Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "CompressibleExponentialLaw.hpp" 00037 00038 template<unsigned DIM> 00039 CompressibleExponentialLaw<DIM>::CompressibleExponentialLaw() 00040 { 00041 mA = 0.88; // kPa 00042 00043 double bff = 18.5; // dimensionless 00044 double bss = 3.58; // dimensionless 00045 double bnn = 3.58; // dimensionless 00046 double bfn = 2.8; // etc 00047 double bfs = 2.8; 00048 double bsn = 2.8; 00049 00050 mCompressibilityParam = 100.0; 00051 00052 mB.resize(DIM); 00053 for (unsigned i=0; i<DIM; i++) 00054 { 00055 mB[i].resize(DIM); 00056 } 00057 00058 mB[0][0] = bff; 00059 mB[0][1] = mB[1][0] = bfs; 00060 mB[1][1] = bss; 00061 00062 if (DIM > 2) 00063 { 00064 mB[2][2] = bnn; 00065 mB[0][2] = mB[2][0] = bfn; 00066 mB[2][1] = mB[1][2] = bsn; 00067 } 00068 00069 for (unsigned M=0; M<DIM; M++) 00070 { 00071 for (unsigned N=0; N<DIM; N++) 00072 { 00073 mIdentity(M,N) = M==N ? 1.0 : 0.0; 00074 } 00075 } 00076 } 00077 00078 template<unsigned DIM> 00079 void CompressibleExponentialLaw<DIM>::ComputeStressAndStressDerivative(c_matrix<double,DIM,DIM>& rC, 00080 c_matrix<double,DIM,DIM>& rInvC, 00081 double pressure /* not used */, 00082 c_matrix<double,DIM,DIM>& rT, 00083 FourthOrderTensor<DIM,DIM,DIM,DIM>& rDTdE, 00084 bool computeDTdE) 00085 { 00086 static c_matrix<double,DIM,DIM> C_transformed; 00087 static c_matrix<double,DIM,DIM> invC_transformed; 00088 00089 // The material law parameters are set up assuming the fibre direction is (1,0,0) 00090 // and sheet direction is (0,1,0), so we have to transform C,inv(C),and T. 00091 // Let P be the change-of-basis matrix P = (\mathbf{m}_f, \mathbf{m}_s, \mathbf{m}_n). 00092 // The transformed C for the fibre/sheet basis is C* = P^T C P. 00093 // We then compute T* = T*(C*), and then compute T = P T* P^T. 00094 00095 ComputeTransformedDeformationTensor(rC, rInvC, C_transformed, invC_transformed); 00096 00097 // Compute T* 00098 00099 c_matrix<double,DIM,DIM> E = 0.5*(C_transformed - mIdentity); 00100 00101 double QQ = 0; 00102 for (unsigned M=0; M<DIM; M++) 00103 { 00104 for (unsigned N=0; N<DIM; N++) 00105 { 00106 QQ += mB[M][N]*E(M,N)*E(M,N); 00107 } 00108 } 00109 00110 double multiplier = mA*exp(QQ)/2; 00111 rDTdE.Zero(); 00112 00113 double J = sqrt(Determinant(rC)); 00114 00115 for (unsigned M=0; M<DIM; M++) 00116 { 00117 for (unsigned N=0; N<DIM; N++) 00118 { 00119 rT(M,N) = multiplier*mB[M][N]*E(M,N) + mCompressibilityParam * J*log(J)*invC_transformed(M,N); 00120 00121 if (computeDTdE) 00122 { 00123 for (unsigned P=0; P<DIM; P++) 00124 { 00125 for (unsigned Q=0; Q<DIM; Q++) 00126 { 00127 rDTdE(M,N,P,Q) = multiplier * mB[M][N] * (M==P)*(N==Q) 00128 + 2*multiplier*mB[M][N]*mB[P][Q]*E(M,N)*E(P,Q) 00129 + mCompressibilityParam * (J*log(J) + J) * invC_transformed(M,N) * invC_transformed(P,Q) 00130 - mCompressibilityParam * 2*J*log(J) * invC_transformed(M,P) * invC_transformed(Q,N); 00131 } 00132 } 00133 } 00134 } 00135 } 00136 00137 // Now do: T = P T* P^T and dTdE_{MNPQ} = P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq} 00138 this->TransformStressAndStressDerivative(rT, rDTdE, computeDTdE); 00139 } 00140 00142 // Explicit instantiation 00144 00145 template class CompressibleExponentialLaw<2>; 00146 template class CompressibleExponentialLaw<3>;