Chaste Release::3.1
CompressibleExponentialLaw.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "CompressibleExponentialLaw.hpp"
00037 
00038 template<unsigned DIM>
00039 CompressibleExponentialLaw<DIM>::CompressibleExponentialLaw()
00040 {
00041     mA = 0.88;  // kPa
00042 
00043     double bff = 18.5; // dimensionless
00044     double bss = 3.58; // dimensionless
00045     double bnn = 3.58; // dimensionless
00046     double bfn = 2.8;  // etc
00047     double bfs = 2.8;
00048     double bsn = 2.8;
00049 
00050     mCompressibilityParam = 100.0;
00051 
00052     mB.resize(DIM);
00053     for (unsigned i=0; i<DIM; i++)
00054     {
00055         mB[i].resize(DIM);
00056     }
00057 
00058     mB[0][0] = bff;
00059     mB[0][1] = mB[1][0] = bfs;
00060     mB[1][1] = bss;
00061 
00062     if (DIM > 2)
00063     {
00064         mB[2][2] = bnn;
00065         mB[0][2] = mB[2][0] = bfn;
00066         mB[2][1] = mB[1][2] = bsn;
00067     }
00068 
00069     for (unsigned M=0; M<DIM; M++)
00070     {
00071         for (unsigned N=0; N<DIM; N++)
00072         {
00073             mIdentity(M,N) = M==N ? 1.0 : 0.0;
00074         }
00075     }
00076 }
00077 
00078 template<unsigned DIM>
00079 void CompressibleExponentialLaw<DIM>::ComputeStressAndStressDerivative(c_matrix<double,DIM,DIM>& rC,
00080                                                                        c_matrix<double,DIM,DIM>& rInvC,
00081                                                                        double                pressure /* not used */,
00082                                                                        c_matrix<double,DIM,DIM>& rT,
00083                                                                        FourthOrderTensor<DIM,DIM,DIM,DIM>& rDTdE,
00084                                                                        bool                  computeDTdE)
00085 {
00086     static c_matrix<double,DIM,DIM> C_transformed;
00087     static c_matrix<double,DIM,DIM> invC_transformed;
00088 
00089     // The material law parameters are set up assuming the fibre direction is (1,0,0)
00090     // and sheet direction is (0,1,0), so we have to transform C,inv(C),and T.
00091     // Let P be the change-of-basis matrix P = (\mathbf{m}_f, \mathbf{m}_s, \mathbf{m}_n).
00092     // The transformed C for the fibre/sheet basis is C* = P^T C P.
00093     // We then compute T* = T*(C*), and then compute T = P T* P^T.
00094 
00095     ComputeTransformedDeformationTensor(rC, rInvC, C_transformed, invC_transformed);
00096 
00097     // Compute T*
00098 
00099     c_matrix<double,DIM,DIM> E = 0.5*(C_transformed - mIdentity);
00100 
00101     double QQ = 0;
00102     for (unsigned M=0; M<DIM; M++)
00103     {
00104         for (unsigned N=0; N<DIM; N++)
00105         {
00106             QQ += mB[M][N]*E(M,N)*E(M,N);
00107         }
00108     }
00109 
00110     double multiplier = mA*exp(QQ)/2;
00111     rDTdE.Zero();
00112 
00113     double J = sqrt(Determinant(rC));
00114 
00115     for (unsigned M=0; M<DIM; M++)
00116     {
00117         for (unsigned N=0; N<DIM; N++)
00118         {
00119             rT(M,N) = multiplier*mB[M][N]*E(M,N) + mCompressibilityParam * J*log(J)*invC_transformed(M,N);
00120 
00121             if (computeDTdE)
00122             {
00123                 for (unsigned P=0; P<DIM; P++)
00124                 {
00125                     for (unsigned Q=0; Q<DIM; Q++)
00126                     {
00127                         rDTdE(M,N,P,Q) =    multiplier * mB[M][N] * (M==P)*(N==Q)
00128                                          +  2*multiplier*mB[M][N]*mB[P][Q]*E(M,N)*E(P,Q)
00129                                          +  mCompressibilityParam * (J*log(J) + J) * invC_transformed(M,N) * invC_transformed(P,Q)
00130                                          -  mCompressibilityParam * 2*J*log(J) * invC_transformed(M,P) * invC_transformed(Q,N);
00131                     }
00132                 }
00133             }
00134         }
00135     }
00136 
00137     // Now do:   T = P T* P^T   and   dTdE_{MNPQ}  =  P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
00138     this->TransformStressAndStressDerivative(rT, rDTdE, computeDTdE);
00139 }
00140 
00142 // Explicit instantiation
00144 
00145 template class CompressibleExponentialLaw<2>;
00146 template class CompressibleExponentialLaw<3>;