Chaste  Release::3.4
AbstractMaterialLaw.cpp
1 /*
2 
3 Copyright (c) 2005-2016, University of Oxford.
4 All rights reserved.
5 
6 University of Oxford means the Chancellor, Masters and Scholars of the
7 University of Oxford, having an administrative office at Wellington
8 Square, Oxford OX1 2JD, UK.
9 
10 This file is part of Chaste.
11 
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14  * Redistributions of source code must retain the above copyright notice,
15  this list of conditions and the following disclaimer.
16  * Redistributions in binary form must reproduce the above copyright notice,
17  this list of conditions and the following disclaimer in the documentation
18  and/or other materials provided with the distribution.
19  * Neither the name of the University of Oxford nor the names of its
20  contributors may be used to endorse or promote products derived from this
21  software without specific prior written permission.
22 
23 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
27 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
29 GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 
34 */
35 
36 #include "AbstractMaterialLaw.hpp"
37 
38 template<unsigned DIM>
40  : mpChangeOfBasisMatrix(NULL)
41 {
42 }
43 
44 template<unsigned DIM>
45 void AbstractMaterialLaw<DIM>::ComputeCauchyStress(c_matrix<double,DIM,DIM>& rF,
46  double pressure,
47  c_matrix<double,DIM,DIM>& rSigma)
48 {
49  double detF = Determinant(rF);
50 
51  c_matrix<double,DIM,DIM> C = prod(trans(rF), rF);
52  c_matrix<double,DIM,DIM> invC = Inverse(C);
53 
54  c_matrix<double,DIM,DIM> T;
55 
56  static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
57 
58  ComputeStressAndStressDerivative(C, invC, pressure, T, dTdE, false);
59 
60  /*
61  * Looping is probably more eficient then doing rSigma = (1/detF)*rF*T*transpose(rF),
62  * which doesn't seem to compile anyway, as rF is a Tensor<2,DIM> and T is a
63  * SymmetricTensor<2,DIM>.
64  */
65  for (unsigned i=0; i<DIM; i++)
66  {
67  for (unsigned j=0; j<DIM; j++)
68  {
69  rSigma(i,j) = 0.0;
70  for (unsigned M=0; M<DIM; M++)
71  {
72  for (unsigned N=0; N<DIM; N++)
73  {
74  rSigma(i,j) += rF(i,M)*T(M,N)*rF(j,N);
75  }
76  }
77  rSigma(i,j) /= detF;
78  }
79  }
80 }
81 
82 template<unsigned DIM>
84  double pressure,
85  c_matrix<double,DIM,DIM>& rS)
86 {
87  c_matrix<double,DIM,DIM> C = prod(trans(rF), rF);
88  c_matrix<double,DIM,DIM> invC = Inverse(C);
89 
90  c_matrix<double,DIM,DIM> T;
91 
92  static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
93 
94  ComputeStressAndStressDerivative(C, invC, pressure, T, dTdE, false);
95 
96  rS = prod(T, trans(rF));
97 }
98 
99 template<unsigned DIM>
101  double pressure,
102  c_matrix<double,DIM,DIM>& rT)
103 {
104  c_matrix<double,DIM,DIM> invC = Inverse(rC);
105 
106  static FourthOrderTensor<DIM,DIM,DIM,DIM> dTdE; // not filled in, made static for efficiency
107 
108  ComputeStressAndStressDerivative(rC, invC, pressure, rT, dTdE, false);
109 }
110 
111 template<unsigned DIM>
113 {
114  #define COVERAGE_IGNORE
115  EXCEPTION("[the material law you are using]::ScaleMaterialParameters() has not been implemented\n");
116  #undef COVERAGE_IGNORE
117 }
118 
119 template<unsigned DIM>
120 void AbstractMaterialLaw<DIM>::SetChangeOfBasisMatrix(c_matrix<double,DIM,DIM>& rChangeOfBasisMatrix)
121 {
122  mpChangeOfBasisMatrix = &rChangeOfBasisMatrix;
123 }
124 
125 template<unsigned DIM>
127 {
128  mpChangeOfBasisMatrix = NULL;
129 }
130 
131 template<unsigned DIM>
132 void AbstractMaterialLaw<DIM>::ComputeTransformedDeformationTensor(c_matrix<double,DIM,DIM>& rC, c_matrix<double,DIM,DIM>& rInvC,
133  c_matrix<double,DIM,DIM>& rCTransformed, c_matrix<double,DIM,DIM>& rInvCTransformed)
134 {
135  // Writing the local coordinate system as fibre/sheet/normal, as in cardiac problems..
136 
137  // Let P be the change-of-basis matrix P = (\mathbf{m}_f, \mathbf{m}_s, \mathbf{m}_n).
138  // The transformed C for the fibre/sheet basis is C* = P^T C P.
139  if (mpChangeOfBasisMatrix)
140  {
141  // C* = P^T C P, and ditto inv(C)
142  rCTransformed = prod(trans(*mpChangeOfBasisMatrix),(c_matrix<double,DIM,DIM>)prod(rC,*mpChangeOfBasisMatrix)); // C* = P^T C P
143  rInvCTransformed = prod(trans(*mpChangeOfBasisMatrix),(c_matrix<double,DIM,DIM>)prod(rInvC,*mpChangeOfBasisMatrix)); // invC* = P^T invC P
144  }
145  else
146  {
147  rCTransformed = rC;
148  rInvCTransformed = rInvC;
149  }
150 }
151 
152 template<unsigned DIM>
155  bool transformDTdE)
156 {
157  // T = P T* P^T and dTdE_{MNPQ} = P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
158  if (mpChangeOfBasisMatrix)
159  {
160  static c_matrix<double,DIM,DIM> T_transformed_times_Ptrans;
161  T_transformed_times_Ptrans = prod(rT, trans(*mpChangeOfBasisMatrix));
162 
163  rT = prod(*mpChangeOfBasisMatrix, T_transformed_times_Ptrans); // T = P T* P^T
164 
165  // dTdE_{MNPQ} = P_{Mm}P_{Nn}P_{Pp}P_{Qq} dT*dE*_{mnpq}
166  if (transformDTdE)
167  {
169  temp.template SetAsContractionOnFirstDimension<DIM>(*mpChangeOfBasisMatrix, rDTdE);
170  rDTdE.template SetAsContractionOnSecondDimension<DIM>(*mpChangeOfBasisMatrix, temp);
171  temp.template SetAsContractionOnThirdDimension<DIM>(*mpChangeOfBasisMatrix, rDTdE);
172  rDTdE.template SetAsContractionOnFourthDimension<DIM>(*mpChangeOfBasisMatrix, temp);
173  }
174  }
175 }
176 
178 // Explicit instantiation
180 
181 //template class AbstractMaterialLaw<1>;
182 template class AbstractMaterialLaw<2>;
183 template class AbstractMaterialLaw<3>;
void TransformStressAndStressDerivative(c_matrix< double, DIM, DIM > &rT, FourthOrderTensor< DIM, DIM, DIM, DIM > &rDTdE, bool transformDTdE)
boost::numeric::ublas::c_matrix< T, 1, 1 > Inverse(const boost::numeric::ublas::c_matrix< T, 1, 1 > &rM)
#define EXCEPTION(message)
Definition: Exception.hpp:143
T Determinant(const boost::numeric::ublas::c_matrix< T, 1, 1 > &rM)
void ComputeCauchyStress(c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rSigma)
void Compute1stPiolaKirchoffStress(c_matrix< double, DIM, DIM > &rF, double pressure, c_matrix< double, DIM, DIM > &rS)
void ComputeTransformedDeformationTensor(c_matrix< double, DIM, DIM > &rC, c_matrix< double, DIM, DIM > &rInvC, c_matrix< double, DIM, DIM > &rCTransformed, c_matrix< double, DIM, DIM > &rInvCTransformed)
void Compute2ndPiolaKirchoffStress(c_matrix< double, DIM, DIM > &rC, double pressure, c_matrix< double, DIM, DIM > &rT)
void SetChangeOfBasisMatrix(c_matrix< double, DIM, DIM > &rChangeOfBasisMatrix)
virtual void ScaleMaterialParameters(double scaleFactor)