaw<3>;