Chaste Release::3.1
SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM > Class Template Reference

#include <SimpleNonlinearEllipticSolver.hpp>

Inheritance diagram for SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >:
Collaboration diagram for SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >:

List of all members.

Public Member Functions

 SimpleNonlinearEllipticSolver (AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *pMesh, AbstractNonlinearEllipticPde< SPACE_DIM > *pPde, BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *pBoundaryConditions, unsigned numQuadPoints=2)

Private Member Functions

virtual c_matrix< double,
1 *(ELEMENT_DIM+1),
1 *(ELEMENT_DIM+1)> 
ComputeMatrixTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement)
virtual c_vector< double,
1 *(ELEMENT_DIM+1)> 
ComputeVectorTerm (c_vector< double, ELEMENT_DIM+1 > &rPhi, c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &rGradPhi, ChastePoint< SPACE_DIM > &rX, c_vector< double, 1 > &rU, c_matrix< double, 1, SPACE_DIM > &rGradU, Element< ELEMENT_DIM, SPACE_DIM > *pElement)

Private Attributes

AbstractNonlinearEllipticPde
< SPACE_DIM > * 
mpNonlinearEllipticPde

Detailed Description

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
class SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >

Solver of nonlinear elliptic PDEs.

Definition at line 46 of file SimpleNonlinearEllipticSolver.hpp.


Constructor & Destructor Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::SimpleNonlinearEllipticSolver ( AbstractTetrahedralMesh< ELEMENT_DIM, SPACE_DIM > *  pMesh,
AbstractNonlinearEllipticPde< SPACE_DIM > *  pPde,
BoundaryConditionsContainer< ELEMENT_DIM, SPACE_DIM, 1 > *  pBoundaryConditions,
unsigned  numQuadPoints = 2 
)

Constructor.

Parameters:
pMeshpointer to the mesh
pPdepointer to the PDE
pBoundaryConditionspointer to the boundary conditions
numQuadPointsnumber of quadrature points in each dimension to use per element (defaults to 2)

Definition at line 102 of file SimpleNonlinearEllipticSolver.cpp.


Member Function Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_matrix< double, 1 *(ELEMENT_DIM+1), 1 *(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeMatrixTerm ( c_vector< double, ELEMENT_DIM+1 > &  rPhi,
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &  rGradPhi,
ChastePoint< SPACE_DIM > &  rX,
c_vector< double, 1 > &  rU,
c_matrix< double, 1, SPACE_DIM > &  rGradU,
Element< ELEMENT_DIM, SPACE_DIM > *  pElement 
) [private, virtual]

This method returns the matrix to be added to element stiffness matrix for a given Gauss point. The arguments are the bases, bases gradients, x and current solution computed at the Gauss point. The returned matrix will be multiplied by the Gauss weight and Jacobian determinant and added to the element stiffness matrix (see AssembleOnElement()).

Parameters:
rPhiThe basis functions, rPhi(i) = phi_i, i=1..numBases
rGradPhiBasis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i)
rXThe point in space
rUThe unknown as a vector, u(i) = u_i
rGradUThe gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j)
pElementPointer to the element

Definition at line 39 of file SimpleNonlinearEllipticSolver.cpp.

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
c_vector< double, 1 *(ELEMENT_DIM+1)> SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::ComputeVectorTerm ( c_vector< double, ELEMENT_DIM+1 > &  rPhi,
c_matrix< double, SPACE_DIM, ELEMENT_DIM+1 > &  rGradPhi,
ChastePoint< SPACE_DIM > &  rX,
c_vector< double, 1 > &  rU,
c_matrix< double, 1, SPACE_DIM > &  rGradU,
Element< ELEMENT_DIM, SPACE_DIM > *  pElement 
) [private, virtual]

This method returns the vector to be added to element stiffness vector for a given Gauss point. The arguments are the bases, x and current solution computed at the Gauss point. The returned vector will be multiplied by the Gauss weight and Jacobian determinant and added to the element stiffness matrix (see AssembleOnElement()).

Parameters:
rPhiThe basis functions, rPhi(i) = phi_i, i=1..numBases
rGradPhiBasis gradients, rGradPhi(i,j) = d(phi_j)/d(X_i)
rXThe point in space
rUThe unknown as a vector, u(i) = u_i
rGradUThe gradient of the unknown as a matrix, rGradU(i,j) = d(u_i)/d(X_j)
pElementPointer to the element

Definition at line 72 of file SimpleNonlinearEllipticSolver.cpp.


Member Data Documentation

template<unsigned ELEMENT_DIM, unsigned SPACE_DIM>
AbstractNonlinearEllipticPde<SPACE_DIM>* SimpleNonlinearEllipticSolver< ELEMENT_DIM, SPACE_DIM >::mpNonlinearEllipticPde [private]

The PDE to be solved.

Definition at line 51 of file SimpleNonlinearEllipticSolver.hpp.


The documentation for this class was generated from the following files: