Chaste Release::3.1
|
00001 /* 00002 00003 Copyright (c) 2005-2012, University of Oxford. 00004 All rights reserved. 00005 00006 University of Oxford means the Chancellor, Masters and Scholars of the 00007 University of Oxford, having an administrative office at Wellington 00008 Square, Oxford OX1 2JD, UK. 00009 00010 This file is part of Chaste. 00011 00012 Redistribution and use in source and binary forms, with or without 00013 modification, are permitted provided that the following conditions are met: 00014 * Redistributions of source code must retain the above copyright notice, 00015 this list of conditions and the following disclaimer. 00016 * Redistributions in binary form must reproduce the above copyright notice, 00017 this list of conditions and the following disclaimer in the documentation 00018 and/or other materials provided with the distribution. 00019 * Neither the name of the University of Oxford nor the names of its 00020 contributors may be used to endorse or promote products derived from this 00021 software without specific prior written permission. 00022 00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 00034 */ 00035 00036 #include "NagaiHondaForce.hpp" 00037 00038 template<unsigned DIM> 00039 NagaiHondaForce<DIM>::NagaiHondaForce() 00040 : AbstractForce<DIM>(), 00041 mNagaiHondaDeformationEnergyParameter(100.0), // This is 1.0 in the Nagai & Honda paper 00042 mNagaiHondaMembraneSurfaceEnergyParameter(10.0), // This is 0.1 the Nagai & Honda paper 00043 mNagaiHondaCellCellAdhesionEnergyParameter(1.0), // This is 0.01 the Nagai & Honda paper 00044 mNagaiHondaCellBoundaryAdhesionEnergyParameter(1.0), // This is 0.01 the Nagai & Honda paper 00045 mMatureCellTargetArea(1.0) 00046 { 00047 } 00048 00049 template<unsigned DIM> 00050 NagaiHondaForce<DIM>::~NagaiHondaForce() 00051 { 00052 } 00053 00054 template<unsigned DIM> 00055 void NagaiHondaForce<DIM>::AddForceContribution(std::vector<c_vector<double, DIM> >& rForces, 00056 AbstractCellPopulation<DIM>& rCellPopulation) 00057 { 00058 // Throw an exception message if not using a VertexBasedCellPopulation 00059 if (dynamic_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation) == NULL) 00060 { 00061 EXCEPTION("NagaiHondaForce is to be used with a VertexBasedCellPopulation only"); 00062 } 00063 00064 // Helper variable that is a static cast of the cell population 00065 VertexBasedCellPopulation<DIM>* p_cell_population = static_cast<VertexBasedCellPopulation<DIM>*>(&rCellPopulation); 00066 00067 // Iterate over vertices in the cell population 00068 for (unsigned node_index=0; node_index<p_cell_population->GetNumNodes(); node_index++) 00069 { 00070 // Compute the force on this node 00071 00072 /* 00073 * The force on this Node is given by the gradient of the total free 00074 * energy of the CellPopulation, evaluated at the position of the vertex. This 00075 * free energy is the sum of the free energies of all CellPtrs in 00076 * the cell population. The free energy of each CellPtr is comprised of three 00077 * parts - a cell deformation energy, a membrane surface tension energy 00078 * and an adhesion energy. 00079 * 00080 * Note that since the movement of this Node only affects the free energy 00081 * of the three CellPtrs containing it, we can just consider the 00082 * contributions to the free energy gradient from each of these three 00083 * CellPtrs. 00084 */ 00085 00086 c_vector<double, DIM> deformation_contribution = zero_vector<double>(DIM); 00087 c_vector<double, DIM> membrane_surface_tension_contribution = zero_vector<double>(DIM); 00088 c_vector<double, DIM> adhesion_contribution = zero_vector<double>(DIM); 00089 00090 // Find the indices of the elements owned by this node 00091 std::set<unsigned> containing_elem_indices = p_cell_population->GetNode(node_index)->rGetContainingElementIndices(); 00092 00093 // Iterate over these elements 00094 for (std::set<unsigned>::iterator iter = containing_elem_indices.begin(); 00095 iter != containing_elem_indices.end(); 00096 ++iter) 00097 { 00098 // Get this element and its index 00099 VertexElement<DIM, DIM>* p_element = p_cell_population->GetElement(*iter); 00100 unsigned element_index = p_element->GetIndex(); 00101 00102 // Find the local index of this node in this element 00103 unsigned local_index = p_element->GetNodeLocalIndex(node_index); 00104 00105 /******** Start of deformation force calculation ********/ 00106 00107 // Compute the area of this element and its gradient at this node 00108 double element_area = p_cell_population->rGetMesh().GetVolumeOfElement(*iter); 00109 c_vector<double, DIM> element_area_gradient = p_cell_population->rGetMesh().GetAreaGradientOfElementAtNode(p_element, local_index); 00110 00111 // Get the target area of the cell 00112 double cell_target_area = GetTargetAreaOfCell(p_cell_population->GetCellUsingLocationIndex(element_index)); 00113 00114 // Add the force contribution from this cell's deformation energy (note the minus sign) 00115 deformation_contribution -= 2*GetNagaiHondaDeformationEnergyParameter()*(element_area - cell_target_area)*element_area_gradient; 00116 00117 /******** End of deformation force calculation *************/ 00118 00119 /******** Start of membrane force calculation ***********/ 00120 00121 // Compute the perimeter of the element and its gradient at this node 00122 double element_perimeter = p_cell_population->rGetMesh().GetSurfaceAreaOfElement(*iter); 00123 c_vector<double, DIM> element_perimeter_gradient = p_cell_population->rGetMesh().GetPerimeterGradientOfElementAtNode(p_element, local_index); 00124 00125 // Get the target perimeter of the cell 00126 double cell_target_perimeter = 2*sqrt(M_PI*cell_target_area); 00127 00128 // Add the force contribution from this cell's membrane surface tension (note the minus sign) 00129 membrane_surface_tension_contribution -= 2*GetNagaiHondaMembraneSurfaceEnergyParameter()*(element_perimeter - cell_target_perimeter)*element_perimeter_gradient; 00130 00131 /******** End of membrane force calculation **********/ 00132 00133 /******** Start of adhesion force calculation ***********/ 00134 00135 // Get the current, previous and next nodes in this element 00136 Node<DIM>* p_current_node = p_element->GetNode(local_index); 00137 00138 unsigned previous_node_local_index = (p_element->GetNumNodes()+local_index-1)%(p_element->GetNumNodes()); 00139 Node<DIM>* p_previous_node = p_element->GetNode(previous_node_local_index); 00140 00141 unsigned next_node_local_index = (local_index+1)%(p_element->GetNumNodes()); 00142 Node<DIM>* p_next_node = p_element->GetNode(next_node_local_index); 00143 00144 // Compute the adhesion parameter for each of these edges 00145 double previous_edge_adhesion_parameter; 00146 double next_edge_adhesion_parameter; 00147 00148 previous_edge_adhesion_parameter = GetAdhesionParameter(p_previous_node, p_current_node, *p_cell_population); 00149 next_edge_adhesion_parameter = GetAdhesionParameter(p_current_node, p_next_node, *p_cell_population); 00150 00151 // Compute the gradient of the edge of the cell ending in this node 00152 c_vector<double, DIM> previous_edge_gradient = p_cell_population->rGetMesh().GetPreviousEdgeGradientOfElementAtNode(p_element, local_index); 00153 00154 // Compute the gradient of the edge of the cell starting in this node 00155 c_vector<double, DIM> next_edge_gradient = p_cell_population->rGetMesh().GetNextEdgeGradientOfElementAtNode(p_element, local_index); 00156 00157 // Add the force contribution from cell-cell and cell-boundary adhesion (note the minus sign) 00158 adhesion_contribution -= previous_edge_adhesion_parameter*previous_edge_gradient + next_edge_adhesion_parameter*next_edge_gradient; 00159 00160 /******** End of adhesion force calculation *************/ 00161 } 00162 00163 c_vector<double, DIM> force_on_node = deformation_contribution + 00164 membrane_surface_tension_contribution + 00165 adhesion_contribution; 00166 00167 rForces[node_index] += force_on_node; 00168 } 00169 } 00170 00171 template<unsigned DIM> 00172 double NagaiHondaForce<DIM>::GetAdhesionParameter(Node<DIM>* pNodeA, Node<DIM>* pNodeB, VertexBasedCellPopulation<DIM>& rVertexCellPopulation) 00173 { 00174 // Find the indices of the elements owned by each node 00175 std::set<unsigned> elements_containing_nodeA = pNodeA->rGetContainingElementIndices(); 00176 std::set<unsigned> elements_containing_nodeB = pNodeB->rGetContainingElementIndices(); 00177 00178 // Find common elements 00179 std::set<unsigned> shared_elements; 00180 std::set_intersection(elements_containing_nodeA.begin(), 00181 elements_containing_nodeA.end(), 00182 elements_containing_nodeB.begin(), 00183 elements_containing_nodeB.end(), 00184 std::inserter(shared_elements, shared_elements.begin())); 00185 00186 // Check that the nodes have a common edge 00187 assert(!shared_elements.empty()); 00188 00189 double adhesion_parameter = GetNagaiHondaCellCellAdhesionEnergyParameter(); 00190 00191 // If the edge corresponds to a single element, then the cell is on the boundary 00192 if (shared_elements.size() == 1) 00193 { 00194 adhesion_parameter = GetNagaiHondaCellBoundaryAdhesionEnergyParameter(); 00195 } 00196 00197 return adhesion_parameter; 00198 } 00199 00200 template<unsigned DIM> 00201 double NagaiHondaForce<DIM>::GetNagaiHondaDeformationEnergyParameter() 00202 { 00203 return mNagaiHondaDeformationEnergyParameter; 00204 } 00205 00206 template<unsigned DIM> 00207 double NagaiHondaForce<DIM>::GetNagaiHondaMembraneSurfaceEnergyParameter() 00208 { 00209 return mNagaiHondaMembraneSurfaceEnergyParameter; 00210 } 00211 00212 template<unsigned DIM> 00213 double NagaiHondaForce<DIM>::GetNagaiHondaCellCellAdhesionEnergyParameter() 00214 { 00215 return mNagaiHondaCellCellAdhesionEnergyParameter; 00216 } 00217 00218 template<unsigned DIM> 00219 double NagaiHondaForce<DIM>::GetNagaiHondaCellBoundaryAdhesionEnergyParameter() 00220 { 00221 return mNagaiHondaCellBoundaryAdhesionEnergyParameter; 00222 } 00223 00224 template<unsigned DIM> 00225 void NagaiHondaForce<DIM>::SetNagaiHondaDeformationEnergyParameter(double deformationEnergyParameter) 00226 { 00227 mNagaiHondaDeformationEnergyParameter = deformationEnergyParameter; 00228 } 00229 00230 template<unsigned DIM> 00231 void NagaiHondaForce<DIM>::SetNagaiHondaMembraneSurfaceEnergyParameter(double membraneSurfaceEnergyParameter) 00232 { 00233 mNagaiHondaMembraneSurfaceEnergyParameter = membraneSurfaceEnergyParameter; 00234 } 00235 00236 template<unsigned DIM> 00237 void NagaiHondaForce<DIM>::SetNagaiHondaCellCellAdhesionEnergyParameter(double cellCellAdhesionEnergyParameter) 00238 { 00239 mNagaiHondaCellCellAdhesionEnergyParameter = cellCellAdhesionEnergyParameter; 00240 } 00241 00242 template<unsigned DIM> 00243 void NagaiHondaForce<DIM>::SetNagaiHondaCellBoundaryAdhesionEnergyParameter(double cellBoundaryAdhesionEnergyParameter) 00244 { 00245 mNagaiHondaCellBoundaryAdhesionEnergyParameter = cellBoundaryAdhesionEnergyParameter; 00246 } 00247 00248 template<unsigned DIM> 00249 double NagaiHondaForce<DIM>::GetTargetAreaOfCell(const CellPtr pCell) const 00250 { 00251 // Get target area A of a healthy cell in S, G2 or M phase 00252 double cell_target_area = mMatureCellTargetArea; 00253 00254 double cell_age = pCell->GetAge(); 00255 double g1_duration = pCell->GetCellCycleModel()->GetG1Duration(); 00256 00257 // If the cell is differentiated then its G1 duration is infinite 00258 if (g1_duration == DBL_MAX) // don't use magic number, compare to DBL_MAX 00259 { 00260 // This is just for fixed cell-cycle models, need to work out how to find the g1 duration 00261 g1_duration = pCell->GetCellCycleModel()->GetTransitCellG1Duration(); 00262 } 00263 00264 if (pCell->HasCellProperty<ApoptoticCellProperty>()) 00265 { 00266 // Age of cell when apoptosis begins 00267 if (pCell->GetStartOfApoptosisTime() - pCell->GetBirthTime() < g1_duration) 00268 { 00269 cell_target_area *= 0.5*(1 + (pCell->GetStartOfApoptosisTime() - pCell->GetBirthTime())/g1_duration); 00270 } 00271 00272 // The target area of an apoptotic cell decreases linearly to zero (and past it negative) 00273 cell_target_area = cell_target_area - 0.5*cell_target_area/(pCell->GetApoptosisTime())*(SimulationTime::Instance()->GetTime()-pCell->GetStartOfApoptosisTime()); 00274 00275 // Don't allow a negative target area 00276 if (cell_target_area < 0) 00277 { 00278 cell_target_area = 0; 00279 } 00280 } 00281 else 00282 { 00283 // The target area of a proliferating cell increases linearly from A/2 to A over the course of the G1 phase 00284 if (cell_age < g1_duration) 00285 { 00286 cell_target_area *= 0.5*(1 + cell_age/g1_duration); 00287 } 00288 } 00289 00290 return cell_target_area; 00291 } 00292 00293 template<unsigned DIM> 00294 double NagaiHondaForce<DIM>::GetMatureCellTargetArea() const 00295 { 00296 return mMatureCellTargetArea; 00297 } 00298 00299 template<unsigned DIM> 00300 void NagaiHondaForce<DIM>::SetMatureCellTargetArea(double matureCellTargetArea) 00301 { 00302 assert(matureCellTargetArea >= 0.0); 00303 mMatureCellTargetArea = matureCellTargetArea; 00304 } 00305 00306 template<unsigned DIM> 00307 void NagaiHondaForce<DIM>::OutputForceParameters(out_stream& rParamsFile) 00308 { 00309 *rParamsFile << "\t\t\t<NagaiHondaDeformationEnergyParameter>" << mNagaiHondaDeformationEnergyParameter << "</NagaiHondaDeformationEnergyParameter>\n"; 00310 *rParamsFile << "\t\t\t<NagaiHondaMembraneSurfaceEnergyParameter>" << mNagaiHondaMembraneSurfaceEnergyParameter << "</NagaiHondaMembraneSurfaceEnergyParameter>\n"; 00311 *rParamsFile << "\t\t\t<NagaiHondaCellCellAdhesionEnergyParameter>" << mNagaiHondaCellCellAdhesionEnergyParameter << "</NagaiHondaCellCellAdhesionEnergyParameter>\n"; 00312 *rParamsFile << "\t\t\t<NagaiHondaCellBoundaryAdhesionEnergyParameter>" << mNagaiHondaCellBoundaryAdhesionEnergyParameter << "</NagaiHondaCellBoundaryAdhesionEnergyParameter>\n"; 00313 *rParamsFile << "\t\t\t<MatureCellTargetArea>" << mMatureCellTargetArea << "</MatureCellTargetArea>\n"; 00314 00315 // Call method on direct parent class 00316 AbstractForce<DIM>::OutputForceParameters(rParamsFile); 00317 } 00318 00320 // Explicit instantiation 00322 00323 template class NagaiHondaForce<1>; 00324 template class NagaiHondaForce<2>; 00325 template class NagaiHondaForce<3>; 00326 00327 // Serialization for Boost >= 1.36 00328 #include "SerializationExportWrapperForCpp.hpp" 00329 EXPORT_TEMPLATE_CLASS_SAME_DIMS(NagaiHondaForce)