Chaste Release::3.1
SimpleNonlinearEllipticSolver.cpp
00001 /*
00002 
00003 Copyright (c) 2005-2012, University of Oxford.
00004 All rights reserved.
00005 
00006 University of Oxford means the Chancellor, Masters and Scholars of the
00007 University of Oxford, having an administrative office at Wellington
00008 Square, Oxford OX1 2JD, UK.
00009 
00010 This file is part of Chaste.
00011 
00012 Redistribution and use in source and binary forms, with or without
00013 modification, are permitted provided that the following conditions are met:
00014  * Redistributions of source code must retain the above copyright notice,
00015    this list of conditions and the following disclaimer.
00016  * Redistributions in binary form must reproduce the above copyright notice,
00017    this list of conditions and the following disclaimer in the documentation
00018    and/or other materials provided with the distribution.
00019  * Neither the name of the University of Oxford nor the names of its
00020    contributors may be used to endorse or promote products derived from this
00021    software without specific prior written permission.
00022 
00023 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
00024 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
00025 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
00026 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
00027 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
00028 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
00029 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
00030 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00031 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
00032 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00033 
00034 */
00035 
00036 #include "SimpleNonlinearEllipticSolver.hpp"
00037 
00038 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00039 c_matrix<double,1*(ELEMENT_DIM+1),1*(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeMatrixTerm(
00040         c_vector<double, ELEMENT_DIM+1>& rPhi,
00041         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00042         ChastePoint<SPACE_DIM>& rX,
00043         c_vector<double,1>& rU,
00044         c_matrix<double,1,SPACE_DIM>& rGradU,
00045         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00046 {
00047     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> ret;
00048 
00049     c_matrix<double, SPACE_DIM, SPACE_DIM> f_of_u = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00050     c_matrix<double, SPACE_DIM, SPACE_DIM> f_of_u_prime = mpNonlinearEllipticPde->ComputeDiffusionTermPrime(rX, rU(0));
00051 
00052     // LinearSourceTerm(x) not needed as it is a constant wrt u
00053     double forcing_term_prime = mpNonlinearEllipticPde->ComputeNonlinearSourceTermPrime(rX, rU(0));
00054 
00055     // Note rGradU is a 1 by SPACE_DIM matrix, the 1 representing the dimension of
00056     // u (ie in this problem the unknown is a scalar). r_gradu_0 is rGradU as a vector
00057     matrix_row< c_matrix<double, 1, SPACE_DIM> > r_gradu_0(rGradU, 0);
00058     c_vector<double, SPACE_DIM> temp1 = prod(f_of_u_prime, r_gradu_0);
00059     c_vector<double, ELEMENT_DIM+1> temp1a = prod(temp1, rGradPhi);
00060 
00061     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values1 = outer_prod(temp1a, rPhi);
00062     c_matrix<double, SPACE_DIM, ELEMENT_DIM+1> temp2 = prod(f_of_u, rGradPhi);
00063     c_matrix<double, ELEMENT_DIM+1, ELEMENT_DIM+1> integrand_values2 = prod(trans(rGradPhi), temp2);
00064     c_vector<double, ELEMENT_DIM+1> integrand_values3 = forcing_term_prime * rPhi;
00065 
00066     ret = integrand_values1 + integrand_values2 - outer_prod( scalar_vector<double>(ELEMENT_DIM+1), integrand_values3);
00067 
00068     return ret;
00069 }
00070 
00071 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00072 c_vector<double,1*(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::ComputeVectorTerm(
00073         c_vector<double, ELEMENT_DIM+1>& rPhi,
00074         c_matrix<double, SPACE_DIM, ELEMENT_DIM+1>& rGradPhi,
00075         ChastePoint<SPACE_DIM>& rX,
00076         c_vector<double,1>& rU,
00077         c_matrix<double,1,SPACE_DIM>& rGradU,
00078         Element<ELEMENT_DIM,SPACE_DIM>* pElement)
00079 {
00080     c_vector<double, 1*(ELEMENT_DIM+1)> ret;
00081 
00082     // For solving an AbstractNonlinearEllipticEquation
00083     // d/dx [f(U,x) du/dx ] = -g
00084     // where g(x,U) is the forcing term
00085     double forcing_term = mpNonlinearEllipticPde->ComputeLinearSourceTerm(rX);
00086     forcing_term += mpNonlinearEllipticPde->ComputeNonlinearSourceTerm(rX, rU(0));
00087 
00088     c_matrix<double, ELEMENT_DIM, ELEMENT_DIM> FOfU = mpNonlinearEllipticPde->ComputeDiffusionTerm(rX, rU(0));
00089 
00090     // Note rGradU is a 1 by SPACE_DIM matrix, the 1 representing the dimension of
00091     // u (ie in this problem the unknown is a scalar). rGradU0 is rGradU as a vector.
00092     matrix_row< c_matrix<double, 1, SPACE_DIM> > rGradU0(rGradU, 0);
00093     c_vector<double, ELEMENT_DIM+1> integrand_values1 =
00094         prod(c_vector<double, ELEMENT_DIM>(prod(rGradU0, FOfU)), rGradPhi);
00095 
00096     ret = integrand_values1 - (forcing_term * rPhi);
00097     return ret;
00098 }
00099 
00100 
00101 template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
00102 SimpleNonlinearEllipticSolver<ELEMENT_DIM,SPACE_DIM>::SimpleNonlinearEllipticSolver(
00103                               AbstractTetrahedralMesh<ELEMENT_DIM, SPACE_DIM>* pMesh,
00104                               AbstractNonlinearEllipticPde<SPACE_DIM>* pPde,
00105                               BoundaryConditionsContainer<ELEMENT_DIM, SPACE_DIM, 1>* pBoundaryConditions,
00106                               unsigned numQuadPoints)
00107     :  AbstractNonlinearAssemblerSolverHybrid<ELEMENT_DIM,SPACE_DIM,1>(pMesh,pBoundaryConditions,numQuadPoints),
00108        mpNonlinearEllipticPde(pPde)
00109 {
00110     assert(pPde!=NULL);
00111 }
00112 
00114 // Explicit instantiation
00116 
00117 template class SimpleNonlinearEllipticSolver<1,1>;
00118 template class SimpleNonlinearEllipticSolver<2,2>;
00119 template class SimpleNonlinearEllipticSolver<3,3>;