Chaste Release::3.1
|
#include <CompressibleExponentialLaw.hpp>
Public Member Functions | |
CompressibleExponentialLaw () | |
void | ComputeStressAndStressDerivative (c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, double pressure, c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool computeDTdE) |
double | GetA () |
std::vector< std::vector < double > > | GetB () |
double | GetCompressibilityParam () |
Private Attributes | |
double | mA |
std::vector< std::vector < double > > | mB |
double | mCompressibilityParam |
c_matrix< double, DIM, DIM > | mIdentity |
Friends | |
class | TestCompressibleLawTransverselyIsotropic |
The compressible exponential material law implemented in
Uysk, Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle, Journal of Elasticity, 2000.
W = a[exp(Q)-1]/2 + c (J ln(J) - J + 1) where Q = sum b_{MN} E_{MN}^2
The exponential term is the same form as in the SchmidCosta law, although the parameters here are those given in the paper cited above, not the same as in the SchmidCosta class.
Note, by default, the fibre direction is assumed to be THE X-DIRECTION, and the sheet direction the Y-DIRECTION (ie sheets in the XY plane). Call SetChangeOfBasisMatrix() before ComputeStressAndStressDerivative(), with the matrix P = [fibre_vec, sheet_vec, normal_vec] if this is not the case.
Definition at line 59 of file CompressibleExponentialLaw.hpp.
CompressibleExponentialLaw< DIM >::CompressibleExponentialLaw | ( | ) |
Constructor.
Definition at line 39 of file CompressibleExponentialLaw.cpp.
void CompressibleExponentialLaw< DIM >::ComputeStressAndStressDerivative | ( | c_matrix< double, DIM, DIM > & | rC, |
c_matrix< double, DIM, DIM > & | rInvC, | ||
double | pressure, | ||
c_matrix< double, DIM, DIM > & | rT, | ||
FourthOrderTensor< DIM, DIM, DIM, DIM > & | rDTdE, | ||
bool | computeDTdE | ||
) | [virtual] |
Compute the (2nd Piola Kirchoff) stress T and the stress derivative dT/dE for a given strain.
NOTE: the strain E is not expected to be passed in, instead the Lagrangian deformation tensor C is required (recall, E = 0.5(C-I))
dT/dE is a fourth-order tensor, where dT/dE[M][N][P][Q] = dT^{MN}/dE_{PQ}
rC | The Lagrangian deformation tensor (F^T F) |
rInvC | The inverse of C. Should be computed by the user. (Change this?) |
pressure | the current pressure |
rT | the stress will be returned in this parameter |
rDTdE | the stress derivative will be returned in this parameter, assuming the final parameter is true |
computeDTdE | a boolean flag saying whether the stress derivative is required or not. |
Implements AbstractMaterialLaw< DIM >.
Definition at line 79 of file CompressibleExponentialLaw.cpp.
References Determinant(), and FourthOrderTensor< DIM1, DIM2, DIM3, DIM4 >::Zero().
double CompressibleExponentialLaw< DIM >::GetA | ( | ) | [inline] |
Get method for the parameter a
Definition at line 108 of file CompressibleExponentialLaw.hpp.
References CompressibleExponentialLaw< DIM >::mA.
std::vector<std::vector<double> > CompressibleExponentialLaw< DIM >::GetB | ( | ) | [inline] |
Get method for the parameter b (the values which multiply the strains in Q)
Definition at line 114 of file CompressibleExponentialLaw.hpp.
References CompressibleExponentialLaw< DIM >::mB.
double CompressibleExponentialLaw< DIM >::GetCompressibilityParam | ( | ) | [inline] |
Get method for compressibility parameter
Definition at line 120 of file CompressibleExponentialLaw.hpp.
References CompressibleExponentialLaw< DIM >::mCompressibilityParam.
double CompressibleExponentialLaw< DIM >::mA [private] |
Parameter a. (kPa)
Definition at line 66 of file CompressibleExponentialLaw.hpp.
Referenced by CompressibleExponentialLaw< DIM >::GetA().
std::vector<std::vector<double> > CompressibleExponentialLaw< DIM >::mB [private] |
Matrix of parameters b (dimensionless).
Definition at line 69 of file CompressibleExponentialLaw.hpp.
Referenced by CompressibleExponentialLaw< DIM >::GetB().
double CompressibleExponentialLaw< DIM >::mCompressibilityParam [private] |
Compressibility parameter, c in W = a[exp(Q)-1]/2 + c (J ln(J) - J + 1)
Definition at line 72 of file CompressibleExponentialLaw.hpp.
Referenced by CompressibleExponentialLaw< DIM >::GetCompressibilityParam().
c_matrix<double,DIM,DIM> CompressibleExponentialLaw< DIM >::mIdentity [private] |
identity matrix.
Definition at line 75 of file CompressibleExponentialLaw.hpp.